Tutorial:
Probabilistic Model Checking

Christel Baier
Technische Universitat Dresden

1/401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

2/401

Markov decision processes (MDP)

3/401

Markov decision processes (MDP)

extend Markov chains by nondeterminism

4/401

Markov decision processes (MDP)

extend Markov chains by nondeterminism

e modeling asynchronous distributed systems by interleaving

process 1
tosses a coin

process 2
tosses a coin

5/401

Markov decision processes (MDP)

extend Markov chains by nondeterminism

e modeling asynchronous distributed systems by interleaving
o useful for abstraction purposes

e representation of the interface with an unpredictable
environment, e.g., human user

process 1
tosses a coin

process 2
tosses a coin

6/401

From TS and MC to MDP

7/401

From TS and MC to MDP

transition system Markov chain
purely nondeterministic purely probabilistic
1 1
a B 3 2

o=

8/401

From TS and MC to MDP

transition system Markov chain
purely nondeterministic purely probabilistic
1 1
« B 3 /1T \2
6

Markov decision process (MDP)

O T TR nondeterministic Choice

B

rerranannnnans probabilistic choice

9/401

From TS and MC to MDP

transition system Markov chain
purely nondeterministic purely probabilistic
1 1
« B 3 /1T \2
6

Markov decision process (MDP)

integer weights

wgt(s,a) € Z

10/401

Markov decision process (MDP)

M = (S5,Act,P,...)
o finite state space S

o Act finite set of actions

11/401

Markov decision process (MDP)

M = (S5,Act,P,...)
o finite state space S

« Act finite set of actions
« transition probability fct. P: S x Act x S — [0,1]

VseS Va € Act.) P(s,a,s') € {0,1}
s'eS

nondeterministic choice
between enabled actions

Act(s) = {a, B}

12 /401

Markov decision process (MDP)

M = (S, Act, P, rew, yers)

o finite state space S
o Act finite set of actions
« transition probability fct. P: S x Act x S — [0,1]

VseS Va € Act.) P(s,a,s') € {0,1}
s'eS

o reward functions rew;, .. SXAct >N

7N

energy

13/401

Weighted MDP

M = (S, Act, P, wgty, yert)

finite state space S
Act finite set of actions
transition probability fct. P: S x Act x S — [0, 1]

Vse€S Va € Act.) P(s,a,s') € {0,1}
s'eS

weight functions wgt, , .t SXAct - Z

7N

energy level
of a battery

14 /401

Weighted MDP

M = (S, Act, P, wgty, wgt, . ..)
o finite state space S

« Act finite set of actions
« transition probability fct. P: S x Act x S — [0, 1]

Vse€S Va € Act.) P(s,a,s') € {0,1}
s'eS
« weight functions wgt;, wgty, ...: S X Act =+ Z

accumulated weight of finite paths:

n—1
wgt(so Ly Sn) = Z wgti(si, aiy1)

i=0

15 /401

Weighted MDP

M= (S, Act, P, wgty, wgts, . .)

o finite state space S
o Act finite set of actions
« transition probability fct. P: S x Act x S — [0,1]

Vse€S Va € Act.) P(s,a,s') € {0,1}
s'eS
« weight functions wgt;, wgty, ...: S X Act =+ Z

ratios of accumulated weights:

ratio = %?f : FinPaths — Q

16 /401

Probability measure

M= (5, Act, P, wgty, wgts, . .)

o finite state space S
e Act finite set of actions

« transition probability fct. P: S x Act x S — [0,1]
Vse€S Va € Act.) P(s,a,s') € {0,1}
s'eS

« weight functions wgt;, wgty, ...: S X Act =+ Z

probabilities measure Pr] for given state s € S and
scheduler o : FinPaths — Distr(Act)

17 /401

Classification of schedulers

randomized vs deterministic schedulers:

randomized (R): select a distribution of actions
deterministic (D): select a unique action

18 /401

Classification of schedulers

randomized vs deterministic schedulers:

randomized (R): select a distribution of actions
deterministic (D): select a unique action
memory requirements:
consider schedulers as triples (Mem, p, v/)
o Mem is a set of memory cells
e p:Mem x S — Distr(Act) decision function
e v:Mem xS — Mem memory-update function
no restriction (H): possibly infinitely many memory cells
finite-memory (FM): finitely many memory cells

memoryless (M): decisions only depend on the current state

19/401

Randomized mutual exclusion protocol

20 /401

Randomized mutual exclusion protocol

« 2 concurrent processes Py, Py with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;

¢; critical section of process P;

21/401

Randomized mutual exclusion protocol

« 2 concurrent processes Py, Py with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;

¢; critical section of process P;

« competition if both processes are waiting

22 /401

Randomized mutual exclusion protocol

« 2 concurrent processes Py, Py with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;

« competition if both processes are waiting

« resolved by a randomized arbiter who tosses a coin

23 /401

Randomized mutual exclusion protocol

24 /401

Randomized mutual exclusion protocol

e interleaving of the request operations

25 /401

Randomized mutual exclusion protocol

e interleaving of the request operations

e competition if both processes are waiting

26 /401

Randomized mutual exclusion protocol

e interleaving of the request operations

e competition if both processes are waiting

e randomized arbiter tosses a coin if both are waiting

27 /401

Properties of the randomized MUTEX

28 /401

Properties of the randomized MUTEX

safety: the processes are never simultaneously
in their critical section

29 /401

Properties of the randomized MUTEX

safety: the processes are never simultaneously
in their critical section

holds on all paths as state {c, &) is unreachable

30/401

Properties of the randomized MUTEX

liveness: each waiting process will eventually
enter its critical section

31/401

Properties of the randomized MUTEX

mm

liveness: each waiting process will eventually
enter its critical section

does not hold on all paths, but almost surely

32/401

Properties of the randomized MUTEX

Suppose process 2 is waiting.

What is the probability that process 2 enters
its critical section within the next 3 steps ?

33/401

Properties of the randomized MUTEX

Suppose process 2 is waiting.

What is the probability that process 2 enters
its critical section within the next 3 steps ?

... depends ...

34 /401

Randomized mutual exclusion protocol

mm

Suppose the current state is {(ny, wy).

35/401

Randomized mutual exclusion protocol

The probability that process 2 enters its
critical section within the next 3 steps is:

3 if process 1 is scheduled in state {ny, wy)

36 /401

Randomized mutual exclusion protocol

The probability that process 2 enters its
critical section within the next 3 steps is:

3 if process 1 is scheduled in state {ny, wy)

1 if process 2 is scheduled in state {m, ws)

37/401

Probabilistic model checking

probabilistic
reactive system

l

probabilistic model
MDP M

quantitative
requirements

l

temporal formula ¢
e.g. LTL formula

N/

[probabilistic model checking]

best- or worst-case probability: Pr™"(y) or Pr™(¢)

38/401

Probabilistic model checking

probabilistic quantitative
reactive system requirements
probabilistic model temporal formula ¢
MDP M e.g. LTL formula

N/

[probabilistic model checking]

extrema over all
schedulers

<N

best- or worst-case probability: Pr™"(y) or Pr™(¢)

39/401

Probabilistic model checking

probabilistic quantitative
reactive system requirements
probabilistic model temporal formula ¢
MDP M e.g. LTL formula
/ \
probabilistic reachability deterministic

analysis of M ® A automaton A

linear programming

best- or worst-case probability: Pr™"(y) or Pr™(¢)

40 /401

Probabilistic model checking

probabilistic quantitative
reactive system requirements
probabilistic model temporal formula ¢
MDP M e.g. LTL formula
/ \
probabilistic reachability deterministic

analysis of M ® A automaton A

linear programming

ths(¥) = Prijoas (QaccEC)

41/401

End components (EC) [DE ALFARO’96]

42 /401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP

43 /401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP, i.e., a pair € = (T,A) where AT CS
and A: T — 2/ s t.

(1)

()

44/401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP, i.e., a pair € = (T,A) where AT CS
and A: T — 2/ s t.

(1) enabledness of selected actions:

& # A(t) C Act(t) forallte T
()

(3)

45 /401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP, i.e., a pair € = (T,A) where AT CS
and A: T — 2/ s t.

(1) enabledness of selected actions:

& # A(t) C Act(t) forallte T

(2) closed under probabilistic branching:
Vt € TVa € A(t). (P(t,a,u) >0=ueT)

46 /401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP, i.e., a pair € = (T,A) where AT CS
and A: T — 2/ s t.

(1) enabledness of selected actions:
& # A(t) C Act(t) forallte T

(2) closed under probabilistic branching:
Vt € TVa € A(t). (P(t,a,u) >0=ueT)

(3) the underlying graph is strongly connected

47 /401

End components (EC) [DE ALFARO’96]

Let M = (S, Act, P,...) be an MDP.

An end component of M is a strongly connected
sub-MDP, i.e., a pair £ = (T,A) where AT CS
and A: T — 2/ s t.

Often viewed as a set of state-action pairs:

E={(s,0) : seT, a€A(s)}

48 /401

End components (EC) [DE ALFARO’96]

49 /401

End components (EC) [DE ALFARO’96]

end component (EC):
strongly connected sub-MDP

50 /401

End components (EC) [DE ALFARO’96]

end component (EC):
strongly connected sub-MDP

ol
=)
olw

51/401

End components (EC) [DE ALFARO’96]

For all schedulers: almost all infinite paths eventually
enter an EC and visit all its states infinitely often.

end component (EC):
strongly connected sub-MDP

ool
=
~»

colw

52 /401

End components (EC) ... for MDPs without traps

For all schedulers: almost all infinite paths eventually
enter an EC and visit all its states infinitely often.

More precisely, for all schedulers o and states s:

o . limit(m) is an } _
Pr { m € Paths(s) : end component J = 1

53 /401

End components (EC) ... for MDPs without traps

For all schedulers: almost all infinite paths eventually
enter an EC and visit all its states infinitely often.

More precisely, for all schedulers o and states s:

o . limit(m) is an } _
Pr { m € Paths(s) : end component J = 1

Let E be a limit property and Ty,..., Tx C S s.t.
mnEE iff 3i>0. inf(r)=T;

54 /401

End components (EC) ... for MDPs without traps

For all schedulers: almost all infinite paths eventually
enter an EC and visit all its states infinitely often.

