
Bounded Model Checking of Software for Real-World Applications
Parts 1-3

UniGR Summer School on Verification Technology, Systems & Applications
VTSA 2018
Nancy, France

Carsten Sinz
Institute for Theoretical Informatics (ITI)

Karlsruhe Institute of Technology (KIT)

29.08.2018

�1

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

The Bounded Model Checker LLBMC
• LLBMC

• Bounded model checker for C programs

• Developed at KIT

• Successful in SV-COMP competitions

• Functionality
• Integer overflow, division by zero, invalid bit shift

• Illegal memory access (array index out of bound, illegal pointer access, etc.)

• Invalid free, double free

• User-customizable checks (via __llbmc_assume / __llbmc_assert)

• Employed techniques
• Loop unrolling, function inlining; LLVM as intermediate language

• SMT solvers, various optimizations (e.g. for handling array-lambda-expressions)

�2

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Overview
Wednesday, August 29:

Part 1: Introduction to LLVM

Part 2: Run-time errors in C (and C++)

Part 3: Decision procedures for program arithmetic

Working in groups on exercises

�3

Part 1:
Introduction to LLVM

�4

Slides adapted from Jonathan Burket, CMU

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

The LLVM Compiler Framework

• LLVM is a toolbox for constructing compilers and programming tools

• LLVM IR is a virtual instruction set, similar to an assembler language

• Source code and object code independent (mostly)

• Always in Static Single Assignment (SSA) form (facilitates analysis)

• Used in many software analysis tools nowadays

�5

Front End
(clang)

Optimizer
(opt) Back End

C
C++
Fortran

x86
x64
ARM

Source Code Object CodeIntermediate Representation
(LLVM IR)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM: From Source to Binary

�6

C Source Code

Clang AST

LLVM IR

Selection DAG

Machine Inst. DAG

Assembly

Front End
(clang)

Optimizer (opt)

Static Compiler
Back End

(llc)

more
language

specific

more
architecture

specific

sweet
spot

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM IR

• Bitcode files and LLVM IR text files are lossless serialization formats

�7

4243C0DE 06103239
0A324424 18000000
E6C6211D 210C0000
9201840C 480A9021
98000000 E6A11CDA

define i32 @main() #0 {
entry:
 %retval = alloca i32, align 4
 %a = alloca i32, align 4
 …

Bitcode (.bc files) Text format (.ll files)

In-memory data structure

llvm-as

llvm-dis

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Structure of a Bitcode File (Module)

�8

Carnegie Mellon

Module

Function Function Function...

Function

Basic
Block

Basic
Block

Basic
Block

...

Basic Block

Instruction ...Instruction Instruction

Navigating the LLVM IR:
Iterators

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Bitcode Example

�9

; ModuleID = 'next_power_of_two-opt.bc'
source_filename = "next_power_of_two.c"
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.13.0"

; Function Attrs: noinline nounwind ssp uwtable
define i32 @next_power_of_two(i32 %x) #0 {
bb:
 %x1 = add nsw i32 %x, -1
 br label %bb2

bb2: ; preds = %bb8, %bb
 %i = phi i32 [1, %bb], [%i2, %bb8]
 %x2 = phi i32 [%x1, %bb], [%x3, %bb8]
 %i1 = zext i32 %i to i64
 %cmp = icmp ult i64 %i1, 32
 br i1 %cmp, label %bb5, label %bb10

bb5: ; preds = %bb2
 %sh = ashr i32 %x2, %i
 %x3 = or i32 %x2, %sh
 br label %bb8

bb8: ; preds = %bb5
 %i2 = mul i32 %i, 2
 br label %bb2

bb10: ; preds = %bb2
 %res = add nsw i32 %x2, 1
 ret i32 %res
}

int next_power_of_two(int x)
{
 unsigned int i;
 x--;
 for(i=1; i < sizeof(int)*8; i *= 2)
 x = x | (x >> i);
 return x+1;
}

CFG for 'next_power_of_two' function

bb

bb2
T F

bb5 bb10

bb8

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM Data Structures
• LLVM provides many optimized data structures:

