
Quantitative Policies over Streaming Data

Rajeev Alur
University of Pennsylvania

1

Thanks to Collaborators

2

Mukund Raghothaman Yifei Yuan

Dana Fisman

Kostas Mamouras

Sanjeev Khanna Boon Thau LooZack Ives

Caleb Stanford

3

Real-time Decision Making in IoT Applications

Controller

4

Smart buildings

Network switches

Autonomous medical devices

Smart highways …

data decisions

Variable Tolling

Controller

5

Adjust toll rate at each tool booth dynamically based on time of
day and congestion conditions in road segments

Reference: Linear road benchmark for stream management systems

(car ID, position, time)

toll

Network Traffic Engineering

Switch

6

Dynamic network management for traffic engineering

Real-time response to emerging attacks / security threats

Software Defined Networking (SDN)

Opportunity for increased programmability/functionality

(source IP, dest IP, payload)
drop / forward to port X /
alert controller

Safety-critical CPS

7

Medical device software:

Need and opportunity for applying formal verification

Recent success in case studies (pacemaker, infusion pump)

Verifying models much easier than verifying code

Higher-level programming abstractions 

Easier verifiability

Improved programmability

pacing stimulus

Quantitative Policy

Policy

8

Example network policy:

if number of packets in current VoIP session exceeds

the average over past VoIP sessions by a threshold T,

then drop the packet

Stateful: Need to maintain state and update it with each item

Quantitative: Based on numerical aggregate metrics of past history

data decisions

Design and Implementation of Policies

Policy

9

Which policies are effective ?

Based on traffic models and domain specific insights

How to specify and evaluate policies ?

Focus of these lectures !

data decisions

Streaming Algorithm

10

state s = initialize;

for each packet p {

s = update (s, p);

output d = decide (s)

}

data

decisions

High-level Abstractions over Data Streams ??

11

Low-level programming:

What state to maintain? How to update it?

Switch

(source IP, dest IP, payload)

Example network policy:

if number of packets in current VoIP session exceeds the average

over past VoIP sessions by a threshold T then drop the packet

Desired high-level abstraction: Beyond packet sequence

drop / forward /
alert controller

Modular Specification of VoIP Session Monitor

12

1. Focus on traffic between a
specific source and destination

2. View data stream as a sequence
of VoIP sessions

3. View a VoIP session as a
sequence of three phases

4. Aggregate cost over call phase
during a session, and aggregate
cost across sessions

Init

Call

End

Session Initiation Protocol

Design Goals for Policy Language

Policy code

13

data

decisions

Policy spec

Policy compiler

Efficiency critical: Key parameters
1. Time to process each packet
2. State that needs to maintained

Ideally both should be constant or logarithmic in length of data stream

Programming abstractions for processing data stream ??

Theoretical foundations
Expressiveness
Optimization

Do We Need A New Policy Language ?

14

State-based Languages

 Regular expressions

 Temporal logics

 Dataflow/synchronous languages

Application: Runtime monitoring

Quantitative extension:

Weighted automata

Relational languages

 SQL + Continuous queries

 Regular expressions +

time windows to select events

Industrial-strength implementations

IBM Streams Processing Language

MSR StreamInsight / CEDR

Lectures Outline

 Motivation

 Quantitative Regular Expressions (QRE)

 QRE Compilation

 Experimental Evaluation

 Theory of Regular Functions

 Conclusions and Research Opportunities

15

Illustrative Example: Patient Monitoring

16

Data items:

Begin episode

Measurement

End episode

End of day

145

Output every day, maximum over episodes during that day,

average measurement during the episode

145 152 141 150 146 160 138

Regular Hierarchical Structure

17

Regular expressions is a natural match

But need a quantitative extension !

