
Modelling, Specification and Formal Analysis of
Complex Software Systems

Precise Static Analysis of Programs with Dynamic Memory

Mihaela Sighireanu

IRIF, University Paris Diderot & CNRS

VTSA 2015

1 / 149

Outline

1 Introduction

2 Formal Models and Semantics for IMPR

3 Foundations of Static Analysis by Abstract Interpretation

4 Application: Programs with Lists and Data

5 Application: Decision Procedures by Static Analysis

6 Elements of Inter-procedural Analysis

7 Application: Programs with Lists, Data, and Procedures

8 Extension: Programs with Complex Data Structures

9 Extension: Programs with Inductive Data Structures

99 / 149

Formal Semantics for Procedure Call

Stack Stacks , [
(
CP×P× (DV 7→ D ∪ RV 7→ L)

)∗
] 3 S

Memory Mem , Stacks× Heaps 3 m
Configurations Config , CP× (Mem ∪ {merr}) 3 C

∀vi ∈
−→
vin .(S, H) ` vi ci 6= merr(

`, (S, H)
)
` v=P(

−→
vin,
−−→
vout)

(
startP, (push(S, ` + 1, P, v,

−−→
vout,−→ci , lvP), H))

top(S) = (`, P, v, . . .) (S, H)(v ′) = c(
` ′, (S, H)

)
` return v ′

(
`, (pop(S), H)[v← c]

)

Another source of infinity is the unbounded stack that usually stores
locations in the heap.

100 / 149

Inter-procedural Analyses

Aim
Compute an abstraction of the relation between the input and output
configurations of a procedure, i.e. the procedure summary or contract.

Context sensitive: the summary depends on an abstraction of the
calling stack

“If p is called before q, it returns 0, otherwise 1.”
−→ insight on the full program behaviour, expressive
−→ analysis done for each call point

Context insensitive: the summary is independent of the calling stack
“If p is called it returns 0 or 1.”
−→ insight on the procedure behaviour, but less precise
−→ analysis done independently of callers

101 / 149

Context-Sensitive Approaches

Main steps:

Case 1: Compute summary information for each procedure
... at each calling point with “equivalent stack” runs

Case 2: Use summary information at procedure calls...
... if the abstraction of reaching stack fits the already
computed ones

Classic approaches for summary computation:

Functional approach: [Sharir&Pnueli,81],[Knoop&Steffen,92]

Summary is a function mapping abstract input to abstract output

Relational approach: [Cousot&Cousot,77]

Summary is a relation between input and output

Call string approach: [Sharir&Pnueli,81], [Khedker&Karkare,08]

Maps string abstractions of the call stack to abstract configs.

102 / 149

Context-Sensitive Approaches

Main steps:

Case 1: Compute summary information for each procedure
... at each calling point with “equivalent stack” runs

Case 2: Use summary information at procedure calls...
... if the abstraction of reaching stack fits the already
computed ones

Classic approaches for summary computation:

Functional approach: [Sharir&Pnueli,81],[Knoop&Steffen,92]

Summary is a function mapping abstract input to abstract output

Relational approach: [Cousot&Cousot,77]

Summary is a relation between input and output

Call string approach: [Sharir&Pnueli,81], [Khedker&Karkare,08]

Maps string abstractions of the call stack to abstract configs.

102 / 149

Functional Context-Sensitive

Aim
Compute a function summaryP : CP 7→ (AH → AmH) mapping
each control point of the procedure q ∈ CP to a
function which associates every (G0,W0) abstract heap reachable at
startP to the abstract heap (Gq,Wq) reachable at q.

int length(list* l) {
1: int len = 0;
2: if (l == NULL)
3: len=0;
4: else {
5: len=1+length(l->next);
6: }
7: return len;
8: }

q (G0,W0) (Gq,Wq)

2 l = � l = �
ls+(l,�) ls+(l,�)

.
8 l = � $ret = 0∧ l = �

ls+(l,�) $ret > 1∧ ls+(l,�)

103 / 149

Inter-procedural Analysis with Heap

Problem
The local heap of a procedure may be accessed from the stack
bypassing the actual parameters.

Bad Consequence
Context sensitive analyses shall track also these interferences!

104 / 149

Particular Case of Programs

Observation
In a large class of programs with procedure calls, the local heap is
reachable from the stack by passing through the actual parameters.

Consequence
For this class, the computation of summaries is compositional.

105 / 149

Cut-point Free Programs

[Rinetzky et al,05]

Definition
A call is cut point free if all local heap cut nodes are reachable from
the stack through the procedure parameters. A cut point free program
has only cut point free procedure calls.

106 / 149

Abstraction of Summaries

Let V be the set of formal parameters and local variables.

