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Protocol Goals

Goals
What the protocol should achieve, e.g.,

• Authenticate messages, binding them to their originator

• Ensure timeliness of messages (recent, fresh, ...)

• Guarantee secrecy of certain items (e.g., generated keys)

Most common goals

• secrecy

• authentication (many different forms)

Other goals

• anonymity, non-repudiation (of receipt, submission, delivery),
fairness, availability, sender invariance, ...
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Protocol Properties and Correctness
What does it mean?

Properties

• Semantics of protocol P is a set of traces: ‖P‖ = traces(P).
(Traces may be finite or infinite, state- or event-based.)

• Security goal / property φ also denotes a set of traces ‖φ‖.

Correctness has an exact meaning

• Protocol P satisfies property φ, written
P |= φ, iff

‖P‖ ⊆ ‖φ‖
• Attack traces are those in

‖P‖ − ‖φ‖

• Every correctness statement is true or false.
Later: how to determine which holds

Attacks.

Ok, no attacks.

Ok. φP

P

φ
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Specifying poperties in Tamarin

Property specification language: a fragment of a many-sorted
first-order logic with a sort for timepoints (prefixed with #), where
quantification is over both messages and timepoints:

• All for universal quantification (temporal variables are
prefixed with #)

• Ex for existential quantification (temporal variables are
prefixed with #)

• ==> for implication, not for negation

• | for disjunction (“or”), & for conjunction (“and”)

• f @ i for action constraints (the sort prefix for the temporal
variable ’i’ is optional)

• i < j for temporal ordering (the sort prefix for the temporal
variables ’i’ and ’j’ is optional)

• #i = #j for an equality between temporal variables ’i’ and ’j’

• x = y for an equality between message variables ’x’ and ’y’
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Example

Example

The property that the fresh value ∼n is distinct in all applications
of a fictitious rule:

lemma distinct_nonces:

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

or equivalently

lemma distinct_nonces:

all-traces

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

These lemmas require that the property holds for all traces, we can
also express that there exists a trace for which the property holds:

lemma distinct_nonces:

exists-trace

"not All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"
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Guardedness

• All action fact symbols may be used in formulas.

• All variables must be guarded.

Guardedness
For universally quantified variables:

• all variables must occur in an action constraint right after the
quantifier and

• the outermost logical operator inside the quantifier must be
an implication

For existentially quantified variables:

• all variables must occur in an action constraint right after the
quantifier and

• the outermost logical operator inside the quantifier must be a
conjunction
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Formalizing Security Properties
Two approaches

Direct formulation
• Formulate property φ directly in terms of actions occurring in

protocol traces, i.e., as a set of (or predicate on) traces.

• Drawback: standard properties like secrecy and authentication
become highly protocol-dependent, since they need to refer to
the concrete protocol messages.

Protocol instrumentation
• Idea: insert special claim events into the protocol roles:

Claim claimtype(R, t),

where R is the executing role, claimtype indicates the type
of claim, and t is a message term.

• Interface for expressing properties independently of protocol.

• Example: Claim secret(A,NA) claims that NA is a secret for
role A, i.e., not known to the intruder.
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Claim Events

Claim events are part of the protocol rules as actions.

Properties of claim events

• Their only effect is to record facts (claims) in protocol trace.

• Intruder cannot have observed, modified, or generated them.

Expressing properties using claim events

• Properties of traces tr expressed in terms of claim events and
other actions (e.g., adversary knowledge K) occuring in tr .

• Properties are formulated from the point of view of a given
role, thus yielding security guarantees for that role.

• We concentrate on secrecy and variants of authentication,
although the approach is not limited to these properties.
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Role Instrumentation for Secrecy

Definition (Secrecy, informally)

The intruder cannot discover data (e.g., key,
nonce, etc.) that is intended to be secret.

Role instrumentation

• Insert the claim event Claim secret(A,M)
into role A to claim that the message M
used in the run remains secret.

• Position: at the end of the role.

• For instance, in NSPK, the nonces na and
nb should remain secret.

Note: In graphs, where the executing role is clear

from context, we abbreviate Claim claimtype(A, t)

to claimtype(t) inside a hexagon.

A

M1

M2

Mn

msc Secrecy claim
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Formalization of Secrecy

Definition (Secrecy, first attempt)

The secrecy property consists of all traces tr satisfying

∀A,M, i . Claim secret(A,M)@i ⇒ ¬(∃j .K(M)@j)

• Let tr = tr1; tr2; . . . ; trk and x@k is shorthand for x ∈ trk .

