Modelling, Specification and Formal Analysis of Complex Software Systems Precise Static Analysis of Programs with Dynamic Memory

Mihaela Sighireanu

IRIF, University Paris Diderot & CNRS

VTSA 2015

Introduction

- 2 Formal Models and Semantics for IMPR
- 3 Foundations of Static Analysis by Abstract Interpretation
- 4 Application: Programs with Lists and Data
- 5 Application: Decision Procedures by Static Analysis
- 6 Elements of Inter-procedural Analysis
 - 7 Application: Programs with Lists, Data, and Procedures
 - 8 Extension: Programs with Complex Data Structures
 - 9 Extension: Programs with Inductive Data Structures

FORMAL SEMANTICS FOR PROCEDURE CALL

$$\begin{array}{c} \forall \nu_i \in \overrightarrow{vin} . (\mathbf{S}, \mathbf{H}) \vdash \nu_i \rightsquigarrow c_i \neq \texttt{merr} \\ \hline (\ell, (\mathbf{S}, \mathbf{H})) \vdash \nu = P(\overrightarrow{vin}, \overrightarrow{vout}) \rightsquigarrow (start_P, (push(\mathbf{S}, \ell+1, P, \nu, \overrightarrow{vout}, \overrightarrow{c_i}, \mathtt{lv}_P), \mathbf{H})) \end{array}$$

$$\begin{array}{c} top(\mathtt{S}) = (\ell, \mathtt{P}, \nu, \ldots) \quad (\mathtt{S}, \mathtt{H})(\nu') = \mathtt{c} \\ \hline (\ell', (\mathtt{S}, \mathtt{H})) \vdash \mathtt{return} \ \nu' \rightsquigarrow (\ell, (pop(\mathtt{S}), \mathtt{H})[\nu \leftarrow \mathtt{c}]) \end{array}$$

Another source of infinity is the unbounded stack that usually stores locations in the heap.

Aim

Compute an abstraction of the relation between the input and output configurations of a procedure, i.e. the procedure summary or contract.

Context sensitive: the summary depends on an abstraction of the calling stack

- "If p is called before q, it returns 0, otherwise 1."
- \longrightarrow insight on the full program behaviour, expressive
- \longrightarrow analysis done for each call point

Context insensitive: the summary is independent of the calling stack

"If p is called it returns 0 or 1."

- \longrightarrow insight on the procedure behaviour, but less precise
- \longrightarrow analysis done independently of callers

Main steps:

Case 1: Compute summary information for each procedure ... at each calling point with "equivalent stack" runsCase 2: Use summary information at procedure calls... ... if the abstraction of reaching stack fits the already computed ones

Main steps:

- Case 1: Compute summary information for each procedure ... at each calling point with "equivalent stack" runs
- Case 2: Use summary information at procedure calls...
 - \ldots if the abstraction of reaching stack fits the already computed ones
- Classic approaches for summary computation:
 - Functional approach: [Sharir&Pnueli,81],[Knoop&Steffen,92] Summary is a function mapping abstract input to abstract output
 - Relational approach: [Cousot&Cousot,77] Summary is a relation between input and output
 - Call string approach: [Sharir&Pnueli,81], [Khedker&Karkare,08] Maps string abstractions of the call stack to abstract configs.

Aim

Compute a function summary_P : $\mathbf{CP} \mapsto (\mathcal{A}_{\mathbb{H}} \to \mathcal{A}_{mH})$ mapping each control point of the procedure $q \in \mathbf{CP}$ to a function which associates every (G_0, W_0) abstract heap reachable at start_P to the abstract heap (G_q, W_q) reachable at q.

```
int length(list* 1) {
1: int len = 0;
2: if (l == NULL)
3: len=0;
4: else {
5: len=1+length(l->next);
6: }
7: return len;
8: }
```

q	(G_0, W_0)	(G_q, W_q)
2	$l = \boxtimes$	$l = \boxtimes$
	$\mathtt{ls}^+(\mathfrak{l},\boxtimes)$	$\mathtt{ls}^+(\mathfrak{l},\boxtimes)$
8	$l = \boxtimes$	$ret = 0 \land l = \boxtimes$
	$\mathtt{ls}^+(\mathfrak{l},\boxtimes)$	$ret \ge 1 \land ls^+(l, \boxtimes)$

4 🗇
 103 / 149

Problem

The local heap of a procedure may be accessed from the stack bypassing the actual parameters.