Definition
A concrete inter-procedural configurations is a pair of heap
configurations (H0, Hq) where:

H0 is the local heap at startP over a new vocabulary V0

−→ similar to old notation in JML

H is the heap at the control point q of the procedure over
V ∪ {$ret}

Definition
A concrete procedure summary is the set {(H0, HendP)}.

107 / 149

Outline

1 Introduction

2 Formal Models and Semantics for IMPR

3 Foundations of Static Analysis by Abstract Interpretation

4 Application: Programs with Lists and Data

5 Application: Decision Procedures by Static Analysis

6 Elements of Inter-procedural Analysis

7 Application: Programs with Lists, Data, and Procedures

8 Extension: Programs with Complex Data Structures

9 Extension: Programs with Inductive Data Structures

108 / 149

Application

Programs with Lists and Data

— Inter-procedural Analysis —

joint work with A. Bouajjani, C. Drăgoi, C. Enea

PLDI’11

109 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Running Example: Quicksort on Lists (with Copy)

110 / 149

Representing Summaries in AHS

α
(
(H0, H)

)
, (G0 ∗G, W0 ∧W)

111 / 149

Analysing Quicksort: AU Domain

112 / 149

Analysing Quicksort: AM Domain

113 / 149

Quicksort: Loss of Precision

114 / 149

Quicksort: Loss of Precision

114 / 149

Quicksort: Loss of Precision

114 / 149

Quicksort: Loss of Precision

114 / 149

Strengthen Procedure

115 / 149

Strengthen Procedure: Example

116 / 149

Strengthen Procedure: Example

116 / 149

Strengthen Procedure: Example

116 / 149

Strengthen Procedure: Example

116 / 149

Experimental Results

class fun nesting AM AU Examples of summaries synthesized
(loop,rec) t (s) P t (s)

create (0,�) < 1 P=,P1 < 1
addfst – < 1 P= < 1

sll addlst (0,1) < 1 P= < 1 �#
U(create(&x,�)) : hd(x) = 0⌥len(x) = �⌥⇧y ⌅ tl(x) ⇤ x[y] = 0

delfst – < 1 P= < 1
dellst (0,1) < 1 P= < 1
init(v) (0,1) < 1 P=,P1 < 1 �#

U(init(v,x)) : len(x0) = len(x)⌥hd(x) = v⌥⇧y ⌅ tl(x). x[y] = v
map initSeq (0,1) < 1 P=,P1 < 1 �#

U(add(v,x)) : len(x0) = len(x)⌥hd(x) = hd(x0)+ v⌥
add(v) (0,1) < 1 P= < 1 ⇧y1 ⌅ tl(x),y2 ⌅ tl(x0). y1 = y2 ⇤ x[y1] = x0[y2]+ v

map2 add(v) (0,1) < 1 P= < 1 �#
U(add(v,x,z)) : len(x0) = len(x)⌥len(z0) = len(z)⌥ eq(x,x0)⌥

copy (0,1) < 1 P= < 1 ⇧y1 ⌅ tl(x),y2 ⌅ tl(z). y1 = y2 ⇤ x[y1]+ v = z[y2]

delPred (0,1) < 1 P=,P1 < 1 �#
M(split(v,x,&l,&u)) : ms(x) = ms(x0) = ms(l)⌃ms(u)

fold max (0,1) < 1 P=,P1 < 1 �#
U(split(v,x,&l,&u)) : equal(x,x0)⌥len(x) = len(l)+len(u)⌥

clone (0,1) < 1 P= < 1 l[0] ⇥ v⌥⇧y ⌅ tl(l) ⇤ l[y] ⇥ v⌥
split (0,1) < 1 P=,P1 < 1 u[0] > v⌥⇧y ⌅ tl(u) ⇤ u[y] > v
equal (0,1) < 1 P= < 1 �#

M(merge(x,z,&r)) : ms(x)⌃ms(z) = ms(r)⌥ms(x0) = ms(x)⌥ . . .

fold2 concat (0,1) < 1 P=,P1,P2 < 3 �#
U(merge(x,z,&r)) : equal(x,x0)⌥ equal(z,z0)⌥ sorted(x0)⌥ sorted(z0)⌥

merge (0,1) < 1 P=,P1,P2 < 3 sorted(r)⌥len(x)+len(z) = len(r)
bubble (1,�) < 1 P=,P1,P2 < 3

sort insert (1,�) < 1 P=,P1,P2 < 3 �#
M(quicksort(x)) : ms(x) = ms(x0) = ms(res)

quick (�,2) < 2 P=,P1,P2 < 4 �#
U(quicksort(x)) : equal(x,x0)⌥ sorted(res)

merge (�,2) < 2 P=,P1,P2 < 4

Table 1. Experimental results for functions in our benchmark.