More precisely, for all schedulers o and states s:

o . limit(m) is an } _
Pr { m € Paths(s) : end component J = 1

Let E be a limit property and Ty,..., Tx C S s.t.
mnEE iff 3i>0. inf(r)=T;
Then: PrI(E) = PrI(OT) where

I = U{T, : T; constitutes an end component }

55 /401

Quantitative analysis of Rabin conditions

56 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<igk

57 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<igk

Pri*(E) = Pri®(¢ accEC)

58 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<igk

Pri*(E) = Pri®(¢ accEC)

|

union of all end components T that “meet E”, i.e.,

Jef{l,....k}. TNLi=@and TNU;#0o

59 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<i<k
Pri*(E) = Pri®(¢ accEC)
= PrI™®(¢ accMEC)

|

U union of all maximal end components T
1<i<k in M\ List. TNU; # @

60 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<i<k
Pri*(E) = Pri®(¢ accEC)
= PrI™®(¢ accMEC)

analogous approach for generalized Rabin conditions:

V (OD—IL; A D(}U;il AN...A DQUi,k,-)

1<igk

61/401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<i<k
Pri*(E) = Pri®(¢ accEC)
= Pr™®(¢ accMEC)

model checking algorithm for Rabin condition E:

1. compute the maximal end components
2. check which of them fulfills E

3. compute maximal reachability probabilities
by linear-programming techniques

62 /401

Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ (OO-L; AOQU;).

1<i<k
Pri*(E) = Pri®(¢ accEC)
Pr®(O accMEC)

model checking algorithm for Rabin condition E:
1. compute the maximal end components
2. check which of them fulfills E

3. compute maximal reachability probabilities
by linear-programming techniques

63 /401

Computation of maximal end components

64 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

65 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

66 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

THEN choose such a pair (s, a);
remove a from Act(s);

67 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

THEN choose such a pair (s, a);
remove a from Act(s);
IF s is a trap THEN remove s FI

68 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

THEN choose such a pair (s, a);
remove a from Act(s);

IF s is a trap THEN remove s FI
FI

UNTIL no further changes

69 /401

Computation of maximal end components

REPEAT
compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

THEN choose such a pair (s, a);
remove a from Act(s);

IF s is a trap THEN remove s FI
FI

UNTIL no further changes

return the non-trivial SCCs as maximal end components

70/401

Computation of maximal end components

REPEAT

compute the SCCs of M;

IF there exist states s, t and an action « such that
P(s,a,t) >0 and s, t belong to different SCCs

THEN choose such a pair (s, a);

remove a from Act(s);

IF s is a trap THEN remove s FI

FI

UNTIL no further changes

time complexity:

O(size(M)?)

return the non-trivial SCCs as maximal end components

71/401

MEC-quotient

|dea: The MEC-quotient is the MDP MEC(M) resulting
from M by collapsing all MECs into a single state.

72/ 401

MEC-quotient

73/401

MEC-quotient

MEC-quotient

75 /401

MEC-quotient

Given MDP M = (S, Act, P, ...) with MECs &, ..., &
where & = (T;, A;).

76 /401

MEC-quotient

Given MDP M = (S, Act, P, ...) with MECs &, ..., &
where & = (T;,A;). W.lo.g., if s,t € T; then:

Act(s) NAct(t) = Ai(s) NAi(t)

77/ 401

MEC-quotient

Given MDP M = (S, Act, P, ...) with MECs &, ..., &
where & = (T;,A;). W.lo.g., if s,t € T; then:

Act(s) NAct(t) = Ai(s) NAi(t)
MEC-quotient MEC(M) = (S', Act, P',...) where
S'=(S\T)U{&,....&} where T= U T;

1<i<k

78 /401

MEC-quotient

Given MDP M = (S, Act, P, ...) with MECs &, ..., &
where & = (T;,A;). W.lo.g., if s,t € T; then:

Act(s) NAct(t) = Ai(s) NAi(t)
MEC-quotient MEC(M) = (S', Act, P',...) where
S'=(S\T)U{&,....&} where T= U T;

1<igk
enabled actions:

forse S\ T: asin M
for state £&: all actions in |J Act(s) \ Ai(s)

seT;

79 /401

MEC-quotient
Given MDP M = (S, Act, P, ...) with MECs &, ..., &
where & = (T;,A;). W.lo.g., if s,t € T; then:
Act(s) NAct(t) = Ai(s) NAi(t)

MEC-quotient MEC(M) = (S', Act, P',...) where
S'=(S\T)U{&,....&} where T= U T;

1<i<k
transition probabilities, e.g., if s € S\ T, a € Act(s):
P'(s,a,s') = P(s,a,s’) ifs’eS\T
P(s,a,&) = >, P(s,a,t)

teT;

80 /401

MEC-quotient

Given MDP M = (S, Act, P, ...) with MECs &, ..., &

where & = (T;,A;). W.lo.g., if s,t € T; then:
Act(s) NAct(t) = Ai(s) NAi(t)
MEC-quotient MEC(M) = (§', Act, P',...) where
S'=(S\T)U{&,....&} where T= U T;

1<i<k

if s € T; and a € Act(s) \Ai(s):
P'(&,a,8") = P(s,a,s) ifs' € S\T
P'(&,a,&) = Y P(s,a,t)

teT;

81/401

Properties of the MECs and the MEC-quotient

82/401

Properties of the MECs and the MEC-quotient

For all states s, t that belong to the same MEC:

Pri¥(p) = Pri™(p)
for each prefix-independent path property ¢.

Examples: ¢ =OG or o = Q0G or ...

The same holds for mininimal probabilities for prefix-independent
properties and min/max expectations of long-run objectives.

83 /401

Properties of the MECs and the MEC-quotient

For all states s, t that belong to the same MEC:

Pri¥(p) = Pri™(p)
for each prefix-independent path property ¢.

Hence: M and MEC(M) have the same maximal
probabilities for prefix-independent properties.

84 /401

Properties of the MECs and the MEC-quotient

For all states s, t that belong to the same MEC:
Pri¥(p) = Pri™(¢)
for each prefix-independent path property ¢.

Hence: M and MEC(M) have the same maximal
probabilities for prefix-independent properties.

MEC(M) has no end components.

85 /401

Properties of the MECs and the MEC-quotient

For all states s, t that belong to the same MEC:
Pri¥(p) = Pri™(¢)
for each prefix-independent path property ¢.

Hence: M and MEC(M) have the same maximal
probabilities for prefix-independent properties.

MEC(M) has no end components. Hence:
PrﬁiﬁQ(M)zs(OTrap) =1

86 /401

Properties of the MECs and the MEC-quotient

For all states s, t that belong to the same MEC:
Pri¥(p) = Pri™(¢)
for each prefix-independent path property ¢.

Hence: M and MEC(M) have the same maximal
probabilities for prefix-independent properties.

MEC(M) has no end components. Hence:
PrﬁiﬁQ(M)zs(OTrap) =1

... transition probability matrix is contracting ...

87 /401

Probabilistic model checking

probabilistic quantitative
reactive system requirements
probabilistic model temporal formula ¢
MDP M e.g. LTL formula
/ \
probabilistic reachability deterministic

analysis of M ® A automaton A

linear programming

ths(¥) = Prijoas (QaccEC)

88 /401

Maximal reachability probabilities

89 /401

Maximal reachability probabilities

given: MDP M with state space S
set G C S of goal states

task: compute x; = Pri®*(0G) = max Prl(0G)

90 /401

Maximal reachability probabilities

given: MDP M with state space S
set G C S of goal states

task: compute x; = Pri®*(0G) = max Prl(0G)

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 fseG

xs = max Y P(s,a,s')-x¢ ifs¢G
@ ses

91/401

The vector (xs)ses where x; = Pri®(0G) is the
least solution of

xs = 1 ifseG

xs = max Y, P(s,a,s')-x¢ ifs¢G
® s'eS

92 /401

= X

1, 2 1, .3
= max{ 3Xu+5Xp, 7XutiXuy }

1

goal state
hLeG

th = 1
Xyy = 0
1

_ 1 1
EXLM + §Xt2

2

N =

G = {tb t2}

1 3

XU4+% =].

NI=

max{ 3% +5%m Pmtixu } = 3
x, =1

Xy, = 0

1

1 1 _ 1 1 _
§X,_,4 + §Xt2 = EXU4 + 3 =].

100/ 401

Maximal reachability probabilities

101 /401

Maximal reachability probabilities

given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

102 /401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 fseG

xs = max Y, P(s,a,t)-x otherwise
® teS

103 /401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 ifseG
xs = 0 if s f£30G
xs = max Y, P(s,a,t)-x otherwise

® teS

104 /401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 ifseG
xs = 0 if s f£30G
xs = max Y, P(s,a,t)-x otherwise

® tes

“Bellman equations”

105 /401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 ifseG
xs = 0 if s f£30G
xs = max Y, P(s,a,t)-x otherwise

® tes

. induces an optimal MD-scheduler ...

106 / 401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the least solution in [0, 1]°
of the equation system:

xs = 1 if s € G*
xs = 0 if s f£30G
xs = max Y, P(s,a,t)-x otherwise

® tes

pre-analysis: G* = { seSsS : x=1 }

107 /401

Maximal reachability probabilities
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)
g

The vector (xs)ses is the unique solution in [0, 1]°
of the equation system:

xs = 1 if s € G*
xs = 0 if s f£30G
xs = max Y, P(s,a,t)-x otherwise

® tes

if M has no end components

108 /401

Maximal reachability probabilities

given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

value iteration: xs = Il)m x(n)
n—00
X" =1 if s € G*
X" =0 if s £ 306
XX = max > P(s,a,t)- X" else

tes

if M has no end components

109 /401

Maximal reachability probabilities

given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

value iteration: xs = Il)m x(n)
n—00
X" =1 if s € G*
X" =0 if s £ 306
XX = max > P(s,a,t)- X" else

tes

if M has no end components or if x() < < Xs

110 /401

Maximal reachability probabilities

given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

value iteration: xs = Il)m x(n)
n—00
X" =1 if s € G*
X" =0 if s £ 306
XX = max > P(s,a,t)- X" else

tes

.. termination condition ?