• BitVector, DenseMap, DenseSet, ImmutableList,
ImmutableMap, ImmutableSet, IntervalMap, IndexedMap,
MapVector, PriorityQueue, SetVector, ScopedHashTable,
SmallBitVector, SmallPtrSet, SmallSet, SmallString,
SmallVector, SparseBitVector, SparseSet, StringMap,
StringRef, StringSet, Triple, TinyPtrVector,
PackedVector, FoldingSet, UniqueVector, ValueMap

• STL works well in combination with LLVM data structures

�10

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM Instructions and Values

�11

int main()  
{  
 int x;  
 int y = 2;  
 int z = 3;  
 x = y + z;  
 y = x + z;  
 z = x+y;  
}

; Function Attrs: nounwind  
define i32 @main() #0 {  
entry:  
 %add = add nsw i32 2, 3  
 %add1 = add nsw i32 %add, 3  
 %add2 = add nsw i32 %add, %add1  
 ret i32 0  
}

clang + mem2reg

Instruction I: %add1 = add nsw i32 %add, 3

Operand 1
Operand 2

Operand
(and result) 

type
You can’t “get” %add1 from Instruction I.

Instruction is identified with the value %add1.

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM Instructions and Values

�12

int main()  
{  
 int x;  
 int y = 2;  
 int z = 3;  
 x = y + z;  
 y = x + z;  
 z = x+y;  
}

; Function Attrs: nounwind  
define i32 @main() #0 {  
entry:  
 %add = add nsw i32 2, 3  
 %add1 = add nsw i32 %add, 3  
 %add2 = add nsw i32 %add, %add1  
 ret i32 0  
}

clang + mem2reg

Instruction I: %add1 = add nsw i32 %add, 3

outs() << *I.getOperand(0); “%add = add new i32 2, 3”
outs() << *I.getOperand(0)->getOperand(0); “2”

This only makes sense for SSA form!

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Casting and Type Introspection
Given a Value *v, what kind of Value is it?

• isa<Argument>(v)

• Is v an instance of the Argument class?

• Argument *v = cast<Argument>(v)

• I know v is an Argument, perform the cast. 
Causes assertion failure if you are wrong.

• Argument *v =  
 dyn_cast<Argument>(v)

• Cast v to an Argument if it is an argument, 
otherwise return nullptr. Combines 
both isa and cast in one command.

• dyn_cast is not to be confused 
with the C++ dynamic_cast  
operator!

�13

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Casting and Type Introspection

�14

void analyzeInstruction(Instruction * I)  
{  
 if (CallInst *CI = dyn_cast<CallInst>(I)) {  
 outs() << “I’m a Call Instruction!\n”;  
 }  
 if (UnaryInstruction *UI = dyn_cast<UnaryInstruction>(I)) {  
 outs() << “I’m a Unary Instruction!\n”;  
 }  
 if (CastInstruction *CI = dyn_cast<CastInstruction>(I)) {  
 outs() << “I’m a Cast Instruction!\n”;

 }  
 ...  
}

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Navigating the LLVM IR: Iterators
• Module::iterator

• Modules are “program units”

• Iterates through the functions of a module

• Function::iterator

• Iterates through a function’s basic blocks

• BasicBlock::iterator

• Iterates through the instructions in a basic block

• Value::use_iterator

• Iterates through uses of a value 
(recall that instructions are treated as values)

• User::op_iterator

• Iterates over the operands of an instruction (the “user” is the instruction)

• Prefer to use convenient accessors defined in many instruction classes

�15

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Navigating the LLVM IR: Iterators
• Iterate through every instruction in a function:

for (Function::iterator FI = func->begin(), FE = func->end();  
 FI != FE;  
 ++FI) {  
 for (BasicBlock::iterator BBI = FI->begin(), BBE = FI->end();  
 BBI != BBE;  
 ++BBI) {  
 outs() << “Instruction: “ << *BBI << “\n”;  
 }  
}

• Using InstIterator (Provided by “llvm/IR/InstIterator.h“):
for (inst_iterator I = inst_begin(F), E = inst_end(F);  
 I != E;  
 ++I) {  
 outs() << *I << "\n";  
}

�16

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Navigating the LLVM IR: Iterators
• Iterate through a basic block’s predecessors:

#include "llvm/Support/CFG.h"  
 
BasicBlock *BB = ...;  
 
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);  
 PI != E;  
 ++PI) {  
 BasicBlock *Pred = *PI;  
 // ...  
}

�17

Many further useful iterators are defined outside of 
Function, BasicBlock, etc.