For all experiments, the time needed to check the validity of
(C) is negligible compared with the time to compute the procedure
summaries.

8. Related work
Automatic synthesis of assertions about programs with dynamic
data structures has been addressed using different approaches in-
cluding abstract interpretation [2, 3, 5, 7, 10–12, 14, 19, 20, 22–
26, 28], constraint solving [1, 13], Craig interpolants [17].

In the intra-procedural case, several works consider invariant
synthesis for programs that manipulate dynamic data structures.
The generated invariants are either universally-quantified first-
order formulas [2, 12, 14, 19] or multiset constraints [2, 20].

Concerning the approaches based on abstract interpretation
which can handle procedure calls, most of them [3, 7, 22, 24] focus
on shape properties and do not consider constraints on sizes and
data. The approach in [23] can synthesize procedure summaries
that describe data if the instrumentation predicates which guide
the abstraction speak about data. Providing patterns is simpler than
providing instrumentation predicates on data because patterns con-
tain only constraints between (universally-quantified) positions (in
the left-hand-side of the implication) and no constraints on data.
For example, in [23] the predicate dle(v,u) allows to synthesize the
summary for a procedure that sorts in ascending order, but cannot
be used for a procedure that sorts in descending order. However,
using the pattern y1 ⇥ y2 allows with our approach to synthesize
the summaries for both kind of procedures. The same pattern may
also allow to discover other properties than sortedness. Actually,
patterns are in many cases simple (ordering/equality constraints)
and can be discovered using natural heuristics based on the pro-
gram syntax or proposed/guessed by the user, whereas constraints
on data can be more complex. Our approach allows to discover
(maybe unpredictable) data constraints for given guard patterns. To
establish the fact that a procedure preserves the data values in the
input list, the method used in [23] is based on reachability, that is,
every cell in the input list remains reachable in the output list. This
method can be applied only for programs that never modify/per-
mute the contents of data fields. In our approach, using the multiset

domain, we can handle programs that can permute positions of cells
in the list or modify/permute the contents of their data fields.

The approach in [10] considers abstract domains where the el-
ements are pairs formed of a graph and a constraint on data. The
inter-procedural analysis based on these domains can not synthe-
size constraints in form of universally-quantified formulas as our
analysis can do. In [25], the authors introduce trace partitioning
abstract domains which start from a partition of the set of traces
and compute an invariant for each class. The partitioning can be
static (usually based on the control structure of the program) or
dynamic. From this point of view, the approach in [25] considers
mainly statically-defined partitions. The abstract domain in our pa-
per, based on the unfolding/folding operations, can be seen as an
instance of a trace partitioning abstract domain with a dynamic par-
titioning. The corresponding partitioning puts in the same class all
the traces for which the number of dereferences of the next pointer
field is the same modulo some fixed constant k (which is a parame-
ter of the analysis). The approach in [25] considers mainly numer-
ical abstract domains and it is not faced to the difficulties raised by
a compositional analysis on programs manipulating dynamic data
structures. The analysis in [11] combines a numerical abstract do-
main with a shape analysis. It is not restricted by the class of data
structures but it considers only properties related to the shape and
to the size of the memory.

9. Conclusion
We have defined an accurate inter-procedural analysis for programs
with lists and data. The key contribution of this paper is a technique
for combining the analysis in different abstract domains and its
use in compositional analysis techniques that are able to infer non
trivial procedure summaries.

The combination mechanism we propose, based on an unfold-
ing/folding technique combined with partial reduction operators,
could be applied for other abstract domains than those consid-
ered in this paper. In particular, other abstract domains based on
first-order formulas, e.g., the one defined in [12], can be used to
strengthen the analysis in our domain of universal formulas.

Another interesting aspect of our work is that it allows to ma-
nipulate constraints without requirement of decidability, contrary

117 / 149

Outline

1 Introduction

2 Formal Models and Semantics for IMPR

3 Foundations of Static Analysis by Abstract Interpretation

4 Application: Programs with Lists and Data

5 Application: Decision Procedures by Static Analysis

6 Elements of Inter-procedural Analysis

7 Application: Programs with Lists, Data, and Procedures

8 Extension: Programs with Complex Data Structures

9 Extension: Programs with Inductive Data Structures

118 / 149

Application

Reasoning about Composite Data Structures

— using a FO Logic Framework —

joint work with A. Bouajjani, C. Drăgoi, C. Enea

CONCUR’09

119 / 149

Properties of Complex Data Structures

120 / 149

Recall: Heap Graph Model

121 / 149

A Very Expressive Logic

122 / 149

Reachability Predicates

123 / 149

Reachability Predicates

124 / 149

Reachability Predicates

125 / 149

Data Constraints

126 / 149

Properties of Complex Data Structures in gCSL

127 / 149

Satisfiability Problem for gCSL

128 / 149

CSL Fragment

129 / 149

CSL Fragment

130 / 149

CSL Fragment

131 / 149

CSL Specifications

132 / 149

Satisfiability of CSL Formulas

133 / 149

Satisfiability of CSL Formulas

134 / 149

Computing Small Models

135 / 149

Computing Small Models

136 / 149

Computing Small Models

137 / 149

Checking Data Constraints (1/4)