Bad Consequence

Context sensitive analyses shall track also these interferences!

Observation

In a large class of programs with procedure calls, the local heap is reachable from the stack by passing through the actual parameters.

Consequence

For this class, the computation of summaries is compositional.

CUT-POINT FREE PROGRAMS

[Rinetzky et al,05]

Definition

A call is cut point free if all local heap cut nodes are reachable from the stack through the procedure parameters. A cut point free program has only cut point free procedure calls.

> **∢ 🗇 →** 106 / 149

Let V be the set of formal parameters and local variables.

Definition

A concrete inter-procedural configurations is a pair of heap configurations (H^0,H_q) where:

- $\bullet~H^0$ is the local heap at start_P over a new vocabulary V^0
 - \longrightarrow similar to old notation in JML
- H is the heap at the control point q of the procedure over $V \cup \{\$ret\}$

Definition

A concrete procedure summary is the set $\{(H^0, H_{end_P})\}$.

Introduction

- 2 Formal Models and Semantics for IMPR
- 3 Foundations of Static Analysis by Abstract Interpretation
- 4 Application: Programs with Lists and Data
- 5 Application: Decision Procedures by Static Analysis
- 6 Elements of Inter-procedural Analysis
- 🕐 Application: Programs with Lists, Data, and Procedures
 - Extension: Programs with Complex Data Structures
 - Extension: Programs with Inductive Data Structures

Programs with Lists and Data — Inter-procedural Analysis —

joint work with A. Bouajjani, C. Drăgoi, C. Enea

PLDI'11

▲ 🗗 → 109 / 149

 ▲
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →

Representing Summaries in $\mathcal{A}_{\mathbb{HS}}$

$$\alpha((\mathsf{H}^0,\mathsf{H})) \triangleq (\mathsf{G}^0 * \mathsf{G}, W^0 \wedge W)$$

Analysing Quicksort: $\mathcal{A}^{\overline{\mathbb{U}}}$ Domain

Analysing Quicksort: $\mathcal{A}^{\mathbb{M}}$ Domain

left = quicksort(left)

left = quicksort(left)

QUICKSORT: LOSS OF PRECISION

left = quicksort(left)

sorted(**()** $\land \leq \mathbf{p}(\mathbf{)} \land \leq \mathbf{p}(\mathbf{)}$

 √ →
 114 / 149

left = quicksort(left)

strenghten(sorted() $\land \leq p()$, $\operatorname{equal}_{multisets}(),)$ \downarrow sorted() $\land \leq p()$ $\land \leq p()$

> ▲ 🗗 ▶ 114 / 149

STRENGTHEN PROCEDURE

 √ →
 115 / 149

$$\forall y. y \in n \Rightarrow d(y) \le d(p) \qquad \boxed{\qquad n \qquad m} \qquad ms(n) = ms(m)$$

1. unfold a bounded length prefix of n and m

$$\begin{array}{c} d(q) \leq d(p) \\ \forall y. \ y \in \mathsf{n}' \Rightarrow d(y) \leq d(p) \end{array} \qquad \begin{array}{c} 0 & 123 \dots \\ \hline q & \mathbf{n'} \\ \hline r & \mathbf{m'} \end{array} \qquad \begin{array}{c} \mathrm{ms}(n') + \mathrm{ms}(q) = \\ \mathrm{ms}(m') + \mathrm{ms}(r) \end{array}$$