111/401

Interval iteration [HADDAD /MONMEGE’14]

given: MDP M with state space S and G C S
task: compute x; = Pri®(0G) = max PrI(0G)

value iteration: xs = Il)m x(n)
n—00
XM =1 if s e G*
X" =0 if s 306
XX = max > P(s,a,t)- X" else

tes

. use lower and upper iteration in the MEC-quotient ...

112 /401

Maximal reachability probabilities via LP

given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

The vector (xs)ses is the least solution in [0, 1]°
of the linear constraints:

1 if s € G*
xs = 0 if s f£30G

xs = >, P(s,a,t)-x for a € Act(s)
tesS

o
|

113 /401

Maximal reachability probabilities via LP
given: MDP M with state space S and G C §
task: compute x; = Pri®(0G) = max PrI(0G)

The vector (xs)ses is the unique solution in R®
of the linear program:

xs = 1 if s € G*

xs = 0 if s f£30G

xs = >, P(s,a,t)-x for a € Act(s)
tesS

where) x; is minimal
seS 114/ 401

Least vs unique solution

115 /401

Least vs unique solution
g

Bellmann equations:

Xy = Xy xs=max{xt,%}

116 /401

Least vs unique solution

Bellmann equations:
x, =0 xs=max{xt,%}

as u £ IQgoal Xr = X

117 /401

Least vs unique solution
g

Bellmann equations:

x, =0 xs=max{xt,%}
as u = 30 goal Xr = Xs
solutions:

Xt=xs>%

118 /401

Least vs unique solution
g
Bellmann equations:

X, = 0
as u = 30 goal

least solution:

_ .y 1
Xt = Xs = 5

119/401

Least vs unique solution
g
Bellmann equations:

X, = 0
as u = 30 goal

least solution:

_ .y 1
Xt = Xs = 5

120 /401

Least vs unique solution

T

Bellmann equations:
x, =0 xs=max{xt,%}

as u = 30 goal X¢ = X

unique solution:
_ 1
X{s,it} = 2

121/401

Stochastic shortest/longest path problem

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

best- or worst-case expectation
EMin(§ goal) or E™(¢ goal)

extrema over all schedulers

122 /401

Stochastic shortest/longest path problem

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

requirement for M:
Pr™" (Qgoal) =1

best- or worst-case expectation
EMin(§ goal) or E™(¢ goal)

123 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

124 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

random variable § G : MaxPaths — Z
ifT =5 —s —...where s, € G, s,...,5-1¢ G:
($G)(r) = wat(ss —> ... 5 sp)

if m £ OG then (@ G)(m) = L “undefined"

125 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

The vector (Xs)ses is the unique solution in RS of:

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

“Bellman equations”

126 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

The vector (Xs)ses is the unique solution in RS of:

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

... fixpoint operator is a contracting map ...

[BERTSEKAS / TSITSIKLIS 91] 1 a0n

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

The vector (Xs)ses is the unique solution in RS of:

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

. induces an optimal MD-scheduler ...

[BERTSEKAS / TSITSIKLIS 91] 128001

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

The vector (Xs)ses is the unique solution in RS of:

If s € G then x. () — =0. Otherwise:
X" = max (wgt(s,a) + Z P(s,a,t) - x"" 1))

a€Act(s)

value iteration (arbitrary starting vector)

[BERTSEKAS/ TSITSIKLIS’91] 120401

Maximal expected accumulated weight

given: MDP M = (S, Act, P,wgt) and G C S s.t.
PrM"(0G) =1 for all states s

task: compute x; = EM*($G)

The vector (Xs)ses is the unique solution in RS of:

If s € G then x; = 0. Otherwise, for a € Act(s):

Xs 2 wgt(s,a) + Z P(S,O{, t)'Xt
tes

where) xs is minimal
s€S

130 /401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

131/401

PCTL* over MDPs [BIANCO/DE ALFARO’95]

o syntax of state and path formulas as for
PCTL* over Markov chains

« probability operator IPy(...) ranges over
all schedulers

132 /401

PCTL* over MDPs [BIANCO/DE ALFARO’95]

state formulas:
® = true | a| DA D, | = | Pi(p)
path formulas:

¢ =0 |piApa| -9 | Op | e1Ue

133 /401

PCTL* over MDPs

[BIANCO/DE ALFARO’95]

state formulas:
® = true | a| DA D, | = | Pi(p)

path formulas:

e =& |oiAp| -0 | Op | pr1Ue:

given an MDP M, define by structural induction:

« a satisfaction relation |= for
states s in M and PCTL* state formulas ®

« a satisfaction relation |= for infinite
paths m in M and PCTL* path formulas ¢

134 /401

Satisfaction relation for PCTL* state formulas

s | true
skEa
sEPIAD,
s|=—|<|>

s = Pi(p)

iff
iff
iff
iff

a € L(s)

sE®; and s

s

for all schedulers o

Pr?{r € Paths(s) : w = ¢} €1

135 /401

Satisfaction relation for PCTL* state formulas

s | true

skEa iff aelL(s)
sE®PIAD, iff sE® and skE)
s iff sped

s EPi(p) iff for all schedulers o:
Pr?{r € Paths(s): m = ¢} €1

probability measure in the
Markov chain induced by o

136 /401

Satisfaction relation for PCTL* state formulas

s | true

skEa iff aelL(s)
sE®PIAD, iff sE® and skE)
s iff sped

s EPi(p) iff for all schedulers o:
Pr?{r € Paths(s) : w |= ¢} €1

semantics of path formulas as for Markov chains

137 /401

PCTL* model checking for MDP

138 /401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, AP, L, s)
PCTL* state formula ®

task: check whether 5o = ®

139/401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, AP, L, s)
PCTL* state formula ®

task: check whether 5o = ®

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets
Sat(W) = {seS:sEV}

for all state subformulas W of ®

140/ 401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, AP, L, s)
PCTL* state formula ®

task: check whether 5o = ®

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets
Sat(W) = {seS:sEV}

for all state subformulas W of ®

treatment of the propositional logic fragment: 4/

141 /401

Treatment of probability operator

142 /401

Treatment of probability operator

upper probability bounds ng(cp) or]P’<p(<p)

143 /401

Treatment of probability operator

upper probability bounds ng(cp) or]P’<p(<p)

« compute the maximal probabilities for ¢

Pr?®(p) = sup Pr?{x € Paths(s) : m = ¢}
D

for all states s

144 / 401

Treatment of probability operator

upper probability bounds ng(cp) or]P’<p(<p)

« compute the maximal probabilities for ¢
Pr™*(p) = max Pr?{ € Paths(s) : m = ¢ }

for all states s

145 /401

Treatment of probability operator

upper probability bounds ng(cp)
« compute the maximal probabilities for ¢
Pr™*(p) = max Pr?{ € Paths(s) : m = ¢ }

for all states s
. retun {s€S : Pif™(p) < p}

146 / 401

Treatment of probability operator

upper probability bounds ng(cp) or]P’<p(<p)
« compute the maximal probabilities for ¢
Pr™*(p) = max Pr?{ € Paths(s) : m = ¢ }

for all states s
. retun {s€S : Pif™(p) < p}

lower probability bounds IP;,,(cp) or]P’>p(<p)

analogous, but minimal probabilities for ¢

147 / 401

Treatment of probability operator

upper probability bounds ng(cp) or]P<p(<p)

compute the maximal probabilities for ¢

Pri™(p) = max Pr?{ € Paths(s) : m = ¢ }

special case: ¢ = QW

148 /401

Treatment of probability operator

upper probability bounds ng(cp) or]P<p(<p)

compute the maximal probabilities for ¢

Pri™(p) = max Pr?{ € Paths(s) : m = ¢ }

special case: ¢ = QW

compute PrI*(QW) by solving a linear program

149 /401

Treatment of probability operator

upper probability bounds ng(cp) or]P’<p(<p)

compute the maximal probabilities for ¢

Pri™(p) = max Pr?{ € Paths(s) : m = ¢ }

special case: ¢ = QW
compute PrI*(QW) by solving a linear program
general case:

via determininistic automaton A for ¢ and
maximal reachability probabilities in M x A

150 / 401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, ...)
PCTL* state formula P<,(¢p)

task: compute Sat(P<p(¢))

151 /401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, ...)
PCTL* state formula P<,(¢p)

task: compute Sat(P<p(¢))

method: compute xs = PrI®(¢) via a reduction
to the probabilistic reachability problem

152 /401

PCTL* model checking for MDP

given: MDP M = (S, Act, P, ...)
PCTL* state formula P<,(¢p)

task: compute Sat(P<p(¢))

method: compute xs = PrI®(¢) via a reduction
to the probabilistic reachability problem

using DRA A for ¢ and
linear program for M x A

153 /401

MDP M

PCTL* path formula ¢

154 / 401

MDP M

PCTL* path formula ¢

!

LTL formula ¢’

155 /401

MDP M

PCTL* path formula ¢

!

LTL formula ¢’

!

DRA A

156 / 401

MDP M

PCTL* path formula ¢

!

LTL formula ¢’

!

product-MDP
MxA

____——{DRAA

157 /401

MDP M

PCTL* path formula ¢

!

LTL formula ¢’

!

product-MDP
MxA

____——{DRAA

maX((p)

Priga(V (0O-L ADOU:))

158 /401

MDP M PCTL* path formula ¢

!

LTL formula ¢’

!