145 152 141 150 146 160 138

*

Episode = . *. Episode

Day = . Episode* Day

Quantitative Iteration

18

Atomic function M maps an item, if it is a measurement, to its value

Function f maps a sequence of measurements to its average

Function Episode maps an episode to average measurement within it

Function h maps a sequence of episodes to the maximum episode value

145 152 141 150 146

f = iter(M, average)

Episode : average M value

h = iter (Episode, max)

Quantitative Regular Expressions

 Each QRE f maps a sequence of data items to a cost value

f is a partial function from D* to C

 Sets D and C can be of arbitrary types with basic operations

 Example D: { , , , }

 Example C: Set of integers with constants, min, max, sum, average

19

v: N

QRE Rate

 A QRE f is a partial function from D* to C

 Rate(f) = Subset of D* for which f is defined

 QRE produces output whenever input stream so far matches its Rate

 Rate = Data streams that end with a well-formed episode

 Rate(f) captured by “symbolic” regular expression

D*.(. *.)

20

145 152 141 150 146 160 138

Atomic QRE

 Each data domain D is equipped with a set of unary predicates

1. Satisfiability is decidable (supported by SMT-solver)

2. Set of predicates closed under Boolean operations

Ref: Symbolic automata and symbolic transducers (Veanes et al)

 QRE f : p(d)  f(d) where p is unary predicate, f is data operation

If input data stream consists of a single item d satisfying p,

then return f(d)

Rate(f) = p(d)

21

Atomic QRE Examples

 Example D: { , , , }

 Example basic predicates:

d equals

d equals with v > 150

 Example operations from D to C

f() = 0

f() = min (80, v)

22

v: N

v

v

Quantitative Concatenation: split(f, g, op)

f and g are QREs and op is a binary operation over costs (e.g. +, max)

Divide input data stream s into two parts s1 and s2 such that

s1 matches Rate(f) and s2 matches Rate(g) and return op(f(s1), g(s2))

Rate(split(f,g,op)) = Rate(f) . Rate(g)

Key requirement: split must be unique (unambiguous)

Type checking requirement:

split(f,g,op) allowed only when if a stream matches Rate(f).Rate(g)
then there is exactly one way to split it

23

Split Illustration

Rate(f) : Streams ending with a high-risk measurement (value > 150)

Rate(g) : Stream without high-risk measurements

24

125 142 160 128 148 140134 156 130

f g

Combine results using op

Quantitative Iteration: iter(f, c, op)

f is a QRE with rate r, c is a constant, and op is a binary operation

25

matches r matches r matches rmatches r

f

opc op

fff

op op

Quantitative Iteration: iter(f, c, op)

 f is a QRE with rate r, c is a constant, and op is a binary operation

 Divide input data stream s into multiple parts s1, s2, … sk such that
each si matches r, apply f to each part, and return

op(op (…. op(op (c, f(s1)), f(s2)), … .. ,f(sk))

 Rate(iter(f,c,op)) = Rate(f)*

 Allowed when the split is guaranteed to be unique

 Special case: op is set-aggregator (apply op to “set” of returned values)

max, min, sum, average, median, standard deviation …

 Order dependent: Linear interpolation, Discounted sum

26

Choice: f else g

Given a stream s, if f(s) is defined, return it, else return g(s)

Example: f makes decisions for a stream that does not contain high-risk
measurements (e.g. with value > 150), and g makes decisions for
streams that do contain such measurements

Benefit: Test based on a global property of stream

Strong typing restriction:

Allowed only when Rate(f) and Rate(g) are disjoint

Rate(f else g) = Rate(f) U Rate(g)

27

Controller
data decisions

Key-based Partitioning

Suppose stream contains events for both Alice and Bob

Suppose we want to compute for each patient, whether the daily summary
(max over episodes, average measurement during episode) exceeds a
threshold value

QRE f maps stream of single-patient events to daily summary

Modular programming: Partition input stream into multiple streams, one
for each patient identifier, and apply f to each

Challenges: How to synchronize outputs of different partitions?