138 / 149

Checking Data Constraints (2/4)

139 / 149

Checking Data Constraints (2/4)

139 / 149

Checking Data Constraints (2/4)

139 / 149

Checking Data Constraints (3/4)

140 / 149

Checking Data Constraints (3/4)

140 / 149

Checking Data Constraints (4/4)

141 / 149

Decision Procedure: Summary

142 / 149

CSL and Program Verification

143 / 149

Outline

1 Introduction

2 Formal Models and Semantics for IMPR

3 Foundations of Static Analysis by Abstract Interpretation

4 Application: Programs with Lists and Data

5 Application: Decision Procedures by Static Analysis

6 Elements of Inter-procedural Analysis

7 Application: Programs with Lists, Data, and Procedures

8 Extension: Programs with Complex Data Structures

9 Extension: Programs with Inductive Data Structures

144 / 149

Separation Logic for Complex Data Structures

Observation
The limits of specifying complex heap shapes in SL are given by the
class of inductive predicates allowed.

However, the classical data structures may be specified.
Exercise: Specify the shape of the following data structures:

Binary trees

Doubly linked lists segments

Tree with linked leaves

145 / 149

Separation Logic for Complex Data Structures

Observation
The limits of specifying complex heap shapes in SL are given by the
class of inductive predicates allowed.

However, the classical data structures may be specified.
Exercise: Specify the shape of the following data structures:

dll(E, L, P, F) , (E = F∧ L = P ∧ emp)∨
(
E 6= F∧ L 6= P ∧ (1)

∃X. E 7→ {(nxt, X), (prv, P)} ∗ dll(X, L, E, F)
)

btree(E) , (E = �∧ emp)∨
(
E 6= �∧ (2)

∃X, Y. E 7→ {(lson, X), (rson, Y)} ∗ btree(X) ∗ btree(Y)
)

tll(R, P, E, F) , (R = E∧ R 7→ {(lson,�), (rson,�), (parent, P), (nxt, F)}) ∨ (3)(
R 6= E∧ ∃X, Y, Z. R 7→ {(lson, X), (rson, Y), (parent, P), (nxt, Z)}∗

tll(X, R, E, Z) ∗ tll(Y, R, Z, F)
)

145 / 149

Separation Logic for Complex Data Structures

The fragment allowing these specifications has good theoretical
properties:

decidability of satisfiability [Brotherston et al, 14]

−→ by reduction boolean equations

decidability of the entailment [Iosif et al, 13]

−→ by reduction to MSO on graphs with bounded width

146 / 149

Separation Logic Solvers

Recently, efficient dedicated solvers have been released, e.g.:

Asterix [Perez&Rybalchenko,11]

Cyclist-SL and SAT-SL [Gorogiannis et al,12]

SLEEK [Chin et al, 10]

SLIDE [Iosif et al, 14]

SPEN [Enea,Lengal,S.,Vojnar, 14]

Follow them on SL-COMP competition:

6 solvers involved (freely available on StarExec)

more than 600 benchmarks

www.liafa.univ-paris-diderot.fr/slcomp

147 / 149

www.liafa.univ-paris-diderot.fr/slcomp

Extensions of Separation Logic

Introducing content and size constraints [Chin et al, 10],[S. et al, 15]

Adding pre-field separation to express overlaid data structures
[Yang et al,11],[Enea et al, 13]

!

!

!

!

ht

dl

2	

1	

0	

6	

4	

2	

2	

2	

4	

nllβ(h,�,�)~ lsδ(dl,�)∧ β(♦) = δ(♦)

148 / 149

Conclusion of the Part

Shape analysis benefits from Separation Logic compositional
reasoning.

Shape analysis may be extended to content and size analysis.

Efficiency is obtained using sound syntax-oriented procedures.

Sound procedures for undecidable logic fragments may be
obtained by applying static analysis.

149 / 149

	Introduction
	Formal Models and Semantics for IMPR
	Foundations of Static Analysis by Abstract Interpretation
	Application: Programs with Lists and Data
	Application: Decision Procedures by Static Analysis
	Elements of Inter-procedural Analysis
	Application: Programs with Lists, Data, and Procedures
	Extension: Programs with Complex Data Structures
	Extension: Programs with Inductive Data Structures