____—{DRAA

product-MDP
Mx A

PIT(p) = Py A(V((}I:I—-L AOOU;))

= Prp A(OaccMEC)

159 /401

Lower probability bounds

given: MDP M = (S, Act, P, ...)
PCTL* formula P ()
task: compute Sat(]l”zp(cp))

160 / 401

Lower probability bounds

given: MDP M = (S, Act, P, ...)
PCTL* formula P ()
task: compute Sat(]l”zp(cp))

simple fact: for each scheduler D and state s:
Pr)(¢) = 1-Pr)(-¢)

... duality of lower and upper probability bounds

161 /401

Lower probability bounds

given: MDP M = (S, Act, P, ...)
PCTL* formula P ()
task: compute Sat(]l”zp(cp))

simple fact: for each scheduler D and state s:
Pr)(¢) = 1-Pr)(-y)

... duality of lower and upper probability bounds

For each state s and PCTL* path formula ¢:
Pitn(p) = 1—Pr™(~y)

162 /401

Complexity of PCTL/PCTL* model checking

163 /401

Complexity of PCTL/PCTL* model checking

PCTL PCTL*
Markov PTIME PSPACE-complete
chain [HANSSON/JONSSON’94] [VARDI/ WOLPER’86]
Markov PTIME 2EXP-complete
decision

process

[BIANCO/DEALFARO’95]

[COURCOUBETIS/ YANNAKAKIS’88]

164 / 401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

x basic definitions

x+ PCTL/PCTL* model checking
x fairness

x conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

165 / 401

Conditional probabilities for MDP

for Markov decision processes:

max Pri(p A)
Prits(elv) = max —

Pro(v)

166 /401

Conditional probabilities for MDP

for Markov decision processes:

max Pri(p A)
Prits(elv) = max —

Pro(v)

exponential-time procedure for PCTL [Anprés/Rossumos]
even for reachability ¢ = QF, ¥ = G

167 /401

Conditional probabilities for MDP

for Markov decision processes:

PO (o] 1) = max s PAY)

Pro(v)

exponential-time procedure for PCTL [Anprés/Rossumos]
even for reachability ¢ = QF, ¥ = G

transformation-based approach for LTL

MDP M ~» MDP M, of linear size for reachability

Prif(elv) = Prig,s(¢')

[BAIER/KLEIN/KLUPPELHOLZ /M ARCKER'14]
168 / 401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

169 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

170 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M

OO

171 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M MDP M’
g

stop goal fail

172 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M MDP M’
g

stop goal fail

P'(g,goal) = Pryg’,(OF)
P'(g, stop) = 1 — Prig’,(OF)

173 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M MDP M’
g

stop goal fail

P'(f, goal) = Prigg’(0G)
P’(f, fail) =1- PI‘M’f(OG)

174 / 401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M MDP M’
g

stop goal fail

soundness:

X (OF | 0@) = Prmax (Qgoal | O(goal V stop))

175 /401

Transformation-based approach for MDP

given: MDP M =(S,P)and F,GCS
objective ¢ = QF, condition ¥ = QG

step 1: generate a normal form MDP M’

MDP M MDP M’
g

stop goal fail

step 2: normal form MDP M’ ~ MDP M" st

176 / 401

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.
Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)

! . .
+Sinit

177 /401

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.
Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)

! . .
+Sinit

idea: M” redistributes the probabilities of the
paths m with 7 [~ Q(goal V stop)

178 /401

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.
Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)

! \Sinit

MDP M’

g€eEG feF

NG R/
/N N\

stop goal fail

179/ 401

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.
Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)

! \Sinit
\
/ Sinit\. \

NG . I
/N N\

stop goal fail

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.

Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)
\
it

T el)

e
.
.
W,
-
.
.
.
o

“ reset

% 2/
/NSNS

stop goal fail

181/401

Transformation-based approach for MDP
step 2: normal form MDP M’ ~ MDP M” s.t.
Priver.. (Ogoal | O(goal v stop)) = Priyix .. (Ogoal)
\
it

(smee,)

o
.
.
.
.
.
.
+

““ -

N . S
/N NS

stop goal fail

182 /401

Transformation-based approach for MDP

step 2: normal form MDP M’ ~ MDP M” s.t.

Prma,’fsim_t(Qgoal | O(goal V stop)) = Pr"'aZ,‘»sM(Qgoal)
\
e
reset,..~" ~~~~~

add reset-transitions “ reset
from all end components :
that do not contain H

a trap state K ’\ R j
/NSNS

stop goal fail

183 /401

Summary: conditional probabilities for MDP

for Markov decision processes:

max Pri(pA)
Prits(elv) = max —

Pri(v)

computation by reduction to unconditional probabilities

x reset-mechanism for reachability objective and condition

* generalization for LTL objectives/conditions via w-automata

184 /401

Summary: conditional probabilities for MDP

for Markov decision processes:

max Pri(pA)
Prits(elv) = max —

Pri(v)

computation by reduction to unconditional probabilities

x reset-mechanism for reachability objective and condition

* generalization for LTL objectives/conditions via w-automata
complexity-theoretic results ... as for unconditional probabilities
o model-checking problem for conditional PCTL in P
« threshold problem for LTL objectives/conditions
is 2EXPTIME-complete

185 /401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

* rewards, quantiles

* mean-payoff

* expected accumulated weights

186 /401

Quantiles

well-known in statistics:

If f is a real-valued random variable and
q € [0, 1] a probability threshold then

inf{rG]R : Pr{fsr}>q}

is the g-quantile of f.

187 /401

Quantiles

well-known in statistics:

If f is a real-valued random variable and
q € [0, 1] a probability threshold then

inf{rG]R : Pr{fsr}>q}

is the g-quantile of f.

. can be very useful for the analysis of systems ...

188 /401

Examples for quantiles in Markov chains

energy-aware job scheduling:

Pr(05 goal)

189 /401

Examples for quantiles in Markov chains

energy-aware job scheduling:

Pr(05 goal)

for fixed utility value u

probability

energy
consumption

190 /401

Examples for quantiles in Markov chains

energy-aware job scheduling:
min { e € N: Pry(0S; goal) > 0.8 }

for fixed utility value u

"""""""""" i 80%

probability

energy €min

consumption

191/401

Examples for quantiles in Markov chains

energy-aware job scheduling:
min { e € N: Pry(0S; goal) > 0.8 }

for fixed utility value u for fixed energy budget e

"""""""""" i 80%

probability |

probability

energy €min utility
consumption value
192 /401

Examples for quantiles in Markov chains

energy-aware job scheduling:
min { e € N: Pry(0S; goal) > 0.8 }

max { u € N: Prs(0S; goal) > 0.8 }

for fixed utility value u for fixed energy budget e

"""""""""" i 80% N 80%

probability

probability

em,‘,, Ut|||ty Umax
value

energy
consumption
193 /401

Quantiles in Markovian models
Markov chains:
min { r € N: Pry(0~" goal) > 0.8 }

max { reN: Prs(<>>, goal) > 0.8 }

Markov decision processes:

min { r € N: Prf®(0<" goal) > 0.8 }

max { r € N: Pri®(0, goal) > 0.8 }

Quantiles in Markovian models
Markov chains:
min { r € N: Pry(0~" goal) > 0.8 }

max { reN: Prs(<>>, goal) > 0.8 }

Markov decision processes:

min { re N: max(os’ goal) > 0.8 }
min { r € N: Pr™™ (< goal) > 0.8 }
max { r e N: "‘a"(<>>, goal) > 0.8 }
max { r € N: Pt ({5, goal) > 0.8 }

Computing quantiles in MDP

196 /401

Computing quantiles in MDP
e.g., existential quantiles
min {r e N : Prif(0~G) > q}
max {r e N : Pr?(05,G) > q}

results on the computation of quantiles:

197 /401

Computing quantiles in MDP
e.g., existential quantiles
min {r e N : Prif*(0~G) =1}
max {r e N : Pr?®(05,G) >0}

results on the computation of quantiles:

 qualitative quantiles in poly-time [UMMELS/BAIER’13]

198 /401

Computing quantiles in MDP
e.g., existential quantiles
min {r e N : Prif(0~G) > q}
max {r e N : Pr?(05,G) > q}

results on the computation of quantiles:

« qualitative quantiles in poly-time [UMMELS/BATER’13]

o EXP-compl. for quantitative quantiles [Haase/Kierer'15]

199 /401

Computing quantiles in MDP
e.g., existential quantiles
min {r e N : Prif(0~G) > q}
max {r e N : Pr?(05,G) > q}

results on the computation of quantiles:
« qualitative quantiles in poly-time [UMMELS/BATER’13]
o EXP-compl. for quantitative quantiles [Haase/Kierer'15]

o iterative LP-approach for quantitative quantiles

[UMMELS/BAIER’13] [BAIER/DAUM/DUBSLAFF/KLEIN/KLUPPELHOLZ 14|

200 / 401

Computing quantitative quantiles

qu(ss) = min{reN : Pr7*(0<'G) > q}

201 /401

Computing quantitative quantiles

qu(ss) = min{reN : Pr7*(0<'G) > q}
1. compute p = Prs";ax(OG)

2. return qu(s)) =0 if p< q
3.

202 /401

Computing quantitative quantiles
qu(ss) = min{reN : Pr7*(0<'G) > q}
| Gy —
Pso,r
1. compute p = Prs";ax(OG)
2. return qu(s)) =0 if p< q

3. forr=20,1,2,... compute the values ps,
for all states s € S and return the smallest
value r such that pg,, > q

203 /401

Computing quantitative quantiles

qu(ss) = min{reN : Pr7*(0<'G) > q}
=\

Pso,r

3. forr=20,1,2,... compute the values ps,
for all states s € S and return the smallest
value r such that pg,, > q

exponential bound on the number of required iterations

(in practice much faster)

204 /401

Computing quantitative quantiles

qu(ss) = min{reN : Pr7*(0<'G) > q}
=\

Pso,r

3. forr=20,1,2,... compute the values ps,
for all states s € S and return the smallest
value r such that pg,, > q

computation of ps, by an iterative
approach with back propagation

205 /401

linear program for the values ps, = Pr's“ax(Og’G)

xs, = 0 ifsE3I0GC

xsr = 1 ifseG
If s¢ G, s E30G and a € Act(s) then:

Xsr =2 2, P(s,o,t)-x, if rew(s,a)=0
teS

Xsr =, P(s,o,t) - x¢,—¢ if £ =rew(s,a) >0

tesS

solution: x5, = ps, = Prr(0SG)

206 / 401

linear program for the values ps, = Pr's“ax(Og’G)

xs, = 0 ifsE3I0GC

’ _ minimize) Xs
XS’r = 1 IfS 6 G s

If s¢ G, s E30G and a € Act(s) then:

Xsr =2 2, P(s,o,t)-x, if rew(s,a)=0
teS

Xsr =, P(s,o,t) - x¢,—¢ if £ =rew(s,a) >0

tesS

unique solution: x5, = ps, = Prr(0<G)

207 / 401

linear program for the values ps, = Pr's“ax(Og’G)

Xs,r = 0 if s bé EK}G e
X
%, = 1 ifseG minimize XS: s.r

If s¢ G, s =30G and a € Act(s) then:

Xsr = 2, P(s,o,t)-x:, if rew(s,a)=0
teS

Xsr =, P(s,o,t) - x¢,—¢ if £ =rew(s,a) >0
HES

use the solutions p;; = Pr;“ax(OS"G) fori<r

computed in previous iterations

208 / 401

linear program for the values ps, = Pr's“ax(Og’G)

xs, = 0 ifsE3I0GC

’ _ minimize) Xs
XS’r = 1 IfS 6 G s

If s¢ G, s E30G and a € Act(s) then:

Xsr =2 2, P(s,o,t)-x, if rew(s,a)=0
teS

Xs, = const

209 / 401

linear program for the values ps, = Pr's“ax(Og’G)

xs, = 0 ifspE3IOG

_ minimize) Xs
XS’r = 1 IfS 6 G s

If s¢ G, s E30G and a € Act(s) then:

Xsr =2 2, P(s,o,t)-x, if rew(s,a)=0
teS

linear in the

Xsy 2 const size of the MDP

linear program to be solved in the r-th iteration

210/ 401

Expectation quantiles

211 /401

Expectation quantiles: example

MDP with two
reward functions

M = (S, Act, P, energy, utility,)

expectation quantile for utility threshold u € Q:

min { e € N : ExpUtil?™[energy < €] > u }

212 /401

Expectation quantiles: example

MDP with two
reward functions

M = (S, Act, P, energy, utility,)

expectation quantile for utility threshold u € Q:

min { e € N : ExpUtil?™[energy < €] > u }

computation of expectation quantiles:

iterative linear programming approach
(with back propagation as for probabilistic quantiles)

213 /401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

214 /401

215 /401

Mean-payoff
given: a weighted graph without trap states

mean-payoff functions MP, MP : InfPaths — R:

n

MP(sps15...) = limsup ﬁ - > wgt(s;)
n—00 i=0
MP(sps1s...) = liminf ﬁ - D, wgt(si)

n—00 i=0

216 / 401

Mean-payoff
given: a weighted graph without trap states

mean-payoff functions MP, MP : InfPaths — R:

n

MP(sps15...) = limsup ﬁ - > wgt(s;)
n—o00 =0
- - 1 n
MP(sps18...) = |I;ll):2f —= - Z%wgt(s,-)

if wgt(s) =+1, wgt(t) = —1 then there exists m, my, ...

and ki, kp,... € Ns.it. form=smthismih .

MP(n) < 0 < MP(n)

217 /401

Expected mean-payoff in finite MC or MDP

fundamental results:
in finite MC: E4(MP) = E;(MP)

in finite MDP: EM™X(MP) = EM>(MP)
ET"(MP) = E"(MP)

and optimal MD-scheduler exist

218 /401

Expected mean-payoff in finite MC

fundamental results:

in finite MC: E4(MP) = E;(MP)

for finite MC without traps:

Almost all paths eventually enter a BSCC and
visit all its states infinitely often.

219 /401

Expected mean-payoff in finite MC
fundamental results:
in finite MC: E4(MP) = E;(MP)

for finite MC without traps:

Almost all paths eventually enter a BSCC and
visit all its states infinitely often ...

.. with the same long-run frequencies ...

220 /401

Long-run frequencies in finite MC
steady-state probabilities in BSCC B of a finite MC:

n N
0°(s) = ,,'L'L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1

221 /401

Long-run frequencies in finite MC

steady-state probabilities in BSCC B of a finite MC:

n N
0°(s) = ,,'L'L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1

number of occurrences of s

f ...5) = 1 .
req(s, sos1 - - - Sn) { in the sequence 5p8;...5,

222 /401

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(m) = 3 6%(s) - wat(s)

seB

223 /401

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(m) = 3 6%(s) - wat(s)

seB

224 /401

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(r) = 3 0°(s)- wgt(s) = MP(B)

seB

225 /401

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(r) = 3 0°(s)- wgt(s) = MP(B)

seB

expected mean-payoff: Y Prg (OB) - MP(B)
B

226 / 401

Mean-payoff in MDPs

227 /401

Mean-payoff in MDPs

Given MDP with weight function wgt : S — Q, find
a scheduler maximizing the expected mean-payoff.

228 /401

Mean-payoff in MDPs

Given MDP with weight function wgt : S — Q, find
a scheduler maximizing the expected mean-payoff.

Results: [HOWARD’60], [DERNAN’66], [KALLENBERG'80] ...

« optimal MD-scheduler exist

« computable in polynomial-time via linear program
to encode the long-run frequencies of MR-scheduler

. value and policy iteration algorithms

« extensions for multiple mean-payoff constraints

[BRAZDIL/BROZEK /CHATTERJEE/FORELIT/ KUCERA’14]

229 /401

Mean-payoff in MDPs

Given MDP with weight function wgt : S — Q, find
a scheduler maximizing the expected mean-payoff.

Results: [HOWARD’60], [DERNAN’66], [KALLENBERG'80] ...
« optimal MD-scheduler exist

« computable in polynomial-time via linear program

to encode the long-run frequencies of MR-scheduler
. value and policy iteration algorithms

« extensions for multiple mean-payoff constraints

[BRAZDIL/BROZEK /CHATTERJEE/FORELIT/ KUCERA’14]

230/ 401

Mean-payoff in strongly connected MDPs

231 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

uses variables xs o, for s € S, a € Act(s)
to encode the long-run frequencies of the
state-action pairs (s, @) in MR-schedulers

232 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

uses variables xs o, for s € S, a € Act(s)
to encode the long-run frequencies of the
state-action pairs (s, @) in MR-schedulers

Given the values xs 4, a corresponding MR-scheduler
o can be defined by:

e ifX= 3 X0 >0 then: o(s)(@) = Xs.0/Xs
a€Act(s)

233 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

uses variables xs o, for s € S, a € Act(s)
to encode the long-run frequencies of the
state-action pairs (s, @) in MR-schedulers

Given the values xs 4, a corresponding MR-scheduler
o can be defined by:

e ifX= 3 X0 >0 then: o(s)(@) = Xs.0/Xs
a€Act(s)

o if xs =0 then o behaves an MD-scheduler that
reaches a state t with x; =1 with probability 1

234 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,a

235 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,a

236 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:
maximize) Xs.o - Wgt(s, @) subject to:

s,

Xt =) Xsa-P(s,a,t) forte$S
S,

237 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:
maximize) Xs.o - Wgt(s, @) subject to:
s,a

Xt =) Xsa-P(s,a,t) forte$S
S,

Xsa 20 fors €S and a € Act(s)

238 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,

Xt =) Xsa-P(s,a,t) forte$S
S,

Xsa 20 fors €S and a € Act(s)

Y Xsa =1
s,a T

long-run frequencies yield a distribution

239 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,a

Xt =) Xsa-P(s,a,t) forte$S
S,

Xsa 20 fors €S and a € Act(s)

Y Xsa =1
s,a

Each solution induces an optimal MR-scheduler.

240 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,a

Xt =) Xsa-P(s,a,t) forte$S
S,

Xsa 20 fors €S and a € Act(s)

Y Xsa =1
s,a

Each solution induces an optimal MR-scheduler.
But how to obtain an optimal MD-scheduler ?

241 /401

Mean-payoff in strongly connected MDPs

linear program for the maximal expected mean-payoff:

maximize) Xs.o - Wgt(s, @) subject to:
s,a

Xt =) Xsa-P(s,a,t) forte$S
S,

Xsa 20 fors €S and a € Act(s)

Y Xsa =1
s,a

optimal MD-scheduler: for each state s with x; > 0
pick an action a with x5 >0

242 /401

Mean-payoff in MDPs: general case

given: weighted MDP M without trap states

task: find a scheduler that maximizes the
expected mean-payoff

243 /401

Mean-payoff in MDPs: general case

given: weighted MDP M without trap states
task: find a scheduler that maximizes the
expected mean-payoff
method 1:
use an LP with two variables for each state-action pair

Xs,o long-run frequency

Ys,o frequency in the transient part

244 /401

Mean-payoff in MDPs: general case

given: weighted MDP M without trap states

task: find a scheduler that maximizes the
expected mean-payoff

method 1:

use an LP with two variables for each state-action pair
Xs,o long-run frequency
Ys,o frequency in the transient part

method 2:

compute the maximal expected mean-payoff of the
MECs and “compose” the result for the full MDP

245 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

246 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

247 / 401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &
step 2: for i =1, ..., k, compute the maximal expected

mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

248 / 401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

M’ arises from MEC(M) by adding
o a fresh trap state goal

« a new action symbol T

. transitions & — goal for i, ..., k

249 / 401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

with weight mp; for the transitions & — goal
and weight 0 for all other states

250 / 401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

with weight mp; for the transitions & — goal
and weight 0 for all other states

step 4: compute the maximal expected total weight

in M’

251 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’
with weight mp; for the transitions & — goal
and weight 0 for all other states

step 4: compute the maximal expected total weight

min _ maximal expected total weight
Pr '(Ogoal) =1 and optimal MD-scheduler exist

252 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

with weight mp; for the transitions & — goal
and weight 0 for all other states

step 4: compute the maximal expected total weight

in M’

ET2X(“total weight’) = ET(MP)

253 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;

step 3: construct the modified MEC-quotient M’

with weight mp; for the transitions & — goal
and weight 0 for all other states

step 4: compute the maximal expected total weight

in M’

question: how to compute an optimal scheduler ?

