. universitat q:mputational

-innsbruck ogic

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

VTSA 2019

Computer Theorem Proving

Computer used to automate reasoning in a logic

Traditionally part of artificial intelligence

= (not machine learning)

Field of research since the fifties

Applications: program verification, mathematical deduction, ...

Theorem proving logics, precision, automation, ... very varied.

Artificial Intelligence in Theorem Proving

Computer Theorem Proving: Historical Context

= 1940s: Algorithmic proof search (A-calculus)
= 1960s: de Bruijn’s Automath

= 1970s: Small Certifiers (LCF)

= 1990s: Resolution (Superposition)

= 2000s: Large proofs and theories

= 2010s: Machine Learning for Reasoning?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Covered Topics

Part | Part Il

Theorem proving systems Guided Automated Reasoning
Machine learning problems Lemma mining

Lemma relevance Unsupervised methods

Deep learning for theorem proving Longer proofs

Artificial Intelligence in Theorem Proving

What is a Proof Assistant? (1/2)

A Proof Assistant is a

= a computer program

= to assist a mathematician

= in the production of a proof
= that is mechanically checked

What does a Proof Assistant do?

= Keep track of theories, definitions, assumptions
= Interaction - proof editing

= Proof checking

= Automation - proof search

What does it implement? (And how?)

= a formal logical system intended as foundation for mathematics
= decision procedures

Artificial Intelligence in Theorem Proving

The Kepler Conjecture (year 1611)

i pro apuec;tfto ¢y alsa copy

OA

alia
oré
Eyf
fop
ran
indl
rio
cfg

mece[Grareconcurrente cuiira

The most compact way of stacking
balls of the same size in space is a
pyramid.

Vs
V=~ 74y
V18 ’

Artificial Intelligence in Theorem Proving

nce in Theorem Provin

The Kepler Conjecture (year 1611)

Proved in 1998

= Tom Hales, 300 page proof using computer programs
= Submitted to the Annals of Mathematics

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

The Kepler Conjecture (year 1611)

Proved in 1998
= Tom Hales, 300 page proof using computer programs
= Submitted to the Annals of Mathematics

= 99% correct. .. but we cannot verify the programs

1039 equalities and inequalities
For example:

— X1 X3 — X2 X4+ X1 X5 +X3X6 — X5 X6+
+x2(—x2+x1+x3—Xa+X5+X6)

Xo. X4 (—X24X1+X3—X44X5+X6)+
4-X2 “+x1X5 (X2 —x1+X3+Xa— X5 +X6)+

< tan(g —0.74)

+x3X6 (X24x1 —X3+X4+X5 — X5) —
— X1 X3 X4 — X2 X3 X5 — X2 X1 Xp — X4 X5X6

Artificial Intelligence in Theorem Proving

The Kepler Conjecture (year 1611)

Solution? Formalized Proof!
= Formalize the proof using Proof Assistants
= Implement the computer code in the system
= Prove the code correct

= Run the programs inside the Proof Assistant

Flyspeck Project
= Project results published 2017

= Many Proof Assistants and contributors

Artificial Intelligence in Theorem Proving

Intel Pentium® P5 (1994)

Superscalar; Dual integer pipeline; Faster floating-point, ...

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Intel Pentium® P5 (1994)

Superscalar; Dual integer pipeline; Faster floating-point, ...

4159835 4159835 ps
—— =1 20... — =1
3145727 333820 3145727 1.333739

Artificial Intelligence in Theorem Proving

Intel Pentium® P5 (1994)

Superscalar; Dual integer pipeline; Faster floating-point, ...

4159835 4159835 ps

FPU division lookup table: for certain inputs division result off

Replacement

= Few customers cared, still cost of $475 million
= Testing and model checking insufficient:

= Since then Intel and AMD processors formally verified (*)
= HOL Light and ACL2 (along other techniques)

Artificial Intelligence in Theorem Proving

theorem sqrt2_not_rational:
"sqrt (real 2) ¢ Q"
proof

ged

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

theorem sqrt2_not_rational:
"sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"

thus False
ged

Artificial Intelligence in Theorem Proving

theorem sqrt2 not rational:
"sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt rat: "|sqrt (real 2)| = real m / real

and lowest terms: "gcd m n = 1"

thus False

ged

Artificial Intelligence in Theorem Proving

theorem sqrt2 not rational:
"sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where

n_nonzero: "n # 0" and sqrt rat: "|sqrt (real 2)| = real m / real
and lowest terms: "gcd m n = 1" ..

have eq: "m? = 2 * n2"
hence "2 dvd m2" ..
have dvd m: "2 dvd m"

hence "2 dvd n2"
have "2 dvd n"
have "2 dvd gcd m n"

thus False
ged

Artificial Intelligence in Theorem Proving

theorem sqrt2 not rational:
"sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt rat: "|sqrt (real 2)| = real m / real
and lowest terms: "gcd m n = 1"
from n_nonzero and sqrt rat have ”real m = }sqrt (real 2)| * real n
then have "real (m2?) = (sqrt (real 2))2 * real (n2)"

by (auto simp add: power2 eq square)
also have "(sqrt (real 2))2? = real 2" by simp
also have "... * real (m?) = real (2 * n?)" by simp
finally have eq: "m? = 2 * n2"
hence "2 dvd m2"
with two is prime have dvd m: "2 dvd m" by (rule prime dvd power tw
then obtain k where "m = 2 * k" ..
with eq have "2 * n? = 22 * k2" by (auto simp add: power2 eq square
hence "n? = 2 * k2" by simp
hence "2 dvd n2"
with two is prime have "2 dvd n" by (rule prime dvd power two)
with dvd m have "2 dvd gcd m n" by (rule gcd greatest)
with lowest terms have "2 dvd 1" by simp
thus False by arith
ged