What is the type of combined outputs? 28

Map-collect illustration

QRE f computes daily summary for single-patient input streams

Synchronization item: end-of-day

g = map-collect (f, *) i.e. produce joint output at end of each day

v1, v2, …

u1, u2, …

Output of g: { v1, u1 }, { v2, u2 }, …

Type of output: set of values produced by each thread tagged with key

29

f

f

Key-based Partitioning: map-collect

Type D of data items = Ds U [Dk x Dv]

Each item is a synchronization item or of the form (key, value)

QRE f maps streams over Dv to output values C

QRE g = map-collect (f, r), r is a symbolic reg-exp over Ds

QRE g processes streams over D:

if item is in Ds then send it to all threads/partitions

if item = (k,v), send it to the thread/partition for key k

whenever r holds, collect outputs of all threads

Output type = Relation (multi-set) over Dk x C
30

Output Composition

Suppose g outputs each day set of tuples (patient-id, daily summary)

Want to output set of patients for which daily summary >= 160

Select : Relation (PID x V)  Relation (PID)

Select (I) = { p | there is v such that (p,v) is in I and v >= 160 }

Then desired QRE h is Select(g)

Count(h) outputs number of high-risk patients each day

If fj : D*  Cj are QREs with equivalent rates r, and op: C1 x … x Cn  C

Then op(f1, … fn) : D*  C with rate r
31

Streaming Composition

Suppose h outputs each day number of high-risk patients

Want to output the daily average number of high-risk patients so far

h’ maps sequence of numbers to average

h’ = iter (id, average), where id is the identity function

Then desired QRE is h >> h’

If f : D*  C and g : C*  B are QREs, then f >> g : D*  B

Stream sequence of outputs of f as input stream to g

Note: rate (f >> g) is a subset of D*, and may not be regular

Current solution: allow >> only at top-level

32

Quantitative Regular Expressions Summary

 Each QRE f maps a sequence of data items to a cost value

rate(f) specifies when f produces outputs

given by symbolic regular expression

 Core combinators:

Atomic QRE: p(d)  f(d)

Quantitative concatenation: split(f, g, op)

Quantitative iteration: iter(f, c, op)

Choice: f else g

Key-based partitioning: map-collect(f, r)

Output composition: op(f1, … fn)

Streaming composition: f >> g

 Type checking rules check compatibility of rates (decidable!)

33

Type Checking and Compilation

34

Symbolic Regular Expressions

 Similar to traditional regular expressions.

e ::= a | [letter from alphabet]

e U e | [choice]

e.e | [concatenation]

e* [iteration]

 What if alphabet large or unbounded?

 “Symbolic” regular expressions:

unary predicates instead of letters

 Examples of symbolic REs:

even(n)*.odd(n) (n = 0) .(n > 0)*

35

Symbolic Regular Expressions

 Symbolic regular expressions:

e ::= p | [unary predicate]

e U e | [choice]

e.e | [concatenation]

e* [iteration]

 Predicates:
Closed under Boolean operations
Decidable satisfiability

 E.g., alphabet N (the set of natural numbers).

 Possible sets of predicates:

Presburger arithmetic linear integer arithmetic

 Can be decided with SMT solver.

 Cannot handle: full arithmetic with multiplication (UNDECIDABLE)

36

Symbolic Automata

 Traditional automata: transitions annotated with letters.

accepts the language a*.b

 Symbolic automata: transitions annotated with unary predicates.

accepts even(n)*.odd(n)

 Translation from expressions to automata is the same.

37

a
b

even(n)
odd(n)

Product Construction

 Traditional automata A = (Q, Δ, I, F) and A’ = (Q’, Δ’, I’, F’).

 The product A x A’ has states Q x Q’, initial states I x I’, final

states F x F’, and transitions

(p,p’) a (q,q’),

when p a p’ is transition of A and q a q’ is transition of A’.

 Suppose now that A and A’ are symbolic.

 If p φ p’ is transition of A and q ψ q’ is transition of A’, then

(p,p’) φ & ψ (q,q’)

is a transition of A x A’.

 BUT: If (φ & ψ) unsatisfiable, the transition can be eliminated.

38

Symbolic Automata: Reachability

 Essentially the same as graph reachability.

 Satisfiability check to see if an edge can be traversed.

 Reachability solves non-emptiness.

39

1

3

2

4

φ1

φ2

φ3

φ4

φ5

Type Checking: Atomic QRE

 Input type D, output type C.

 p(d) is unary predicate on D.

 Operation op: D  C.

 Atomic QRE:

p(d)  op(d): D*  C.

 Type checking:

“p(d) is satisfiable”

HOW: one invocation of SMT solver

40

Type Checking: Quantitative Concatenation

 QREs f: D*  A and g: D*  B.