STRENGTHEN PROCEDURE: EXAMPLE

▲ →

STRENGTHEN PROCEDURE: EXAMPLE

STRENGTHEN PROCEDURE: EXAMPLE

EXPERIMENTAL RESULTS

class	fun	nesting	$\mathcal{A}_{\mathbb{M}}$	\mathcal{A}_U		Examples of summaries synthesized
		(loop,rec)	t (s)	P	t (s)	
	create	(0, -)	< 1	$P_{=}, P_{1}$	< 1	
	addfst		< 1	$P_{=}$	< 1	
sll	addlst	(0,1)	< 1	$P_{=}$	< 1	$\rho_{II}^{\#}(create(\&x, \ell))$: $hd(x) = 0 \land len(x) = \ell \land \forall y \in tl(x) \Rightarrow x[y] = 0$
	delfst	-	< 1	$P_{=}$	< 1	*
	dellst	(0,1)	< 1	<i>P</i> ₌	< 1	
	init(v)	(0,1)	< 1	$P_{=}, P_{1}$	< 1	$\rho_{U}^{\#}(init(v,x))$: $len(x^{0}) = len(x) \wedge hd(x) = v \wedge \forall y \in tl(x)$. $x[y] = v$
map	initSeq	(0,1)	< 1	$P_{=}, P_{1}$	< 1	$\rho_{\mathbb{T}}^{\#}(add(v,x))$: $\operatorname{len}(x^0) = \operatorname{len}(x) \wedge \operatorname{hd}(x) = \operatorname{hd}(x^0) + v \wedge$
	add(v)	(0,1)	< 1	$P_{=}$	< 1	$\forall y_1 \in tl(x), y_2 \in tl(x^0). \ y_1 = y_2 \Rightarrow x[y_1] = x^0[y_2] + v$
map2	add(v)	(0,1)	< 1	$P_{=}$	< 1	$\rho_{II}^{\#}(add(v,x,z))$: $len(x^0) = len(x) \land len(z^0) = len(z) \land eq(x,x^0) \land$
	сору	(0,1)	< 1	$P_{=}$	< 1	$\forall y_1 \in \texttt{tl}(x), y_2 \in \texttt{tl}(z), y_1 = y_2 \Rightarrow x[y_1] + v = z[y_2]$
	delPred	(0,1)	< 1	$P_{=}, P_{1}$	< 1	$\rho_{M}^{\#}(split(v, x, \&l, \&u)): ms(x) = ms(x^{0}) = ms(l) \cup ms(u)$
fold	max	(0,1)	< 1	$P_{=}, P_{1}$	< 1	$\rho_{U}^{\#}(split(v,x,\&l,\&u)): equal(x,x^{0}) \land len(x) = len(l) + len(u) \land$
	clone	(0,1)	< 1	$P_{=}$	< 1	$l[0] \le v \land \forall y \in tl(l) \Rightarrow l[y] \le v \land$
	split	(0,1)	< 1	$P_{=}, P_{1}$	< 1	$u[0] > v \land \forall y \in \mathtt{tl}(u) \Rightarrow u[y] > v$
	equal	(0,1)	< 1	$P_{=}$	< 1	$\rho_{\mathbb{M}}^{\#}(merge(x, z, \&r)): \ \mathrm{ms}(x) \cup \mathrm{ms}(z) = \mathrm{ms}(r) \wedge \mathrm{ms}(x^{0}) = \mathrm{ms}(x) \wedge \dots$
fold2	concat	(0,1)	< 1	$P_{=}, P_{1}, P_{2}$	< 3	$\rho_{\mathbb{H}}^{\#}(merge(x,z,\&r)): equal(x,x^0) \land equal(z,z^0) \land sorted(x^0) \land sorted(z^0) \land$
	merge	(0,1)	< 1	$P_{=}, P_{1}, P_{2}$	< 3	$sorted(r) \wedge len(x) + len(z) = len(r)$
	bubble	(1, -)	< 1	$P_{=}, P_{1}, P_{2}$	< 3	
sort	insert	(1, -)	< 1	$P_{=}, P_{1}, P_{2}$	< 3	$\rho_{\mathbb{M}}^{\#}(quicksort(x)): \operatorname{ms}(x) = \operatorname{ms}(x^{0}) = \operatorname{ms}(res)$
	quick	(-,2)	< 2	$P_{=}, P_{1}, P_{2}$	< 4	$\rho_{\mathbb{T}}^{\#}(quicksort(x)): equal(x,x^0) \wedge sorted(res)$
	merge	(-,2)	< 2	$P_{=}, P_{1}, P_{2}$	< 4	