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Navigating the LLVM IR: Casting and Iterators
for (Function::iterator FI = func->begin(), FE = func->end();  
 FI != FE;  
 ++FI) {  
 for (BasicBlock::iterator BBI = FI->begin(), BBE = FI->end();  
 BBI != BBE;  
 ++BBI) {  
 Instruction *I = BBI;  
 if (CallInst *CI = dyn_cast<CallInst>(I)) {  
 outs() << “I’m a Call Instruction!\n”;  
 }  
 if (UnaryInstruction *UI = dyn_cast<UnaryInstruction>(I)) {  
 outs() << “I’m a Unary Instruction!\n”;  
 }  
 if (CastInstruction * CI = dyn_cast<CastInstruction>(I)) {  
 outs() << “I’m a Cast Instruction!\n”;  
 }  
 ...  
 }  
}

�18

Very common code pattern

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Navigating the LLVM IR: Visitor Pattern
struct MyVisitor : public InstVisitor<MyVisitor> {  
 void visitCallInst(CallInst &CI) {  
 outs() << “I’m a Call Instruction!\n”;  
 }  
 void visitUnaryInstruction(UnaryInstruction &UI) {  
 outs() << “I’m a Unary Instruction!\n”;  
 }  
 void visitCastInst(CastInst &CI) {  
 outs() << “I’m a Cast Instruction!\n”;  
 }  
 void visitMul(BinaryOperator &I) {  
 outs() << “I’m a multiplication Instruction!\n”;  
 }  
}  
 
MyVisitor MV;  
MV.visit(F);

�19

No need for iterators 
or casting

A given instruction only triggers one
method: a CastInst will not call
visitUnaryInstruction if
visitCastInst is defined.

You can opt out on
operators too, (even if
there isn’t a specific

class for them)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM Pass Manager
• Compiler is organized as a series of “passes”:

• Each pass is one analysis or transformation

• Seven types of passes:

• ImmutablePass: doesn’t do much

• LoopPass: process loops

• RegionPass: process single-entry, single-exit portions of code

• ModulePass: general inter-procedural pass

• CallGraphSCCPass: bottom-up on the call graph

• FunctionPass: process a function at a time

• BasicBlockPass: process a basic block at a time

• Constraints imposed (e.g. FunctionPass):
• FunctionPass can only look at “current function”

• Cannot maintain state across functions

�20

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Useful LLVM Passes: mem2reg

�21

define i32 @main() #0 {  
entry:  
 %retval = alloca i32, align 4  
 %a = alloca i32, align 4  
 %b = alloca i32, align 4  
 store i32 0, i32* %retval  
 store i32 5, i32* %a, align 4  
 store i32 3, i32* %b, align 4  
 %0 = load i32* %a, align 4  
 %1 = load i32* %b, align 4  
 %sub = sub nsw i32 %0, %1  
 ret i32 %sub  
}

define i32 @main() #0 {  
entry:  
 %sub = sub nsw i32 5, 3  
 ret i32 %sub  
}

mem2reg

Not always possible: Sometimes stack
operations are too complex

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

What mem2reg Cannot Handle

�22

int main(int argc, char *argv[])  
{  
 int vals[4] = {2,4,8,16};  
 int x = 0;  
 vals[1] = 3;  
 x += vals[0];  
 x += vals[1];  
 x += vals[2];  
 return x;  
}

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

What mem2reg Cannot Handle

�23

@main.vals = private unnamed_addr constant [4 x i32]  
 [i32 2, i32 4, i32 8, i32 16], align 4  
 