 Operation op: A x B  C.

 Quantitative concatenation:

split(f, g, op): D*  C.

 Type checking:

“Rate(f) and Rate(g) are unambiguously concatenable”

HOW: unambiguity check for Rate(f).Rate(g)

41

Type Checking: Quantitative Iteration

 QRE f: D*  A.

 Constant c of type C.

 Binary operation op: C x A  C.

 Quantitative iteration:

iter(f, c, op): D*  C.

 Type checking:

“Rate(f) is unambiguously iterable”

HOW: unambiguity check for Rate(f)*

42

Type Checking: Global Choice

 QREs f: D*  C and g: D*  C.

 Global choice:

f else g: D*  C.

 Type checking:

“Rate(f) and Rate(g) are disjoint”

HOW: intersection of Rate(f) and Rate(g) empty

43

Type Checking: Output Composition

 QREs f: D*  A and g: D*  B.

 Binary operation op: A x B  C.

 Output composition:

op(f, g): D*  C.

 Type checking:

“Rate(f) and Rate(g) are equivalent”

HOW: equivalence algorithm of Stearns and Hunt (FOCS ‘81)

See also:

Minimization of Symbolic Automata by D’Antoni & Veanes (POPL ‘14)
44

Type Checking: Map-Collect

 Input type D = DS U [DK x DV]

 DS = Synchronization elements

 DK = Keys, and DV = values.

 QRE f: D*  C, symbolic RE R over DS.

 Map-collect QRE:

map-collect(f, R): D*  Rel(DK x C).

 Type checking:

“Rate(f) is contained in expansion of R to D”

HOW: inclusion algorithm of Stearns and Hunt (FOCS ‘81)

45

Type Checking: Summary

 Atomic: p(d) is satisfiable.

 Split: Rate(f) and Rate(g) are unambiguously concatenable.

 Iter: Rate(f) is unambiguously iterable.

 Else: Rate(f) and Rate(g) are disjoint.

 Op(): Rate(f) and Rate(g) are equivalent.

 Map-collect: Rate(f) is contained in R.

All problems can be decided in time that is polynomial in sizes of
expressions and number of minterms over predicates.

(assuming satisfiability checks take unit time)

 Automaton for Rate(f) is nondeterministic but unambiguous.

 No need for determinization (no exponential blowup).

 RE equivalence: PSPACE.

 Unambiguous RE equivalence: P.
46

Goals for Compiler

state s = initialize;

for each packet p {

s = update (s, p);

output d = decide (s)

}

47

data

decisions

QRE

QRE compiler

Optimize bits needed to store state and time for update
Ideally independent of length of data stream

QRE Evaluation  Hierarchical Expression

48

Average measurement per day: iter (split (iter (M, +) , D, +) , average)

12

Computing f(s), where f is a QRE and s is input stream, amounts to
evaluating an expression tree of size linear in length of s

50 D 10 81 96 D 24 89 52 12 D 40 D

12 50 10 81 96 4052 1224 89

+ 00 0 0+ ++

+ + + +

average

Stack-based Evaluation

 Incremental evaluation of expression:

Maintain state as a stack

Perform intermediate computations as soon as possible

Stack elements correspond to nodes of the expression tree

Evaluating + : sum of values seen so far

Evaluating average : sum and count of values seen so far

 Resources (total space / per-item processing time):

[Depth of expression tree (dependent only on QRE size)]

Times [resources needed at each node of expression tree]

49

Approximation

Suppose we want to compute average of numbers in a streaming fashion

Need to remember total sum (73) and count of items (5) so far

Suppose we want to compute median of numbers

To ensure exact answer, must remember all numbers seen so far

Exact algorithm for median:

Maintain the multiset of items seen so far.

Implementation 1: Extensible array of counts.