Introduction

- 2 Formal Models and Semantics for IMPR
- 3 Foundations of Static Analysis by Abstract Interpretation
- 4 Application: Programs with Lists and Data
- 5 Application: Decision Procedures by Static Analysis
- 6 Elements of Inter-procedural Analysis
- 7 Application: Programs with Lists, Data, and Procedures
- 8 Extension: Programs with Complex Data Structures
 - Extension: Programs with Inductive Data Structures

Reasoning about Composite Data Structures — using a FO Logic Framework —

joint work with A. Bouajjani, C. Drăgoi, C. Enea

CONCUR'09

▲ 🗗 ▶ 119 / 149

PROPERTIES OF COMPLEX DATA STRUCTURES

- Structure: "the array contains in each cell a reference to an acyclic doubly linked list"
 - Sizes: "the array is sorted in decreasing order w.r.t. the lengths of lists stored"
 - Data: "the array is sorted w.r.t. the values of the field id"

Recall: Heap Graph Model

Heaps are represented as labeled directed graphs called heap graphs

```
struct a_ty {
    int id;
    dll_ty* head;
}
struct dll_ty {
    bool flag;
    a_ty* root;
    dll_ty* next, *prev;
}
a_ty arr[N];
```


The graph is deterministic The array fields create acyclic distinct paths

- $\bullet\,$ assume $\mathbb D$ the data domain where data fields take values
- assume FO($\mathbb{D},\mathbb{O},\mathbb{P})$ a first order logic on $\mathbb{D},$ with operations in \mathbb{O} and predicates in \mathbb{P}

gCSL is a multi-sorted first order logic on graphs parametrized by $\mathsf{FO}(\mathbb{D},\mathbb{O},\mathbb{P})$

$$gCSL = FO + reachability + arithmetical constraints + FO($\mathbb{D}, \mathbb{O}, \mathbb{P}$)$$

DATA CONSTRAINTS

PROPERTIES OF COMPLEX DATA STRUCTURES IN GCSL

Structure: "the array contains in each cell a reference to an acyclic doubly linked list"

$$\forall i \; \exists x, y. \; x = \texttt{head}(\textit{a}[i]) \land x \xrightarrow{\{\texttt{next}, \overrightarrow{\texttt{prev}}\}} y$$

Sizes: "the array is sorted w.r.t. the lengths of lists stored"

$$\begin{aligned} \forall j, j'. \ j < j' \implies \exists x, x', l, l'. \ \left(x = \text{head}(a[j]) \land x' = \text{head}(a[j']) \land \\ x \xrightarrow{\{\text{next}\}, l'} \text{null} \land x' \xrightarrow{\{\text{next}\}, l'} \text{null} \land l' \le l \end{aligned}$$

Data: "the array is sorted w.r.t. the values of the field id"

$$\forall i, j. \ i < j \Longrightarrow id(a[i]) < id(a[j])$$

√ 127 / 149

The satisfiability problem of gCSL is undecidable

- when data are restricted to finite domains (such as booleans), the logic subsumes the first-order logic on graphs with reachability
- when the models are restricted to simple structures, like sequences or arrays, for very simple data logics such as (ℕ,=), the fragment ∀*∃* is undecidable

CSL FRAGMENT

An ordered partition over \mathcal{RT} is a mapping $\sigma : \mathcal{RT} \to \{1, \dots, N\}$