define i32 @main(i32 %argc, i8** %argv) #0 {  
entry:  
 %vals = alloca [4 x i32], align 4  
 %0 = bitcast [4 x i32]* %vals to i8*  
 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %0,  
 i8* bitcast ([4 x i32]* @main.vals to i8*), i32 16, i32 4, i1 false)  
 %arrayidx = getelementptr inbounds [4 x i32]* %vals, i32 0, i32 1  
 store i32 3, i32* %arrayidx, align 4  
 %arrayidx1 = getelementptr inbounds [4 x i32]* %vals, i32 0, i32 0  
 %1 = load i32* %arrayidx1, align 4  
 %add = add nsw i32 0, %1  
 %arrayidx2 = getelementptr inbounds [4 x i32]* %vals, i32 0, i32 1  
 %2 = load i32* %arrayidx2, align 4  
 %add3 = add nsw i32 %add, %2  
 %arrayidx4 = getelementptr inbounds [4 x i32]* %vals, i32 0, i32 2  
 %3 = load i32* %arrayidx4, align 4  
 %add5 = add nsw i32 %add3, %3  
 ret i32 %add5  
}

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Other Useful Passes
• Simplify CFG (-simplifycfg)

• Removes unnecessary basic blocks by merging unconditional branches if the
second block has only one predecessor

• Removes basic blocks with no predecessors

• Eliminates phi nodes for basic blocks with a single predecessor, removes
unreachable blocks

• Loop Information (-loops)

• Reveals the basic blocks in a loop; headers and pre-headers; exiting blocks; back

edges; “canonical induction variable”; loop count

• Scalar Evolution (-scalar-evolution)
• Tracks changes to variables through nested loops

• Alias Analyses
• If you know that different names refer to different locations, you have more freedom

to reorder code, etc. Also helps a lot in making code analysis more scalable

• Naming of values (-instnamer)

�24

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Useful LLVM Documentation
• LLVM Programmer’s Manual

http://llvm.org/docs/ProgrammersManual.html

• LLVM Language Reference Manual
http://llvm.org/docs/LangRef.html

• Writing an LLVM Pass
http://llvm.org/docs/WritingAnLLVMPass.html

• LLVM’s Analysis and Transform Passes
http://llvm.org/docs/Passes.html

• LLVM Internal Documentation
http://llvm.org/doxygen

�25

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Useful LLVM Command Lines
• Generating bitcode from a C program:

 > clang -c -g -emit-llvm prog.c

• Run optimizer passes mem2reg and instnamer on bitcode file:

 > opt -mem2reg -instnamer prog.bc -o prog-opt.bc

• Viewing a bitcode file (converting it to .ll format)

 > llvm-dis -o - prog.bc | less

• Viewing the AST of a C program:

 > clang -cc1 -ast-dump prog.c

• Viewing the CFG / call graph of a bitcode file:

 > opt -dot-cfg[-only] prog.bc > opt -dot-callgraph prog.bc

• Building a program based on LLVM:

 > clang++ -g myprog.cpp `llvm-config --cxxflags --ldflags --system-libs \  
 --libs core` -O3 -o myprog

�26

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM IR – Instruction Groups

�27

Instruction Group Members

Terminator instructions ret, br, switch, indirectbr, invoke, resume, catchswitch,
catchret, cleanupret, unreachable

Binary operations add, fadd, sub, fsub, mul, fmul, udiv, sdiv, fdiv, urem, srem,
frem

Bitwise binary operations shl, lshl, ashr, and, or, xor

Vector operations extractelement, insertelement, shufflevector

Aggregate operations extractvalue, insertvalue

Memory access and
addressing operations

alloca, load, store, fence, cmpxchg, atomicrmw, getelementptr

Conversion operations trunc, zext, sext, fptrunc, fpext, fptoui, fptosi, uitofp,
sitofp, ptrtoint, inttoptr, bitcast, addrspacecast

Other instructions icmp, fcmp, phi, select, call, va_arg, landingpad, catchpad,
cleanuppad

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

LLVM IR – Intrinsic Functions

�28

Group Intrinsics (llvm.*)

Variable argument handling va_start, va_end, va_copy

Garbage collection gcroot, gcread, gcwrite

Code generator

returnaddress, addressofreturnaddress, frameaddress,
localescape, localrecover, read_register, write_register,
stacksave, stackrestore, get.dynamic.area.offset, prefetch,
pcmarker, readycyclecounter, clear_cache, instrprof.increment,
instrprof.value.profile, llvm.thread.pointer

Standard C library
memcpy, memmove, memset, sqrt, powi, sin, cos, pow, exp, exp2,
log, log10, log2, fma, fabs, minnum, maxnum, copysign, floor,
ceil, trunc, rint, nearbyint, round