254 /401

Mean-payoff in MDPs: general case

step 1: compute the maximal end components &, ..., &

step 2: for i =1, ..., k, compute the maximal expected
mean-payoff mp; of &;
. and an optimal MD-scheduler o;

step 3: construct the modified MEC-quotient M’

with weight mp; for the transitions & — goal
and weight 0 for all other states

step 4: compute the maximal expected total weight
in M’ ... and an optimal MD-scheduler v

optimal MD-scheduler arises by combining v, 04, ..., 0k

255 / 401

Expected long-run ratios

256 /401

Expected long-run ratios

for Markov chains:

trivially computable in each BSCC as the quotient of the
mean-payoff of both reward functions

MP|cost](B
3 Pry(OB) - MP[[utilt]]((B))

B

257 / 401

Expected long-run ratios

for Markov chains:

trivially computable in each BSCC as the quotient of the
mean-payoff of both reward functions

for MDPs:
« optimal MD-schedulers exist [GIMBERT’07]

o LP-based approach [DE ALFARO'9S]

258 /401

Expected long-run ratios

for Markov chains:

trivially computable in each BSCC as the quotient of the
mean-payoff of both reward functions

for MDPs:
« optimal MD-schedulers exist [GIMBERT’07]
o LP-based approach [DE ALFARO'9S]

minimize y subject to

xs = cost(s,a)—y-util(s,a) + > P(s,a,t)-x
tesS

for all states s and a € Act(s)

259 /401

Expected long-run ratios

for Markov chains:

trivially computable in each BSCC as the quotient of the
mean-payoff of both reward functions

for MDPs:
« optimal MD-schedulers exist [GIMBERT’07]
o LP-based approach [DE ALFARO'9S]

o fractional LP for uni-chain MDPs [Essen/JoBstuans'11]

using an encoding of MR-scheduler as for mean-payoff;

synthesis of an MD-scheduler maximizing the long-run ratio

260 /401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

x expected accumulated weights

261 /401

Stochastic shortest/longest path problem

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

requirement for M:
Pr™" (Qgoal) =1

best- or worst-case expectation
EMin(§ goal) or E™(¢ goal)

262 /401

Stochastic shortest/longest path problem

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

relaxed requirement: BERTSEKAS/ TSITSIKLIS’91
PrmaX(Ogoal) =1 DE ALFARO’99

best- or worst-case expectation
EMin(§ goal) or E™(¢ goal)

263 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
T={seS:PriI*(0G)=1} #2

task: compute x; = EM(PG) forse T

o is proper iff PrI(0G)=1forallse T

264 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
T={seS:PriI*(0G)=1} #2
task: compute x; = EM(PG) forse T
W.log T=S.

265 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

T={seS:PriI*(0G)=1} #2
task: compute x; = EM(PG) forse T
W.log T=S.

replace M with the sub-MDP consisting of
o the states in T and

. the state-action pairs (s,a) wheres € T \ G,
a € Act(s) and
Pri™(06G) = X P(s, o, t) - Pry®(06)

tesS

266 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
T={seS:PriI*(0G)=1} #2
task: compute x; = EM(PG) forse T
W.lo.g. T=3S. In particular, s | 30G foralls € S.

267 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
T={seS:PriI*(0G)=1} #2

task: compute x; = EM(PG) forse T

W.lo.g. T=3S. In particular, s | 30G foralls € S.

EM(goal) can be infinite !

268 / 401

Maximal expected accumulated weight

()P wet(s,a) =
—a wet(s,) =

|
- o

269 / 401

Maximal expected accumulated weight

()P wet(s,a) =
Opr wet(s, 5)

maximal expected acumulated weight:

EM*>*(® goal) = +o0

I
- o

note that EZ"(goal) = n where o, schedules
« [3 for the first n visits of s

. « for the (n+1)-st visit of s

270 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

xXs < +oo forallse€e S

271/ 401

Maximal expected accumulated weight
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

e Xs < t+o0o forallse S

« the vector (xs)ses is computable via the
Bellman equations

272 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S
If EZ("total weight”) = —oo for each improper

scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

273 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

. unique fixpoint

274 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
tesS

a€Act(s)

. unique fixpoint, optimal MD-scheduler exist ...

275 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.

Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

If s € G then x; = 0. Otherwise:

xs = max (wgt(s,a) + X P(s,a,t)-x)
S tes

unique solution where) x; is minimal
seS

276 /401

Maximal expected accumulated weight
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S
If EZ("total weight”) = —oo for each improper

scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

If s € G then x(")= 0. Otherwise:

X" = max (wgt(s,a) + X P(s,a,t)- Xt(n_l))
teS

a€Act(s)

value iteration (arbitrary starting vector)

277 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S
If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]
e Xs < 400 forallseS
« the vector (Xs)ses is computable via the

Bellman equations

How to compute x; if EZ(“total weight") > —oo for
some improper scheduler o ?

278 / 401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S
If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]
e Xs < 400 forallseS
« the vector (Xs)ses is computable via the

Bellman equations

How to compute x; if EZ(“total weight") > —oo for
some improper scheduler & ? How to check finiteness ?

279 /401

Non-negative weights

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

280 / 401

Non-negative weights

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« EM(G) =00 iff s can reach a positive EC

281/ 401

Non-negative weights
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« EM(G) =00 iff s can reach a positive EC

« if M has no positive ECs and N' = MEC(M) then:
ER(0G) — ER06)

282 /401

Non-negative weights
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« EM(G) =00 iff s can reach a positive EC

« if M has no positive ECs and N' = MEC(M) then:
ET(6G) — EREOG)

Hence: ETP(® G) is computable in polynomial time.

283 /401

Non-positive weights

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« ET(@ G) is finite ... and non-positive

284 /401

Non-positive weights
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« ET(@ G) is finite ... and non-positive

« if N is the MDP arising from M by collapsing all
zero-ECs then ...

285 / 401

Non-positive weights
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« ET(@ G) is finite ... and non-positive

« if N is the MDP arising from M by collapsing all
zero-ECs then ERP(® G) = EfF(9G)

286 / 401

Non-positive weights

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« ET(@ G) is finite ... and non-positive

« if N is the MDP arising from M by collapsing all
zero-ECs then ERP(® G) = EF(9G)

computable as the MECs of the MDP M consisting
of the state-action pairs in M with weight 0

287 /401

Non-positive weights
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

results: [DE ALFARO’99)

« ET(@ G) is finite ... and non-positive

« if N is the MDP arising from M by collapsing all
zero-ECs then ERP(® G) = EfF(9G)

o EJPH(® G) computable via Bellman equations
.. expected total weight of each improper scheduler is —oo

288 / 401

Maximal expected accumulated weight
given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

e Xs < 400 forallseS
e (xs)ses is computable via the Bellman equations
Treatment of non-negative or non-positive weights: 4/

General case: 777

289 /401

Maximal expected accumulated weight

given: MDP M = (S, Act, P, wgt) and G C S s.t.
Pri*(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

If EZ("total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS/ TSITSIKLIS'91]

e Xs < 400 forallseS

e (xs)ses is computable via the Bellman equations

Treatment of non-negative or non-positive weights: 4/

General case: ... consider the MECs separately ...

290 /401

Let £ be an end component of M.

EF(é G) = oo
iff

291 /401

Let £ be an end component of M.

EP*(& G) = oo

iff & is weight-divergent

292 /401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &:
sup {reN: Prig¥(O(wgt>r))=1} =00

293 /401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &:
sup {reN: Prig¥(O(wgt>r))=1} =00
iff Prg>{m : IiT—>S<>l<:p wgt(pref(m,n)) =00 } =1

294 /401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &:
sup {reN: Prig¥(O(wgt>r))=1} =00
iff Prg>{m : IiT—>S<>l<:p wgt(pref(m,n)) =00 } =1

iff EM(MP) >0or ...

295 / 401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &:
sup {reN: Prig¥(O(wgt>r))=1} =00
iff Prg>{m : IiT—>S<>l<:p wgt(pref(m,n)) =00 } =1

iff EF*(MP) > 0 or EF*(MP) =0 & & is gambling

296 / 401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &:
sup {reN: Prig¥(O(wgt>r))=1} =00
iff Prg>{m : IiT—>S<>l<:p wgt(pref(m,n)) =00 } =1

iff EM(MP) > 0 or ET>(MP) =0 & £ is gambling

there exists scheduler s.t. almost surely:
limsup wgt(pref(m,n)) = +oo
n—o0

I',."-‘»L'lf Wgt(pref(ﬂ-’ n)) - _00297/401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &£:
sup {r e N: Prif*(O(wgt >r))=1} =00
iff Prg>{m : limsup wgt(pref(m,n)) =00} =1
n—00

iff EF>(MP) > 0 or EFf*(MP) =0 & & is gambling

NS

can be checked in
polynomial time

298 / 401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &£:
sup {r e N: Prif*(O(wgt >r))=1} =00
iff Prg>{m : limsup wgt(pref(m,n)) =00} =1
n—00

iff EF>(MP) > 0 or Ef*(MP) =0 & & is gambling

[

how to check
whether an EC
is gambling ?

299 /401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &£:
sup {r e N: Prif*(O(wgt >r))=1} =00
iff Prg>{m : limsup wgt(pref(m,n)) =00} =1
n—00

iff EF>(MP) > 0 or EFf*(MP) =0 & & is gambling

The problem to check whether a given EC is gambling
is NP-hard

300/ 401

Let £ be an end component of M.

EF>*(G) = o0
iff &€ is weight-divergent, i.e., for all states s in &£:
sup {r e N: Prif*(O(wgt >r))=1} =00
iff Prg>{m : limsup wgt(pref(m,n)) =00} =1
n—00

iff EF>(MP) > 0 or EFf*(MP) =0 & & is gambling

The problem to check whether a given EC is gambling
« is NP-hard
. solvable in polynomial-time if EF**(MP) =0

301 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

302 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.
Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &

303 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC &' of 0.

304 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC & of 0. W.log. E=E".

305 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) =

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC & of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC

0.

306 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) =

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC & of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

0.

307 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) =

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC & of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

B3
B3
a,% wgt(s,a) = +1
a’% Wgt(ta IB) =-1

gambling

0.

308 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) =

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC & of 0. W.log. E=E".

If £ is not gambling then & is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

B, % . B
" oo
o} @Clig) wgt(s,a) = +1
(8]

gambling zero-EC

0.

309 /401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC &' of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

Let £ be a zero-EC and s, t states in £. There exists
w(s, t) € Z such that:

w(s, t) = wgt(w) for all paths w from s to t

310/401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC &' of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

Let £ be a zero-EC and s, t states in £. There exists
w(s, t) € Z such that:

w(s, t) = wgt(w) for all paths w from s to t

Then: w(t,s) = —w(s,t)

311/401

Non-gambling EC with zero mean-payoff

Let £ be an end component of M with EF**(MP) = 0.

Pick an MD-scheduler o s.t. EZ (MP) =0 forse€ &
and a BSCC &' of 0. W.log. E=E".