• Can only require M to remain secret if A runs the protocol
with another honest agent, i.e.,

• Trivially broken if A or B is instantiated with a compromised
agent, since then the adversary rightfully knows M.

• This definition is fine for a passive adversary, who observes
network traffic, but does not participate in the protocol.
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Compromised Agent

Definition (Compromised Agent)

A compromised agent is under adversary control. It shares all its
information with the adversary and can participate in protocols.
We model this by having the agent give its initial secret information
to the adversary, which can then mimic the agent’s actions.

We note the fact that an agent is compromised by a Rev event in
the trace, attached to the rule that reveals its initial secrets to the
adversary (compare to the creation rule):

[!Ltk(A, skA)]
Rev(A)−−−−→ [Out(skA)]

Exercise: convince yourself that, given the agent’s secret, the
adversary can perform all of the agent’s send and receive steps.
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Formalization of Secrecy

Definition (Honesty)

An agent A is honest in a trace tr when Rev(A) /∈ tr .
When making a claim in a rule action, all parties B that are
expected to be honest must be listed with a Honest(B) action in
that rule.

Definition (Secrecy)

The secrecy property consists of all traces tr satisfying

∀A M i . (Claim secret(A,M)@i)

⇒ (¬(∃j .K(M)@j) ∨ (∃B j .Rev(B)@j ∧ Honest(B)@i))
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Secrecy Example #1

A B

{|NA|}k(A,B)

secret(NA) secret(NA)

msc Secrecy for Symmetric Encryption

• This is fine: secrecy holds for both A and B.

• We omit the obvious annotations Honest(A),Honest(B) in
message sequence charts for 2-party protocols.
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Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA)

msc Secrecy for Asymmetric Encryption

• Secrecy holds for A: she knows that only B can decrypt
message.
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Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA) secret(NA)

msc Secrecy for Asymmetric Encryption

• Secrecy fails for B: he does not know who encrypted message!
N.B. Intruder can build and send message (without reveal).
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Authentication

Which authentication are you talking about?

• No unique definition of authentication, but a variety of
different forms.

• Considerable effort spent on specifying and classifying,
semi-formally or formally, different forms of authentication
(e.g., by Cervesato/Syverson, Clark/Jacob, Gollmann, Lowe,
Cremers et al.).

Examples

• ping authentication, aliveness, weak agreement, non-injective
agreement, injective agreement, weak and strong
authentication, synchronization, and matching histories.
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A Perfect (Picture of the) World

A B

{NA, A}pk(B)

{NA, NB}pk(A)

{NB}pk(B)

msc Needham-Schroeder protocol
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A More Realistic Picture
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Failed Authentication

21 / 59



Successful Authentication
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A Hierarchy of Authentication Specifications (1)
[Gavin Lowe, 1997]

Gavin Lowe has defined the following hierarchy of increasingly
stronger authentication properties1:

Aliveness A protocol guarantees to an agent a in role A
aliveness of another agent b if, whenever a completes
a run of the protocol, apparently with b in role B,
then b has previously been running the protocol.

Weak agreement A protocol guarantees to an agent a in role A
weak agreement with another agent b if, whenever
agent a completes a run of the protocol, apparently
with b in role B, then b has previously been running
the protocol, apparently with a.

1Terminology and notation slightly adapted to our setting. Note that if
either a or b is not honest, then the properties are said to trivially hold.
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A Hierarchy of Authentication Specifications (2)
[Gavin Lowe, 1997]

Non-injective agreement A protocol guarantees to an agent a in
role A non-injective agreement with an agent b in
role B on a message M if, whenever a completes a
run of the protocol, apparently with b in role B, then
b has previously been running the protocol,
apparently with a, and b was acting in role B in his
run, and the two principals agreed on the message M.

Injective agreement is non-injective agreement where additionally
each run of agent a in role A corresponds to a unique
run of agent b.

BA

Variants may include recentness: insist that B’s run was, e.g.,
within t time units.

How can we formalize these nontrivial properties?
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Role Instrumentation for Authentication

We use two claims to express that role A authenticates role B on t:

In role A:

• Insert a commit claim event
Claim commit(A,B, t),Honest(A),
Honest(B).

• Position: after A can
construct t. Typically, at
end of A’s role.

In role B:

• Insert a running claim event
Claim running(B,A, u).

• Term u is B’s view of t.