Implementation 2: Map as balanced binary search tree

(key: item, value: count)
50

42 4 12 10 5

Approximation

Approximation algorithm for median:

Map each number n to bucket k such that (1+e)k ≤ n < (1+e)k+1

Maintain for each bucket, count of numbers mapped to that bucket

Space needed: log1+ε(U) ≈ ε-1 ∙ log(U),

where U is the range of numerical values
51

42 4 12 10 5

Number n Bucket k Number (1+ε)k Error

50 393 49.923 0.154%

100 462 99.192 0.808%

80,000 1134 79,512.950 0.609%

1,200,000 1406 1,190,834.857 0.764%

Approximation

Approximation algorithm for median:

Map each number n to bucket k such that (1+e)k ≤ n < (1+e)k+1

Maintain for each bucket, count of numbers mapped to that bucket

Approximation error: Multiplicative factor of ε.

n’ ≤ n < (1+ε) n’ => 0 ≤ n – n’ < ε n’ => 0 ≤ (n - n’)/n < ε
52

42 4 12 10 5

Number n Bucket k Number (1+ε)k Error

50 393 49.923 0.154%

100 462 99.192 0.808%

80,000 1134 79,512.950 0.609%

1,200,000 1406 1,190,834.857 0.764%

Online Computation of Split Points

To process split(f,g,+), find the position where f ends and g starts

Domain of f : Streams ending with high-risk measurements (val > 150)

Need to maintain multiple parallel computations of same subexpression
initialized at different positions in input stream

Insight: number of parallel copies is bounded (bound depends on query)
53

120 145 160 110140 115 156 124

f Start evaluating g

f

and keep computing f

Start evaluating g
and keep computing f

Map-collect Evaluation

 To evaluate map-collect(f, r), for each new key encountered, a new
“thread” evaluating f must be initialized

 Synchronization items must be input to all threads

Even to those whose keys have not appeared yet

 IDEA: Maintain a special thread receiving only synchronization items
Fork that thread when a new key appears

54

Map-collect Evaluation

 Collecting outputs of all threads when input matches rate r requires
careful implementation

 Resources needed: (Resource for f) x (Number of active copies)

 Amenable to high-performance distributed implementation (STORM)

55

QRE Compiler Summary

 Given a QRE, compiler first checks all typing rules are met

(e.g. when split is applied, the splitting must be unambiguous)

 Then it compiles it into an executable streaming algorithm

 General case: Memory used is linear in length of stream

 If numerical operators are min, max, sum, average, and no map-collect,

then constant memory and constant per item processing time

 If, in addition, median is also used, then

 log U memory, where U is (dynamically updated) range of values

 constant time to process each item

 user specified multiplicative factor of approximation error

56

Implementation and Experimental Evaluation

 StreamQRE Java Library (PLDI 2017)

 NetQRE for network traffic engineering (SIGCOMM 2017)

57

Software Defined Networking

58

Controller

App App

Dst NextHop

A 2

… …

Match Action

Src=A drop

… …

Openflow

e.g. POX, NOX,
Floodlight

APIs
Distributed
Protocols

Control plane

Data plane

Programmability

NetQRE Language

Switch

59

Domain-specific extension/adaptation of core QRE

Basic types: ports, IP addresses, tests of packet fields

Actions on packets: drop, flood, forward, augmentation with fields…

Reference to time windows (e.g. stream of packets in last 5 sec)

Basic functions on packets (written in C) +

QRE combinators (else, split, iter, max, min, sum, average) +

Keys: IP addresses

(source IP, dest IP, payload)
drop / forward to port X /
alert controller

Implementation and Evaluation

60

NetQRE Compiler

+ NetQRE Runtime system (to process packets and update state)

1. Can network policies be expressed in concise and intuitive manner ?

2. Is compiled code efficient for throughput and memory footprint ?

3. Can our system be used for real-time monitoring and alerting ?

Flow-level traffic measurements

e.g. detection of heavy hitters, super spreaders

TCP state monitoring

e.g. aggregate statistics of TCP connections, detect SYN flood attack

Application level monitoring

e.g. collect statistics about VoIP sessions

Monitoring of VoIP Sessions

61

Detect if current VoIP session is
using excessive bandwidth
compared of past average

Modular specification using

Map-collect on IP-addresses

Split and Iter constructs

Aggregation across users

Aggregation across sessions

18 lines of NetQRE code

(vs 100s of lines C++ code)

Session Initiation Protocol

Init

Call

End

Throughput and Memory Footprint

62

How does NetQRE generated code compare with hand-crafted code?