If £ is not gambling then &€ is a zero-EC, i.e.,
the total weight of all cycles in £ is 0.

Let £ be a zero-EC and s, t states in £. There exists
w(s, t) € Z such that:

w(s, t) = wgt(w) for all paths w from s to t

Then: w(t,s) = —w(s,t) ... remove £ from M ...

312 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

313 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

314 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

315 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

)
N

t .
X
S—).... u 0 ‘S cen
/
v ..

316 /401

Spider construction ... for removing zero-ECs

given: MDP M and a zero-EC £ of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

w 5 w

NS N

2 2 /

. <T u 1 S L,. . u 0 >S a
1 d / X

v -1 v

317 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC € of M

task: construct an MDP N with the same non-zero ECs
and where £ is no longer a zero-EC

W.l.o.g: Act(s) N Act(t) =2 ifs#t.

318 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &

319 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &

2. remove all state-action pairs in €

320 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &
2. remove all state-action pairs in €

3. for each state t in £ with t # s:
add transition t — s with wgt(t,7) = —w(s, t)

321 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &
2. remove all state-action pairs in €

3. for each state t in £ with t # s:
add transition t — s with wgt(t,7) = —w(s, t)

4. replace each state-action pair (t,3) in M\ €
where t # s with the pair (s, 3)

322 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &
2. remove all state-action pairs in €

3. for each state t in £ with t # s:
add transition t — s with wgt(t,7) = —w(s, t)

4. replace each state-action pair (t,3) in M\ €
where t # s with the pair (s, 3):

wgt(s,) = w(s,t) + wgt(t, 5)

323 /401

Spider construction ... for removing zero-ECs
given: MDP M and a zero-EC £ of M

1. pick a state s in &
2. remove all state-action pairs in €

3. for each state t in £ with t # s:
add transition t — s with wgt(t,7) = —w(s, t)

4. replace each state-action pair (t,3) in M\ €
where t # s with the pair (s, 3):

wgt(s, B) = w(s,t) + wgt(t,)
P(s,3,u) = P(t,3,u) for all states u in M

324 /401

Spider construction ... for removing zero-ECs

given: MDP M and a zero-EC £ of M
spider construction yields a new MDP N = M\¢

M is weight-divergent iff A is weight-divergent

325 /401

Spider construction ... for removing zero-ECs

given: MDP M and a zero-EC £ of M
spider construction yields a new MDP N = M\¢

« M is weight-divergent iff N is weight-divergent
o ERPN(DG) = ERf5(®G) for all states s in M

326 /401

Spider construction ... for removing zero-ECs

given: MDP M and a zero-EC £ of M
spider construction yields a new MDP N = M\¢

« M is weight-divergent iff N is weight-divergent
o ERPN(DG) = ERf5(®G) for all states s in M
IMI < Ml -1

where || M|| = number of state-action pairs in M

327 /401

Spider construction ... for removing zero-ECs

given: MDP M and a zero-EC £ of M
spider construction yields a new MDP N = M\¢

« M is weight-divergent iff N is weight-divergent
o ERPN(DG) = ERf5(®G) for all states s in M
IMI < Ml -1

where || M|| = number of state-action pairs in M

idea: apply the spider construction recursively to check
weight-divergence of strongly connected MDPs

328 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

329 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o

330/401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o

2. if EY¥(MP) < 0 then return “no”

331/401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o
2. if EY¥(MP) < 0 then return “no”

3. pick a BSCC & of the MC induced by o

332 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o

2.
3.
4,

if EX?*(MP) < 0 then return “no”
pick a BSCC & of the MC induced by o

if £ is a zero-EC then apply the procedure
recursively to the MDP M.

333 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o

2.
3.
4,

if EX?*(MP) < 0 then return “no”
pick a BSCC & of the MC induced by o

if £ is a zero-EC then apply the procedure
recursively to the MDP M.

Otherwise ...

334 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET?*(MP) and an optimal MD-scheduler o

2.
3.
4,

if EX?*(MP) < 0 then return “no”
pick a BSCC & of the MC induced by o

if £ is a zero-EC then apply the procedure
recursively to the MDP M.

Otherwise return “yes, M is weight-divergent” .

335/401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET#(MP) and an optimal MD-scheduler o

2. if EY¥(MP) < 0 then return "no”

If M is not weight-divergent then the algorithm has
generated an MDP N with ERP4(d G) = EFPX(G)

336 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent
1. compute ET#(MP) and an optimal MD-scheduler o

2. if EY¥(MP) < 0 then return "no”

If M is not weight-divergent then the algorithm has
generated an MDP N with ERP4(d G) = EFPX(G)
and Ef, ;(“total weight") = —oo for each improper

scheduler o.

337 /401

Checking weight-divergence

given: strongly connected MDP M with ET*(MP) < 0
task: check if M is weight-divergent

1. compute ET#(MP) and an optimal MD-scheduler o

2. if EY¥(MP) < 0 then return "no”

If M is not weight-divergent then the algorithm has
generated an MDP N with ERP4(d G) = EFPX(G)
and Ef, ;(“total weight") = —oo for each improper

scheduler o.

.. Eff%(® G) computable via Bellman equations ...

338 /401

Maximal expected accumulated weight
given: MDP M = (S, Act,P,wgt) and G C S
st. Pri®(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ(“total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS /TSITSIKLIS'91]

e Xs < +oo forallse S
« (Xs)ses is computable via the Bellman equations

339/401

Maximal expected accumulated weight
given: MDP M = (S, Act,P,wgt) and G C S
st. Pri®(0G)=1forallse S
task: compute x; = EM™*($ G) fors€ S

If EZ(“total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS /TSITSIKLIS'91]
e Xs < +oo forallse S
« (Xs)ses is computable via the Bellman equations

Recursive application of the spider construction ...

. to check that there is no weight-divergent MEC

340/ 401

Maximal expected accumulated weight

given: MDP M = (S, Act,P,wgt) and G C S
st. Pri®(0G)=1forallse S

task: compute x; = EM™*($ G) fors€ S

If EZ(“total weight”) = —oo for each improper
scheduler o then: [BERTSEKAS /TSITSIKLIS'91]

e Xs < +oo forallse S
« (Xs)ses is computable via the Bellman equations

Recursive application of the spider construction ...
. to check that there is no weight-divergent MEC

. to generate a new MDP N where x; = Ef#5($ G)
and the above criterion applies

341 /401

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking

x fairness

+ conditional probabilities

x rewards, quantiles, mean-payoff

* expected accumulated weights

x conditional expected accumulated rewards

342 /401

Stochastic longest path problem

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

relaxed requirement: BERTSEKAS/ TSITSIKLIS’91
PrmaX(Ogoal) =1 DE ALFARO’99

maximal expectation

Em2X(¢ goal)

343 /401

Maximal conditional expectations

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

relaxed requirement:
Pr"*(¢goal) > 0

maximal conditional expectation

Em2X(& green | Qgoal)

maximum over all positive schedulers

344 /401

Maximal conditional expectations

weighted ®goal_ _
MDP M accumulated weight until
reaching a goal state

: _ assumption:
relaxed requirement: ¥
Ppmax / non-negative
(Ogoal) >0 weights

maximal conditional expectation

Em2X(& green | Qgoal)

maximum over all positive schedulers

345 /401

Why should we be interested in ..?

346 /401

Why should we be interested in ..?

« termination time of probabilistic programs

conditional expected number of steps until termination,
under the condition that the program terminates

« failure diagnosis and resilience analysis

e.g. cost of repair protocols for a certain failure scenario

« various forms of multi-objective reasoning

e.g., expected utility level, assuming a fixed energy budget

o conditional value-at-risk

expected loss in worst case scenarios, under the assumption
that these scenarios indeed occur

347 /401

Why is it more difficult ...?7

348 /401

Why is it more difficult ...?7

unconditional expected accumulated rewards

e optimal memoryless schedulers exists that maximize
the expected reward from every state

e computable via linear programs with one variable per state

349 /401

Why is it more difficult ...?7

unconditional expected accumulated rewards

e optimal memoryless schedulers exists that maximize
the expected reward from every state

e computable via linear programs with one variable per state

conditional expected accumulated rewards

e optimal schedulers require memory

o local reasoning not sufficient

350 /401

Why is it more difficult ...?7

unconditional expected accumulated rewards

e optimal memoryless schedulers exists that maximize
the expected reward from every state

e computable via linear programs with one variable per state

conditional expected accumulated rewards

e optimal schedulers require memory

o local reasoning not sufficient

... let's have a look at an example ...

351 /401

Maximal conditional expected reward

maximal conditional expected reward:

Em2X(@ goal | Ogoal) = 177

352 /401

Maximal conditional expected reward

1
2

“choose always « in state s":

MIHQ
+|+

353 /401

Maximal conditional expected reward

1 1
: 5r + 30
“choose always a in state 8" : -2 1 % = 5
2t 2
1
: 5r + 0
“choose always f3 in state s, -2 1 = r
5+ 0

354 /401

Maximal conditional expected reward

“choose B exacly for the first n visits of s,"

b+
1+

NI | N

355 /401

Maximal conditional expected reward

“choose B exacly for the first n visits of s,"

1 11

2t mh L on—r
I 11 2"+ 1
2 2 2n

356 / 401

Maximal conditional expected reward

rew(s;,y) = r

rew(sy,8) =1

rew(si,a) =0

“choose B exacly for the first n visits of s,"

b+
1+

1
nhn n—r :
% = r+m > r iff n>r

357 /401

Maximal conditional expected reward

rew(s;,y) = r

rew(sy,8) =1

rew(si,a) =0

1 11

_.r_l__._.n

2 2 2n _ n—r
1 11 r+m > r iff n>r
2 T 3%

optimal value is achieved for n = r+2

358 /401

Maximal conditional expected reward

maximal conditional reward until goal:

« memory required for optimal schedulers
optimal scheduler needs counter for the number of visits in s,

« local reasoning not sufficient
. as optimal decisions in s, depend on r

359 /401

Maximal conditional expected reward

rew(s;,y) = r

rew(sy,8) =1

rew(si,a) =0

maximal conditional reward until goal

. is finite for state sy, namely r + 2,%2“

360 /401

Maximal conditional expected reward

maximal conditional reward until goal
. is finite for state sy, namely r + 2,%2“

... but infinite for s, n
sup 23— = oo
neN 55

361/ 401

Problem statement

given: MDP M = (S, Act,P,rew,s) and F, GC S
such that Prg(OF | 0G) =1

task:

362 /401

Problem statement
given: MDP M = (S, Act,P,rew,s) and F, GC S
such that Prg(OF | 0G) =1
task: compute ER*(S F | 0G)

I

maximal conditional accumulated reward to reach F

under all schedulers o where Prg (¢0G) > 0
and Prg (OF | 0G) = 1

363 /401

Problem statement

given: MDP M = (S, Act,P,rew,s) and F, GC S
such that Prg(OF | 0G) =1

task: compute ER*(S F | 0G)

after some preprocessing and cleaning-up:
1. all states are reachable from sy
2. F = G ={goal} for a trap state goal

3. there is another trap state fail with
PrM™(O(goal v fail)) = 1 for all states s

364 /401

Shortform notation used in the sequel

Given a scheduler o with Prg (¢goal) > 0, let:
CE’ = Eg(®goal | Ogoal')
Maximal conditional expectation:

CE™™ = sup CE’

365 /401

Shortform notation used in the sequel

Given a scheduler o with Prg (¢goal) > 0, let:
CE’ = Eg(®goal | Ogoal')
Maximal conditional expectation:

CE™™ = sup CE’

I

supremum over all
deterministic reward-based schedulers
c:SxXN—= Act

366 /401

Checking finiteness

Given a scheduler o with Prg (¢goal) > 0, let:
CE’ = Eg(®goal | Ogoal')
Maximal conditional expectation:

CE™™ = sup CE’
o
Checking finiteness in polynomial time:

there is no scheduler o s.t.
CE™ < oo iff { Prg (Ogoal) = 0 and there is a
reachable positive o-cycle

367 /401

If CE™ < oo then ...

368 /401

If CE™ < oo then ...

o pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

369 /401

If CE™ < oo then ...

pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

threshold problem “is CE™ > 97" is PSPACE-hard,
and PSPACE-complete for acyclic MDPs

.. same for upper bounds by duality ...

370/ 401

If CE™ < oo then ...

o pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

o threshold problem “is CE™ > 97" is PSPACE-hard,
and PSPACE-complete for acyclic MDPs

« there exists a saturation point g such that optimal
schedulers behave memoryless from reward g on

.. and maximize the probability to reach the goal state

371/401

If CE™ < oo then ...

o pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

o threshold problem “is CE™ > 97" is PSPACE-hard,
and PSPACE-complete for acyclic MDPs

o there exists a saturation point p such that optimal
schedulers behave memoryless from reward g on

o pseudo-polynomial threshold algorithm

372 /401

If CE™ < oo then ...

o pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

o threshold problem “is CE™ > 97" is PSPACE-hard,
and PSPACE-complete for acyclic MDPs

o there exists a saturation point p such that optimal
schedulers behave memoryless from reward g on

e pseudo-polynomial threshold algorithm: generates a
scheduler o s.t. CE? >19 or CE™ =CE’ =9
(if existent)

373 /401

If CE™ < oo then ...

o pseudo-polynomial algorithm to compute an upper
bound CE™ for CE™>

o threshold problem “is CE™ > 97" is PSPACE-hard,
and PSPACE-complete for acyclic MDPs

o there exists a saturation point p such that optimal
schedulers behave memoryless from reward g on

e pseudo-polynomial threshold algorithm: generates a
scheduler o s.t. CE? >19 or CE™ =CE’ =9

« exponential-time algorithm to compute CE™

interleaves scheduler-improvement steps with threshold algorithm

374 /401

Computing an upper bound

375 /401

Computing an upper bound

unconditional total expected reward in a new MDP

376 /401

Computing an upper bound

unconditional total expected reward in a new MDP N
that simulates M under the condition {$goal

377 /401

Computing an upper bound

unconditional total expected reward in a new MDP N
that simulates M under the condition {$goal
first mode:
« augments states with the reward accumulated so far
up to R™* =" max rew(s, a’)
s (e

+ reward O for all state-actions in the first mode
+ mode switch from (s, r) via action a with reward r’
if ' = r+ rew(s,a) > R™

second mode: simulation of M (without reward-annotations)

378 /401

Computing an upper bound

unconditional total expected reward in a new MDP N
that simulates M under the condition {$goal
first mode:
« augments states with the reward accumulated so far
up to R™* =" max rew(s, a’)
s (e
« reward O for all state-actions in the first mode
+ mode switch from (s, r) via action a with reward r’
if ' = r+ rew(s,a) > R™

second mode: simulation of M (without reward-annotations)

reset transitions:
from all fail states to N'’s initial state (sp,0)

379 /401

Sketch of the threshold algorithm

compute the saturation point g and optimal decisions
for state-reward pairs (s, r) with r > p

FORr=p—1,p—2,...,0D0

compute most feasible actions for the state-reward
pairs (s, r) using

« decisions for (s, ') with r' > r

« a linear program to treat zero-reward actions
0D

check if CE? B> 4} for the generated scheduler o

380 /401

Sketch of the threshold algorithm

compute the saturation point g and optimal decisions
for state-reward pairs (s, r) with r > p

FORr=p—1,p—2,...,0D0

compute most feasible actions for the state-reward
pairs (s, r) using

« decisions for (s, ') with r' > r

« a linear program to treat zero-reward actions
0D

check if CE? B> 9} for the generated scheduler o

381 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

CE° p+p(ry+0) CE™ = p-l-P(rz—i-C)

=x—l-py X + pz

p/x 0y

So \SQUZ

probability p
acc. reward r

382 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

383 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE° > CE" iff r+ 0-§ > max {C]E",C]E”}

does not depend
on p,x, p

384 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

threshold algorithm:

r+ 3:2 =19 iff 0—0-r)y = (—(9-r)z

385 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

threshold algorithm:

r+ 3:§ =19 iff 0—0-r)y = (—(9-r)z

.. use LP-techniques to maximize 8 — (9—r)y

386 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

saturation point: smallest value r such that

r+ 6—¢ > CE™* for all T
y—z

where o maximizes the probabilities for reaching the goal

387 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

saturation point: smallest value r such that

r+ 6=¢ > CE™ for all 7
y—z

388 /401

Let p,0,(,r R, p,x,y,z € [0,1] such that y > z
and x+py >0, x+ pz > 0.

Cge = P Py+0) g P+ p(rz+C)
X + py X + pz

CE’ > CE iff r+-2=5% > max {C]E",C]E”}

saturation point: smallest value r such that

r+ 6=¢ > CE™ for all 7
y—z

.. it suffices to consider “one-step variants” 7 of o

389 /401

Computing the maximal conditional expectation

using a scheduler-improvement approach with iterative
calls of the threshold algorithm

390/ 401

Computing the maximal conditional expectation

using a scheduler-improvement approach with iterative
calls of the threshold algorithm

let o be an arbitrary scheduler;
REPEAT

¥ := CE’;

o := outcome of the algorithm for threshold 1

UNTIL CE’ =9

computation of an
optimal scheduler

391 /401

Computing the maximal conditional expectation

using a scheduler-improvement approach with iterative
calls of the threshold algorithm

let o be ...
time complexity:
REPEAT double exponential
¥ := CE’;

o := outcome of the algorithm for threshold 1

UNTIL CE’ =9

392 /401

Computing the maximal conditional expectation

using a scheduler-improvement approach with iterative
calls of the threshold algorithm

let o be ...
time complexity:
REPEAT double exponential
¥ := CE’;

o := outcome of the algorithm for threshold 1

UNTIL CE’ =9

in the worst-case: | MD |? iterations where the
saturation point p can be exponential in size(M)

393 /401

Computing the maximal conditional expectation

exponential-time algorithm for computing CE™*

* freezes level-wise optimal decisions
* uses threshold algorithm for scheduler-improvement steps

* maintains an interval of feasible threshold candidates

394 /401

Computing the maximal conditional expectation

exponential-time algorithm for computing CE™*

* freezes level-wise optimal decisions
* uses threshold algorithm for scheduler-improvement steps

* maintains an interval of feasible threshold candidates

Ccpe = P Py+0) e P+ p(rz+()
X + py X + pz

CE° > CE if r+-2=5% > max {C]E“,C]E”}
y—z

If this holds for all 7 then o is optimal for level r.

395 /401

Computing the maximal conditional expectation

exponential-time algorithm for computing CE™*

* freezes level-wise optimal decisions
* uses threshold algorithm for scheduler-improvement steps

* maintains an interval of feasible threshold candidates

Ccpe = P Py+0) e P+ p(rz+()
X + py X + pz

CE’ > CE if r+-2=% > max {C]E“,C]E”}
y—z

use these values as threshold values

396 /401

Computing the maximal conditional expectation

exponential-time algorithm for computing CE™*

* freezes level-wise optimal decisions
* uses threshold algorithm for scheduler-improvement steps

* maintains an interval of feasible threshold candidates

Ccpe = P Py+0) e P+ p(rz+()
X + py X + pz

CE° > CE if r+-2=5% > max {C]E“,C]E”}
y—z

in total: O(p-|MD|) scheduler-improvement steps

397 /401

Summary

model checking for systems with discrete probabilities

e Markov chains:

+ linear equation systems (reachability probabilities)

+ analysis of BSCCs (long-run properties)

o Markov decision processes:

+ linear programs (max. reachability prob.)

+ analysis of end components (long-run properties)

398 /401

Active research area ...

« logics and algorithms for weighted Markovian models
« multi-objective reasoning for MDPs

« parametric model checking for Markovian models

« continuous-time and -space

« probabilistic real-time/hybrid systems

« stochastic games

« various techniques for state-explosion problem

« applications in system biology, security, ...

399 /401

Tool support

PRISM
STORM

Modest
PARAM
ProbDiVinE
iscasMC

various models and logics (Oxford, Birmingham)

symbolic, explicit and hybrid engines

PCTL, bisimulation (Aachen)

parametric models

MDPs (With C|OCkS) (Saarbriicken, Twente)
parametric models (Saarbriicken)
parallel LTL model checker (Bro)

lazy determinization (Beijing, Liverpool)

400 / 401

THANK YOU