• Position: after B can
construct u and preceding
Claim commit(A,B, t).

A B

running(A, u)

Mi

commit(B, t)

msc Authentication claim
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Formalizing Authentication

Definition (Non-injective agreement)

The property AgreementNI (A,B, t) consists of all traces satisfying

∀a b t i . Claim commit(a, b, 〈A,B, t〉)@i
⇒ (∃j .Claim running(b, a, 〈A,B, t〉)@j)
∨(∃X r .Rev(X )@r ∧ Honest(X )@i)

• Whenever a commit claim is made with honest agents a and
b, then the peer b must be running with the same parameter
t, or the adversary has compromised at least one of the two
agents.

Exercise Does ordering of i and j matter.
(Hint: set of traces is prefix closed.)
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Example: NSL Protocol (1/2)

A B

{NA, A}pk(B)

running(A,NA, NB)

{NA, NB , B}pk(A)

commit(B,NA, NB)

{NB}pk(B)

msc NSL, instrumented for A to agree with B on NA, NB

27 / 59



Example: NSL Protocol (2/2)

A B

{NA, A}pk(B)

{NA, NB}pk(A)

running(B,NA, NB)

{NB}pk(B)

commit(A,NA, NB)

msc NSL, instrumented for B to agree with A on NA, NB
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Role Instrumentation for Authentication (cont.)

A B C

running(A, u)

Mj

Mi

commit(C, t)

msc Multi-hop authentication claim

Event causality in multi-hop authentication claims: The running
event must causally precede the commit event and the messages t
and u must be known at the position of the claim event in the
respective role.
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Example: Yahalom Protocol (1/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B, KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

msc Yahalom protocol
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Example: Yahalom Protocol (2/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

running(B,NA, NB , KAB)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(A, NA, NB , KAB)

msc Yahalom protocol (instrumented for responder authenticating initiator on NA, NB , KAB)
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Example: Yahalom Protocol (3/3)

Initiator

A

Responder

B

Server

S

A, NA

running(A, NA, NB)

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(B,NA, NB)

msc Yahalom protocol (instrumented for initiator authenticating responder on NA, NB)

Note: agreement for A on KAB is not possible, since B gets KAB

after A.
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Formalizing Authentication

Definition (Injective agreement)

The property Agreement(A,B, t) consists of all traces satisfying:

∀a b t i . Claim commit(a, b, 〈A,B, t〉)@i
⇒ (∃j .Claim running(b, a, 〈A,B, t〉)@j ∧ j < i

∧¬(∃a2b2i2.Claim commit(a2, b2, 〈A,B, t〉)@i2
∧¬(i2 = i)))
∨(∃X r .Rev(X )@r ∧ Honest(X )@i)

Remarks

• For each commit by a in role A on the trace there is a unique
matching b executing role B.
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Failed Injective Authentication
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Successful Injective Authentication
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Injective vs Non-injective Agreement
They are not equivalent

Initiator

A

Responder

B

running(B, {A, B}sk(A))

{A, B}sk(A)

commit(A, {A, B}sk(A))

msc Injective vs non-injective agreement

• Non-injective agreement holds.
• Injective agreement fails, since the adversary can replay

message to several threads in responder role B.
36 / 59



Injective Agreement counter-example



Formalizing Authentication
Weaker Variants

Definition (Weak agreement)

A trace tr satisfies the property WeakAgreement(A,B) iff

∀a b i . Claim commit(a, b, 〈〉)@i
⇒ (∃j .Claim running(b, a, 〈〉)@j)
∨(∃X r .Rev(X )@r ∧ Honest(X )@i)

It is sufficient that the agents agree they are communicating, it is
not required that they play the right roles. Note also the empty list
of data 〈〉 that is agreed upon, i.e., none.
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Formalizing Authentication
Weaker Variants

Definition (Aliveness)

A trace tr satisfies the property Alive(A,B) iff

∀a b i . Claim commit(a, b, 〈〉)@i
⇒ (∃j id .Create B(b, id)@j ∨ Create A(b, id)@j)
∨(∃X r .Rev(X )@r ∧ Honest(X )@i)

It is neither required that the agent b, believed to instantiate role
B by agent a, really plays role B, nor that he believes to be talking
to a.