Example: Detection of heavy hitters

(a source IP address has consumed > K bandwidth in past T sec)

Workload: CAIDA traffic trace of ~ 50 million packets

Throughput (million packets per second)

Manual: 18.5 vs NetQRE: 18.3

Upto 10x faster than systems such as Bro and Opensketch

Memory: Manual: 14 MB vs NetQRE: 15.1 MB

Summary for other queries (measured for 20 queries)

Throughput within 4% overhead

SYN flood attack: NetQRE uses twice as much memory

Real-Time Response

63

 Experimental setup:

Network of two clients and one SDN switch

SDN Controller based on POX

Network emulated by Mininet with link bandwidth 100 Mbps

 How long does it take to detect an attack and block traffic ?

Note: correction requires SDN controller to update rules on switch

 Incomplete TCP handshake:

SYN packet, followed by matching SYNACK, but no subsequent ACK

 SYN flood attack: Too many incomplete TCP handshakes

SYN Flood Attack

64

Attack starts
Attack detected
and corrected by
updating rules in switch

StreamQRE Java Library

65

• StreamQRE: Strong theoretical efficiency guarantees.

• Performance for practical workloads?

• Implementation of StreamQRE as a library in Java

NEXMark Benchmark (2002)
Monitoring of an online auction system (e.g., eBay)

NewPerson(personId, name, timestamp)
Auction(itemId, sellerId, initPrice, timestamp, duration, category)

EndAuction(itemId, timestamp)
Bid(itemId, bidderId, bidIncrement, timestamp)

Yahoo Streaming Benchmark (2015)
Interaction of web users with advertisements

Event(userId, pageId, adId, eventType, eventTime)

Experimental Evaluation

66

Popular and actively maintained engines with Java implementation.

Rich high-level APIs for stream processing.

Esper for Java
SQL-like language with

Complex Event
Processing features

RxJava
(ReactiveX for Java)

API for observable
streams

StreamQRE
Streaming extension of

Quantitative Regular
Expressions

Flink
Distributed Stream

Processing Framework

• StreamQRE: Strong theoretical efficiency guarantees.

• Performance for practical workloads?

Experimental Evaluation

67

Time-based window with nested key-based partitioning:

“Compute every second the number of views associated with
each ad campaign”.

0

5

10

15

20

25

StreamQRE RxJava Esper Flink

th
ro

u
gh

p
u

t
(m

ill
io

n
 t

u
p

le
s/

se
c)

Yahoo Benchmark - Query 1

Experimental Evaluation

68

The StreamQRE engine has good performance.

• Consistently faster than RxJava (about 2-4 times).

• Much faster than Esper (6-70 times) and Flink (10-140 times).

RxJava Esper Flink

Yahoo 1 2.3 6.2 18

Yahoo 2 3.6 6.7 9.8

NEXMark 1 4.3 76 141

NEXMark 2 2.1 22 42

NEXMark 3 2.1 21 42

NEXMark 4 2.0 27 35

NEXMark 5 2.6 18 33

Slowdown compared to StreamQRE

Theory of Regular Functions

69

Language Classes in Complexity Theory

What if we consider functions?
From strings to natural numbers
From strings to strings

--- Recursive

--- NP

--- P

--- Linear-time

--- Regular
No essential change for

Recursive, NP, P, linear-time…

70

Expressiveness of QREs

Do we have enough operators?

Is expressiveness of QREs robust?

71

Regular languages

 Regular expressions

 Deterministic finite automata

 Monadic second-order logic MSO

Beautiful well-understood theory

Regular functions

parameterized by cost operations

 Quantitative regular expressions

 Cost register automata (CRA)

 MSO-definable string to term
transformations

Emerging theory (open problems…)

Mapping Strings to Costs

 Each QRE f maps S* to D

 Cost domain D has a basic set of operations

 Combinators:

Atomic QRE: a  c

Quantitative concatenation: split(f, g, op)

Quantitative iteration: iter(f, c, op)

Choice: f else g

Key-based partitioning: map-collect(f, r)

Output composition: op(f1, … fn)

Streaming composition: f >> g

72

Finite Automata with Cost Labels

C: Buy Coffee

S: Fill out a survey

M: End-of-month

C / 2 C / 1

S

M

M

Maps a string over {C,S,M} to a cost value:

Cost of a coffee is 2, but reduces to 1 after filling out a
survey until the end of the month

Output is computed by implicitly adding up transition costs

How to define automata with richer set of operations?