• a type $R \in \mathcal{RT}$ is of *level* k iff $\sigma(R) = k$

CSL FRAGMENT

An ordered partition over \mathcal{RT} is a mapping $\sigma : \mathcal{RT} \to \{1, \dots, N\}$

• a type $R \in \mathcal{RT}$ is of *level* k iff $\sigma(R) = k$

For $1 \leq k \leq |\sigma|$,

CSL is the smallest set of formulas closed under disjunction and conjunction, which contains all the closed formulas of the form:

 $\exists_{\leq k}^* \forall_k^* \exists_{\leq k-1}^* \forall_{k-1}^* \ldots \exists_1^* \forall_1^* \{\exists_d, \forall_d\}^*. \phi$

 ϕ is a quantifier-free formula in gCSL

130 / 149

CSL FRAGMENT

For $1 \leq k \leq |\sigma|$,

CSL is the smallest set of formulas closed under disjunction and conjunction, which contains all the closed formulas of the form:

 $\exists_{\leq k}^* \ \forall_k^* \ \exists_{\leq k-1}^* \ \forall_{k-1}^* \ \ldots \ \exists_1^* \ \forall_1^* \ \{\exists_d, \forall_d\}^*. \ \phi$

 ϕ is a quantifier-free formula in gCSL such that:

- **REACH:** for any $x \xrightarrow{A,ind} x'$, x and x' are free or existential variables
- UNIVIDX: two universal index variables can be used only in j < j' or j = j'

YES
$$\forall j, j'. j < j' \Rightarrow data(a[j]) < data(a[j'])$$

NO
$$\forall j, j'. j + 1 = j' \Rightarrow data(a[j]) < data(a[j'])$$

• LEV: atomic constraints on lengths of lists and array indexes involve only one level

$$\begin{aligned} \text{YES } \exists x, x', l_1 \exists z, z', l_2. \ x \xrightarrow{\{f\}, l_1} x' \land z \xrightarrow{\{f\}, l_2} z' \land l_1 \geq 4 \land l_2 \geq 0 \\ \text{NO } \exists x, x', l_1 \exists z, z', l_2. \ x \xrightarrow{\{f\}, l_1} x' \land z \xrightarrow{\{f\}, l_2} z' \land l_1 + l_2 \geq 0 \end{aligned}$$

CSL Specifications

Structure: "the array contains in each cell a reference to an acyclic doubly linked list"

$$\forall i \; \exists x, y. \; x = \text{head}(\underline{a[i]}) \land x \xrightarrow{\{\text{next}, \overline{\text{prev}}\}} y$$

Sizes: "the array is sorted w.r.t. the lengths of lists stored" $\forall j, j'. j < j' \Longrightarrow \exists x, x', l, l'. (x = head(a[j]) \land x' = head(a[j']) \land$ $x \xrightarrow{\{next\}, l} null \land x' \xrightarrow{\{next\}, l'} null \land l' \leq l)$ Data: "the array is sorted w.r.t. the values of the field id" $\forall i, j, i < j \Longrightarrow id(a[i]) < id(a[j])$

132 / 149

Theorem

The satisfiability of CSL is decidable if the satisfiability of the underlying first order logic FO($\mathbb{D}, \mathbb{O}, \mathbb{P}$) is decidable

Let

$$\varphi_{\mathsf{k}} = \exists_{\leq \mathsf{k}}^* \mathsf{r} \,\, \forall_{\mathsf{k}}^* \mathsf{p} \,\,\, \exists_{\leq \mathsf{k}-1}^* \mathsf{r}' \,\,\, \forall_{\mathsf{k}-1}^* \mathsf{p}' \,\,\, \ldots \,\, \exists_1^* \mathsf{r}'' \,\,\, \forall_1^* \mathsf{p}'' \,\,\, \{\exists_{\mathsf{d}}, \forall_{\mathsf{d}}\}^* . \,\, \phi$$