Bit manipulation bitreverse, bswap, ctpop, ctlz, cttz, fshl, fshr

Arithmetic with overflow sadd.with.overflow, uadd.with.overflow, ssub.with.overflow,
usub.with.overflow, smul.with.overflow, umul.with.overflow

Misc many more…

Part 2:
Run-Time Errors in C (and C++)

�29

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

What is an Error?
• C Standard distinguishes:

• Unspecified: "standard provides two or more possibilities and imposes no further
requirements on which is chosen in any instance"

• Implementation-defined: "semantics is defined by the implementation at hand"

• Undefined: "anything might happen" 
 
 
 
 
 
 
 
 
 
 
 

• May add: unexpected behavior

�30

Property Behavior

Arithmetic overflow (unsigned) Ok (wrap-around)

Arithmetic overflow (signed) Undefined

Type cast: U -> V with |V|<|U| Implementation-defined if V is signed,
otherwise ok

Shift (2nd arg. neg. or too large) Undefined

Shift (1st arg. negative) Implementation-defined if >>, undefined
if <<

 unsigned int x = 0;
 int y = -1;
 if (y > x) {
 printf("surprise!");
 }

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

C Standard (C99)

�31

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

C Standard: Integer Promotions

• …

�32

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

— An object or expression with an integer type whose integer conversion rank is less
than or equal to the rank of int and unsigned int.

— A bit-field of type _Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type, the value is converted to an int;
otherwise, it is converted to an unsigned int. These are called the integer
promotions.48) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a
‘‘plain’’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type
1 When any scalar value is converted to _Bool, the result is 0 if the value compares equal

to 0; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers
1 When a value with integer type is converted to another integer type other than _Bool, if

the value can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.49)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer
1 When a finite value of real floating type is converted to an integer type other than _Bool,

the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.50)

2 When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

49) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

50) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (−1, Utype_MAX+1).

§6.3.1.4 Language 43

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.3 Conversions
1 Several operators convert operand values from one type to another automatically. This

subclause specifies the result required from such an implicit conversion, as well as those
that result from a cast operation (an explicit conversion). The list in 6.3.1.8 summarizes
the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

2 Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands
6.3.1.1 Boolean, characters, and integers

1 Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they hav e the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank of long long int shall be greater than the rank of long int, which
shall be greater than the rank of int, which shall be greater than the rank of short
int, which shall be greater than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.

— The rank of _Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

2 The following may be used in an expression wherever an int or unsigned int may
be used:

42 Language §6.3.1.1

(…)

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

— An object or expression with an integer type whose integer conversion rank is less
than or equal to the rank of int and unsigned int.

— A bit-field of type _Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type, the value is converted to an int;
otherwise, it is converted to an unsigned int. These are called the integer
promotions.48) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a
‘‘plain’’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type
1 When any scalar value is converted to _Bool, the result is 0 if the value compares equal

to 0; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers
1 When a value with integer type is converted to another integer type other than _Bool, if

the value can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.49)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer
1 When a finite value of real floating type is converted to an integer type other than _Bool,

the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.50)

2 When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

49) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

50) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (−1, Utype_MAX+1).

§6.3.1.4 Language 43

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

C Standard: Usual Arithmetic Conversions

�33

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

Otherwise, if the corresponding real type of either operand is double, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is float.51)

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not
changed thereby.52)

51) For example, addition of a double _Complex and a float entails just the conversion of the
float operand to double (and yields a double _Complex result).

52) The cast and assignment operators are still required to perform their specified conversions as
described in 6.3.1.4 and 6.3.1.5.

§6.3.1.8 Language 45

(…)

char
unsigned

char

short unsigned
short

int
unsigned

int

long unsigned
long

long long
unsigned
long long

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Real floating types
1 When a float is promoted to double or long double, or a double is promoted

to long double, its value is unchanged (if the source value is represented in the
precision and range of its type).

2 When a double is demoted to float, a long double is demoted to double or
float, or a value being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly converted (including to its own type), if the value
being converted can be represented exactly in the new type, it is unchanged. If the value
being converted is in the range of values that can be represented but cannot be
represented exactly, the result is either the nearest higher or nearest lower representable
value, chosen in an implementation-defined manner. If the value being converted is
outside the range of values that can be represented, the behavior is undefined.