S

73

Finite Automata with Cost Registers

C / x:=x+2 C / x:=x+1
S

M

M

Cost Register Automata:

Finite control + Finite number of registers

Registers updated explicitly on transitions

Registers are write-only (no tests allowed)

Each (final) state associated with output register

x
x:=0

x

S

74

CRA Example

C / x:=x+2 C / x:=x+1
S

M / x:=0

M / x:=0

At any time, x = cost of coffees during the current month

Cost register x reset to 0 at each end-of-month

x
x:=0

x

S

75

CRA Example

C / x:=x+2

C / x:=x+1
S / x:=y

M / y:=x

M / y:=x

Filling out a survey gives discount for all coffees during that month

x
x,y:=0

x

y:=y+1

S

76

CRA Example

C / y:=y+1

M / x:=min(x,y); y:=0

Output = minimum number of coffees consumed during a month

Updates use two operations: increment and min

min(x,y)y:=0

x:=Infty

77

String Transformation Example

Rev(w) = String w in reverse

output y

a / y := a . y

y := e

b / y := b . y

78

String variables updated at each step as in a program

Key restriction: No tests ! Write-only variables !

Regular Function

Definition parameterized by cost domain D with a set of operations

Terms over D: Trees whose nodes are labeled with given operations

A (partial) function f:S*D is regular if there exists a function g
mapping strings to terms over D such that

(1) for all strings w, f(w) = Evaluation of g(w)

(2) g is a regular string-to-tree transformation

79

Example Regular Function

Cost Domain : Natural numbers with min and +

S={C,M}

f(w) = Minimum number of C symbols between successive M’s

Infty 0 1 1 0 1 1 1

+ + + + +

min min

Input w= C C M C C C M

Tree:

Value = 2

80

Regular String-to-tree Transformations

 Definition based on MSO (Monadic Second Order Logic) –
definable graph-to-graph transformations (Courcelle)

 Studied in context of syntax-directed program transformations,
attribute grammars, and XML transformations

 Operational models:

 Macro Tree Transducers (Engelfriet et al)

 Streaming tree transducers (ICALP 2012, JACM 2017)

81

Thm: QREs mapping S* to costs D with given set of
operations define exactly regular functions

MSO-definable String-to-tree Transformations

 MSO over strings

F := a(x) | X(x) | x=y+1 | ~ F | F & F | Exists x. F | Exists X. F

 MSO-transduction from strings to trees:

1. Number k of copies

For each position x in input, output-tree has nodes x1, …xk

2. For each symbol a and copy c, MSO-formula Fa,c(x)

Output-node xc is labeled with a if Fa,c(x) holds for unique a

3. For copies c and d, MSO-formula Fc,d(x,y)

Output-tree has edge from node xc to node xd if Fc,d(x,y) holds

82

Properties of Regular Functions

Known properties of regular string-to-tree transformations imply:

 If f and g are regular w.r.t. a cost model D, and L is a regular
language, then “if L then f else g” is regular w.r.t. D

 Reversal: define Rev(f)(w) = f(reverse(w)).

If f is regular w.r.t. a cost model D, then so is Rev(f)

 Costs grow linearly with the size of the input string:

Term corresponding to a string w is O(|w|)

 What about decision problems (e.g. are two QREs equivalent?)