() compute φ_{k-1} equi-satisfiable to φ_k such that

$$\varphi_{\mathsf{k}-1} = \exists_{\leq \mathsf{k}-1}^* \mathsf{z} \; \forall_{\mathsf{k}-1}^* \mathsf{w} \; \dots \; \exists_1^* \mathsf{z}' \; \forall_1^* \mathsf{w}' \; \; \{\exists_\mathsf{d}, \forall_\mathsf{d}\}^*. \; \phi'$$

until it ends up with a formula over variables of level 1

$$\varphi = \exists_1^* \mathbf{x} \; \forall_1^* \mathbf{y} \; \; \{ \exists_{\mathbf{d}}, \forall_{\mathbf{d}} \}^*. \; \phi''$$

2 reduce the satisfiability of φ to the satisfiability of a formula in FO $(\mathbb{D}, \mathbb{O}, \mathbb{P})$

✓ ☐ →
 133 / 149

Theorem

The satisfiability of CSL is decidable if the satisfiability of the underlying first order logic $FO(\mathbb{D}, \mathbb{O}, \mathbb{P})$ is decidable

Let

$$\varphi = \exists_1^* \mathbf{x} \, \forall_1^* \mathbf{y} \; \{ \exists_d, \forall_d \}^*. \; \phi''$$

compute the set of small models for the reachability and size constraints

 ${}^{{}_{\!\!\! O}}$ for each small model, build a FO $(\mathbb{D},\mathbb{O},\mathbb{P})$ formula ψ

If one of ψ is satisfiable then φ is satisfiable.

Computing Small Models

$$\varphi = \exists x, q, z \cdot x \xrightarrow{\{f\}} q \land x \xrightarrow{\{f\}} z \land q \neq z$$

$\bullet \ \varphi$ has two small models of size three

Computing Small Models

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, h} q \land x \xrightarrow{\{f\}, h} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$

 $l_1 + l = l_2 \wedge l_1 + l_2 \ge 8$

▲ 四
 136 / 149

Computing Small Models

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$

• minimal solutions (l_1, l_2, l) for $l_1 + l = l_2 \wedge l_1 + l_2 \ge 8$

 $\mathcal{M} = \{(1,7,6), (2,6,4), (3,5,2)\}$

ullet small models for φ

Checking Data Constraints (1/4)

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. \left(y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y')\right)$$

✓ ☐ →
 138 / 149

Checking Data Constraints (2/4)

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. \left(y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y')\right)$$

✓ ☐ →
 139 / 149

Checking Data Constraints (2/4)

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. \left(y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y')\right)$$

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. (y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y'))$$

Checking Data Constraints (3/4)

$$\varphi = \exists x, q, z \ \exists l_1, l_2. \ x \xrightarrow{\{f\}, h_1} q \land x \xrightarrow{\{f\}, h_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. \ (y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y'))$$

▲ 🗇 → 140 / 149

Checking Data Constraints (3/4)

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. \left(y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y')\right)$$

$$\psi_{1} = \exists c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{5}, c_{6}, c_{7}. \bigwedge_{i \neq j} c_{i} \neq c_{j}$$

$$true \land true \land true \land true$$

$$\land c_{1} = 0 \land c_{3} = 2$$

$$\land \bigwedge_{1 \leq i < j \leq 7} c_{i} < c_{j}$$

▲ 🗗 ▶ 140 / 149

Checking Data Constraints (4/4)

$$\varphi = \exists x, q, z \exists l_1, l_2. x \xrightarrow{\{f\}, l_1} q \land x \xrightarrow{\{f\}, l_2} z \land q \neq z$$
$$\land l_1 + l_2 \ge 8$$
$$\land g(x) = 0 \land g(q) = 2$$
$$\land \forall y, y'. (y \xrightarrow{\{f\}} y' \Rightarrow g(y) < g(y'))$$

 $\psi_{1} = \exists c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{5}, c_{6}, c_{7}. \bigwedge_{i \neq j} c_{i} \neq c_{j}$ $true \land true \land true \land true$ $\land c_{1} = 0 \land c_{3} = 2$ $\land \bigwedge_{1 \leq i < j \leq 7} c_{i} < c_{j}$

- choose a small model for the reachability and size constraints; if there are no models then φ is unsatisfiable
- **2** build a FO($\mathbb{D}, \mathbb{O}, \mathbb{P}$) formula ψ for the selected small model
- (3) check the satisfiability of ψ

Remark

The complexity of the reduction procedure is NP^{MOILP} when the number of universally quantified variables is fixed.