39 / 59



Aliveness vs Weak Agreement
They are not equivalent

Initiator

A

Responder

B

A, {NA}pk(B)

running(A)

NA

commit(B)

msc Aliveness vs weak agreement

• Aliveness holds: only B can decrypt the fresh nonce NA.
• Weak agreement fails, since adversary may modify

unprotected identity A to C in first message so that B thinks
he is talking to C .
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Weak Agreement counter-example



When Even Aliveness Fails ...

Initiator

A

Responder

B

{|NA|}k(A,B)

running(A)

{|NB |}k(A,B), NA

commit(B)

NB

msc Mutual authentication protocol

• Reflection attack: A may complete run without B’s
participation.

• Hence, aliveness fails.
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Attack found by Tamarin
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Key-related Properties

Basic key-oriented goals

• key freshness

• (implicit) key authentication: a key is only known to the
communicating agents A and B and mutually trusted parties

• key confirmation of A to B is provided if B has assurance that
agent A has possession of key K

• explicit key authentication = key authentication + key
confirmation ⇒ expressible in terms of secrecy and agreement

Goals concerning compromised keys

• (perfect) forward secrecy: compromise of long-term keys of a
set of principals does not compromise the session keys
established in previous protocol runs involving those principals

• resistance to key-compromise impersonation: compromise of
long-term key of an agent A does not allow the adversary to
masquerade to A as a different principal.
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Forward Secrecy: Example 1

A B

exp(g,X)

exp(g, Y ), {exp(g, Y ), exp(g,X), A}sk(B)

{exp(g,X), exp(g, Y ), B}sk(A)

msc Modified Station-to-Station Protocol

• Signatures are used to authenticate the Diffie-Hellman public
keys exp(g ,X ) and exp(g ,Y ).

• Protocol provides forward secrecy: The adversary cannot
derive session key KAB = exp(exp(g ,X ),Y ) by compromise of
signing keys.
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Forward Secrecy: Example 2

knows A,B,U, gU , gV

A

knows A,B, V, gV , gU

B

generate X generate Y

exp(g,X)

exp(g, Y )

KAB = (gY )U · (gV )X KAB = (gX)V · (gU )Y

msc Matsumoto-Takashima-Imai (MTI) A(0) Protocol

• Message exchange as in basic DH; protocol combines
long-term and ephemeral DH keys to authenticate exchanged
DH public keys.

• Protocol does not provide forward secrecy: The adversary can
construct the session key KAB = gVX+UY as (gX )V · (gY )U

from observed messages and long-term private keys U and V .
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Forward Secrecy: Example 3

A B

(pk(KT ), sk(KT ))

A,NA, {pk(KT ), B}sk(A)

KAB

{KAB}pk(KT ), {h(KAB), A,NA}sk(B)

msc Key transport protocol providing forward secrecy

• A generates an ephemeral asymmetric key pair
(pk(KT ), sk(KT )).

• Protocol provides forward secrecy without using
Diffie-Hellman keys: Adversary cannot learn session key by
compromise of signing keys.
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A B
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Automated Verification and Decidability

We would like to have a program V with . . .

• Input:
• some description of a program P
• some description of a functional specification S

• Output: Yes if P satisfies S , and No otherwise.

• Optional extra: in the No case, give a counter-example, i.e.
an input on which P violates the specification.

Forget it:

Theorem (Rice)

Let S be any non-empty, proper subset of the computable
functions. Then the verification problem for S (the set of programs
P that compute a function in S) is undecidable.
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The Sources of Infinity

For security protocols, the state space can be infinite for (at least)
the following reasons:

Messages The intruder can compose arbitrarily complex
messages from his knowledge, e.g.,
i , h(i), h(h(i)), . . ..

Sessions Any number of sessions (or threads) may be
executed.

Nonces Unbounded number of fresh nonces generated.
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(Un)decidability: Complete picture

Sessions
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Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

Unbounded

Messages

Messages

Sessions

Nonces

Bounded

Unbounded

Bottom line: need at least two bounded parameters for decidability.
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Tamarin overview

• Use multiset rewriting to represent protocol

• Adversary message deduction rules given as multiset rewriting
rules

• Properties specified in first-order logic
• Allows quantification over messages and timepoints

• Verification algorithm is proven sound and complete

• Backwards reachability analysis – searching for insecure states
• Negate security property, search for solutions

• Constraint solving
• Uses dependency graphs
• Normal dependency graphs for state-space reduction –

efficiency despite undecidability
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Dependency graph example
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Tamarin’s constraint solving algorithm
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Some constraint solving rules
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Some more constraint solving rules
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Tamarin workflow
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