Need to focus on specific cost models
83

Regular Functions over Commutative Monoid

Cost model: D with binary function +

Interpretation for + is commutative, associative, with identity 0

Cost model D(+): No restriction on use of +

Cost model D(+c): Only addition by constant allowed

Thm: Regularity w.r.t. D(+) coincides with regularity w.r.t. D(+c)

Proof intuition: Show that rewriting terms such as (2+3)+(1+5) to
(((2+3)+1)+5) is a regular tree-to-tree transformation, and use
closure properties of tree transducers

84

Additive Cost Register Automata

Additive Cost Register Automata:

DFA + Finite number of registers

Each register is initially 0

Registers updated using assignments x := y + c

Each final state labeled with output term x + c

Given commutative monoid (D,+,0), an ACRA defines a partial
function from S* to D

C / x:=x+2, y:=y+1 C / x:=x+1

S / x:=y

M / y:=x
M / y:=x

x
x,y:=0

x

S

85

Regular Functions and ACRAs

 Thm: Given a commutative monoid (D,+,0), a function f:S*D is
definable using an ACRA iff it is regular w.r.t. cost model D(+).

 Establishes ACRA as an intuitive, deterministic operational
model to define this class of regular functions

 Proof relies on the model of SSTT (Streaming string-to-tree
transducers) that can define all regular string-to-tree
transformations

86

Decision Problems for ACRAs

 Min-Cost: Given an ACRA M, find min {M(w) | w in S*}

Solvable in Polynomial-time

Shortest path in a graph with vertices (state, register)

 Equivalence: Do two ACRAs define the same function

Solvable in Polynomial-time

Exercise: Design algorithm for equivalence checking !

 Register Minimization: Given an ACRA M with k registers, is
there an equivalent ACRA with < k registers?

Algorithm polynomial in states, and exponential in k
87

ACRA Equivalent QREs

Additive QREs:

 Base functions: a  c and e  c

 Concatenation: split (f, g, +)

 Iteration: iter (f, +)

 Choice: f else g

Unambiguity requirements for all above constructors

Note: Output composition not included

88

Thm: Additive QREs are equivalent to ACRAs (i.e. regular
functions over commutative monoid)

Emerging Theory of Regular Functions

 A few classes that have been (partially) studied

Finite strings to finite strings (DReX: specialized QREs)

Infinite strings to infinite strings

Finite strings to semiring (N, +, min)

Finite strings to discounted costs

 Many open problems

Decidability of equivalence of functions from S* to (N,+,min)

Theory of congruences

Learning algorithms…

 Unexplored classes (e.g. mapping trees to numerical costs)

89

Back to QRE Evaluation Algorithm

 QREs and CRAs are expressively equivalent

 Can compiling a QRE into a CRA give an optimal streaming algorithm for
evaluating QREs?

Recall connection between regular expressions and NFA/DFA

 No! Translation from QRE to CRA causes exponential blow-up

 Deterministic simulation of unambiguous choice

 Intersection (due to output composition)

 Research challenge: what’s a suitable model for “automata-based stream
processing”?

 ICALP’17: Unambiguous weighted automata + nesting + parallelism

 Ongoing work: Data transducers
90

Conclusions and Research Directions

91

Real-time Decision Making in IoT Applications

Data driven
Control

92

 One research question:

How to specify quantitative policies over data streams ?

 One solution: Quantitative Regular Expressions (QRE)

Modular high-level specifications

Theoretically robust expressiveness

Guaranteed space/time requirements of generated code

Evaluation for network traffic engineering

data decisions

Privacy ??

Controller

93

Query: Max over CarID { Average speed of CarID in past month }

How much information about a specific car does answer to this query leak ?

Research opportunity:

Anonymity / privacy guarantees for queries over streaming data

(car ID, position, time)

Learning ??

Switch

94

What traffic constitutes an attack ?

Known patterns can be captured by, say, QREs, but can the switch
dynamically learn the attack pattern?

Research opportunity:

Learning high-level declarative patterns, say QREs, more

plausible than learning low-level code

(source IP, dest IP, payload)
drop / forward to port X /
alert controller

Distributed Processing ??

95

Logical query on a single stream of data

Physical implementation: distributed system

How to ensure consistency ? High performance ? Resilience to errors ?

Emerging architectures: Apache STORM

Safety-critical Applications ??

96

Specification: logical query over analog signal

 Implementation: discrete control software

Predictable response time critical

Key resource constraint: battery life, so need optimized code

Goal: design more effective diagnosis strategies

Clinical diagnosis
 pacing stimulus