Theorem

If the satisfiability of the underlying first order logic $FO(\mathbb{D}, \mathbb{O}, \mathbb{P})$ is decidable, then the satisfiability of CSL is decidable

Theorem

For any basic statement S and any CSL formula φ , we can compute in polynomial time a formula $post(S, \varphi)$ describing the strongest post-condition of φ by S.

Introduction

- 2 Formal Models and Semantics for IMPR
- 3 Foundations of Static Analysis by Abstract Interpretation
- 4 Application: Programs with Lists and Data
- 5 Application: Decision Procedures by Static Analysis
- 6 Elements of Inter-procedural Analysis
- 7 Application: Programs with Lists, Data, and Procedures
- Extension: Programs with Complex Data Structures
- Extension: Programs with Inductive Data Structures

Observation

The limits of specifying complex heap shapes in SL are given by the class of inductive predicates allowed.

However, the classical data structures may be specified. Exercise: Specify the shape of the following data structures:

- Binary trees
- Doubly linked lists segments
- Tree with linked leaves

Observation

The limits of specifying complex heap shapes in SL are given by the class of inductive predicates allowed.

However, the classical data structures may be specified. Exercise: Specify the shape of the following data structures:

$$dll(E, L, P, F) \triangleq (E = F \land L = P \land emp) \lor (E \neq F \land L \neq P \land (1)$$

$$\exists X. E \mapsto \{(\texttt{nxt}, X), (\texttt{prv}, \mathsf{P})\} \ast \texttt{dll}(X, \mathsf{L}, \mathsf{E}, \mathsf{F}) \ \big)$$

$$btree(E) \triangleq (E = \boxtimes \land emp) \lor (E \neq \boxtimes \land$$

$$\exists X, Y. E \mapsto \{(\texttt{lson}, X), (\texttt{rson}, Y)\} * btree(X) * btree(Y)\}$$
(2)

∢ 🗇 → 145 / 149 The fragment allowing these specifications has good theoretical properties:

• decidability of satisfiability [Brotherston *et al*, 14]

 \longrightarrow by reduction boolean equations

• decidability of the entailment [Iosif *et al*, 13]

 \longrightarrow by reduction to MSO on graphs with bounded width

SEPARATION LOGIC SOLVERS

Recently, efficient dedicated solvers have been released, e.g.:

- Asterix [Perez&Rybalchenko,11]
 Cyclist-SL and SAT-SL [Gorogiannis et al,12]
- SLEEK [Chin et al, 10]
- SLIDE [Iosif et al, 14]
- SPEN

[Enea,Lengal,S.,Vojnar, 14]

Follow them on SL-COMP competition:

- 6 solvers involved (freely available on StarExec)
- more than 600 benchmarks

www.liafa.univ-paris-diderot.fr/slcomp

▲ 🗗 → 147 / 149 • Introducing content and size constraints [Chin et al, 10], [S. et al, 15]

• Adding pre-field separation to express overlaid data structures [Yang et al,11],[Enea et al, 13]

 $\mathtt{nll}_\beta(h,\boxtimes,\boxtimes) \circledast \mathtt{ls}_\delta(dl,\boxtimes) \wedge \beta(\Diamond) = \delta(\Diamond)$

- Shape analysis benefits from Separation Logic compositional reasoning.
- Shape analysis may be extended to content and size analysis.
- Efficiency is obtained using sound syntax-oriented procedures.
- Sound procedures for undecidable logic fragments may be obtained by applying static analysis.