6.3.1.6 Complex types
1 When a value of complex type is converted to another complex type, both the real and

imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex
1 When a value of real type is converted to a complex type, the real part of the complex

result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

2 When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions
1 Many operators that expect operands of arithmetic type cause conversions and yield result

types in a similar way. The purpose is to determine a common real type for the operands
and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is called the usual arithmetic conversions:

First, if the corresponding real type of either operand is long double, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is long double.

44 Language §6.3.1.8

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Why Undefined Behavior?
• Allows the compiler to assume that some circumstances will never occur in a

"conforming program"

• Gives the compiler more information about code

• Can lead to more optimization opportunities

• Example:

�34

int foo(unsigned char x)
{
 int value = 2147483600;
 value += x;
 if (value < 2147483600) {
 bar();
 return value;
}

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

"Program Arithmetic"

�35

unsigned int  
square_check(unsigned int x)
{
 unsigned int y = x * x;
 if (y == 33) { error(); }
 return y;  
}

Is error()
reachable?

Has

a solution?

x2 ≡ 33 mod 232

Yes!
4 Solutions, e.g. 663169809

Part 3:
Decision Procedures for Program Arithmetic

�36

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Algebraic Properties

• ℤ: commutative ring with unity; integral domain (no zero divisors); Euclidian
domain (division with remainder)

• ℤ/2kℤ: also commutative ring with unity, but no integral domain (for k>1)

�37

Property ℤ signed int

(if defined) unsigned int

Closure yes yes yes

Associativity

a+(b+c) =
(a+b)+c

yes yes yes

Commutativity

a+b = b+a yes yes yes

Ex. of identity

a+0 = a

yes yes yes

Ex. of inverse

a+(-a) = 0 yes yes no

Addition
Property ℤ signed int

(if defined) unsigned int

Closure yes yes yes

Associativity

a*(b*c) =
(a*b)*c

yes yes yes

Commutativity

a*b = b*a

yes yes yes

Ex. of identity

a*1 = a

yes yes yes

Ex. of inverse

a*(a-1) = 1 only 1 and -1 only 1 and -1 all odd

numbers

Multiplication

Mathematical Integers vs. Signed vs. Unsigned

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Arithmetic in
• Definition:

• As usual, we identify with , where , thus

• Examples of arithmetic in :

• When has the equation a solution? Is it unique?

• Has the equation a solution in ? Is it unique?

• Basic facts:

• is solvable for the unknowns , iff the greatest

common divisor of divides .

• has a multiplicative inverse , iff .

• can be computed using the extended Euclidian algorithm or using

Euler’s theorem, . For , ,
and thus .

�38

ℤ/2kℤ

ℤ/nℤ = {ān |a ∈ ℤ} with ā = {…, a − n, a, a + n, …}
ā a 0 ≤ a < n

ℤ/2kℤ = {0,…,2k − 1}
ℤ/2kℤ

x2 = 33 ℤ/28ℤ
a ⋅ x = b

a

∑n
i=1 aixi ≡ b (mod m)

b
xi

{a1, …, an, m}

mod m gcd(a, m) = 1
a−1

a−1 ≡ aϕ(m)−1 (mod m) m = 2k ϕ(m) = ϕ(2k) = 2k−1

a−1 ≡ a2k−1−1 (mod 2k)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Solving Equations in
• Given: Polynomial

• Goal: Solutions of

• First, consider the linear case: , i.e. solving the equation

modulo .

• If is invertible, then is the (unique) solution. (This is the case, if

is odd.)

• Otherwise, has solutions, iff . The solution is not unique,

but a particular solution is given by .

• Theorem: The congruence ax ≡ b (mod m) is soluble in integers if, and only if,
gcd(a, m) | b. The number of incongruent solutions modulo m is gcd(a, m).

• How can we find all solutions?

• For all solutions x, the following holds: . Having a first solution

x0, all solutions are given by for .

�39

ℤ/2kℤ

p(x) ≡ 0 mod 2k

p(x)

x = b ⋅ a−1a a

p(x) = a ⋅ x − b a ⋅ x = b
m = 2k

a ⋅ x = b gcd(a,2k) |b
x = b/a

∃t . ax + tm = b
xk = x0 + k ⋅ (m / gcd(a, m)) 0 ≤ k < gcd(a, m)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Solving Systems of Linear Congruences
• Given a system of linear congruences (mod m = 2k) over n variables,

with  
 , 
 
find its solution set.

• Algorithm [Ganesh, 2007]:

• If there is an odd coefficient aji, solve equation Ej for xi and substitute xi in

all other equations. If Ej cannot be solved for xi, i.e. if ,
then there is no solution to S.

• If all coefficients aji are even, divide all aji, bj by two and decrease k by one.

• Repeat the algorithm with the resulting system of congruences and stop

with "success" if there is only one solved equation left.

• Properties:

• The algorithm is a sound and complete decision procedure for linear
congruences.

�40

S = {Ej}

Ej :
n

∑
i=1

ajixi ≡ bj mod 2k

gcd{aj1, …, ajn, m} ∤ bj

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Solving Systems of Linear Congruences
• Example: Solve the following system of congruences modulo 8: 
 
 
 
 
 

• Note:

• Ganesh considers the unknowns as bit-vectors of length k; when the

system is divided by 2, the highest bit in each bit-vector is dropped (i.e.
left unconstrained)

• Question:

• How can the set of all solutions of S be determined after the algorithm

finished?

�41

3x + 4y + 2z = 0
2x + 2y = 6

4y + 2x + 2z = 0

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Solving Non-Linear Congruences
• Task: Given a polynomial p(x), find all solutions of .

• Hensel lifting algorithm (special case for m = 2k):

1. [k=1] Check, whether has a solution. If not, exit with
"no solution".

2. [k k+1] Let {xi} be the set of solutions for . We
distinguish two cases to lift each xi from k to k+1:

A. If : [0 or 2 lifted solutions]

1. If , xi cannot be lifted

2. Otherwise there are two lifted solutions

B. If : [unique lifting] 
 

• Note: Hensel-lifting also works for multivariate polynomials. However, already
the base case (k=1) is NP-complete. (Why?)

�42

p(x) ≡ 0 mod 2k

p(x) ≡ 0 mod 2

p(x) ≡ 0 mod 2k

p′�(xi) ≡ 0 mod 2

p(xi) ≢ 0 mod 2k+1

x*i = xi + t ⋅ 2k, t ∈ {0,1}

p′�(xi) ≢ 0 mod 2
x*i = xi − p(xi)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Solving Non-Linear Congruences
• Example:

•

• [k=1, mod 2]: x2=1 mod 2 has solution x*=1

• [k=2, mod 4]: Try to lift x*=1: p'(x*)=0 mod 2, thus 0 or 2 lifted solutions 

p(x*)=0 mod 4, thus 2 liftings: x*'= x*+2t = {1, 3}

• [k=3, mod 8]:

• Lifting x*=1: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = { 1, 5 }

• Lifting x*=3: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = { 3, 7 }

• [k=4, mod 16]:
• Lifting x*=1: p(x*)=0 mod 16, x*' = { 1, 9 }

• Lifting x*=3: p(x*)=8 mod 16, no lifting

• Lifting x*=5: p(x*)=8 mod 16, no lifting

• Lifting x*=7: p(x*)=0 mod 16, x*' = { 7, 15 }

�43

x2 ≡ 33 mod 24

p(x) = x2 − 33, p′�(x) = 2x

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

Summary
• LLVM:

• SSA, iterators, passes

• Undefined behavior:

• Allows for optimization

• Conversion rules error prone

• Modular arithmetic:
• Decision procedures for

• multivariate linear congruences

• univariate polynomial congruences

�44

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 29.08.2018

References
• Chris Lattner: What Every C Programmer Should Know About Undefined

Behavior
• http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

• Juneyoung Lee et al.: Taming Undefined Behavior in LLVM (PLDI 2017)
• SEI CERT C Coding Standard (CMU)

• https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

• LLVM UndefinedBehaviorSanitizer
• Run-time analysis tool

• https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

• Vijay Ganesh: Decision Procedures for Bit-Vectors, Arrays and Integers
(PhD Thesis, 2007)

�45

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