Artificial Intelligence in Theorem Proving

Proof Assistant (2/2)

Keep track of theories, definitions, assumptions
= set up a theory that describes mathematical concepts
(or models a computer system)
= express logical properties of the objects

Interaction - proof editing
= typically interactive
= specified theory and proofs can be edited
= provides information about required proof obligations
= allows further refinement of the proof
= often manually providing a direction in which to proceed.

Automation - proof search

= various strategies
= decision procedures

Proof checking

= checking of complete proofs
= sometimes providing certificates of correctness

Why should we trust it?

= small core

Artificial Intelligence in Theorem Proving

Can a Proof Assistant do all proofs?

Decidability!
= Validity of formulas is undecidable

= (for non-trivial logical systems)

Automated Theorem Provers
= Specific domains
= Adjust your problem
= Answers: Valid (Theorem with proof)

= Or: Countersatisfiable (Possibly with counter-model)

Proof Assistants
= Generally applicable
= Direct modelling of problems

= Interactive

Artificial Intelligence in Theorem Proving

What are the other classes of tools?

(Many already covered in the courses in past few days)

ATPs (tomorrow)

= Built in automation (model elimination, resolution)
= Vampire, Eprover, SPASS, ...
= Applications: Robbin’s conjecture, Programs, and AIM

Artificial Intelligence in Theorem Proving

Users of Proof Assistants

Computer Science
= Modelling and specifying systems
= Proving properties of systems

= Proving software correct

Mathematics
= Defining concepts and theories
= Proving (mostly verifying) proofs

= (currently less common)

Artificial Intelligence in Theorem Proving

Theorems and programs that use ITP

Theorems
= Kepler Conjecture
= 4 color theorem
= Feit-Thomson theorem (2012)

Software

= Processors and Chips

Security Protocols

Project Cristal (Comp-Cert)
L4-Verified

Java Bytecode

Artificial Intelligence in Theorem Proving

Coverage of Basic Mathematics

Freek Wiedijk's list of 100 theorems

HOL Light | 86
Isabelle 81
MetaMath | 71
Coq 69
Mizar 69
any 94
Coverage by other tools
= much less as single steps [Wiedijk'15]

= (actually hard to compare)

Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Human proofs

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
= a computer program to assist a mathematician

= in the production of a proof
= that is mechanically checked

Human proofs

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
= a computer program to assist a mathematician

= keep track of theories, definitions, assumptions,
check individual steps, provide decision procedures

= in the production of a proof
= that is mechanically checked

Human proofs

Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
= a computer program to assist a mathematician

= keep track of theories, definitions, assumptions,
check individual steps, provide decision procedures

= in the production of a proof
= that is mechanically checked

= formal logical system

Human proofs

Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
= a computer program to assist a mathematician

= keep track of theories, definitions, assumptions,
check individual steps, provide decision procedures

= in the production of a proof
= that is mechanically checked
= formal logical system

Human proofs

= Proof skeletons
Filling in the gaps: most of the work

= Small intermediate steps

= Sometimes also hard ones

Artificial Intelligence in Theorem Proving

Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
= a computer program to assist a mathematician

= keep track of theories, definitions, assumptions,
check individual steps, provide decision procedures

= in the production of a proof
= that is mechanically checked
= formal logical system

Human proofs

= Proof skeletons
Filling in the gaps: most of the work
= Small intermediate steps
= General Purpose Automation!

= Sometimes also hard ones

= Selected domains

Artificial Intelligence in Theorem Proving

Fast progress in machine learning

What is Machine Learning?

= Tuning a big number of parameters

Algorithms that improve their performance based on data

= Face detection

= Recommender systems
= Speech recognition

= Stock prediction

Spam detection

Molecule modeling

Automated translation

Artificial Intelligence in Theorem Proving

Tasks related to proofs and reasoning

Tasks involving logical inference

= Natural language question answering [Sukhbaatar+2015]
= Knowledge base completion [Socher+2013]
= Automated translation [Wu+2016]
Games
AlphaGo (Zero) problems similar to proving [Silver+2016]

= Node evaluation

= Policy decisions

Artificial Intelligence in Theorem Proving

Al theorem proving techniques

High-level Al guidance
= premise selection: select the right lemmas to prove a new fact
= based on suitable features (characterizations) of the formulas
= and on learning lemma-relevance from many related proofs

= tactic selection

Mid-level Al guidance

= learn good ATP strategies/tactics/heuristics for classes of problems
= |learning lemma and concept re-use

= learn conjecturing

Low-level Al guidance

= guide (almost) every inference step by previous knowledge

= good proof-state characterization and fast relevance

Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"

= |s a statement is useful?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"
= |Is a statement is useful?

= For a conjecture

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"
= |s a statement is useful?
= For a conjecture

= What are the dependencies of statement? (premise selection)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"
= Is a statement is useful?

= For a conjecture
= What are the dependencies of statement? (premise selection)

= Should a theorem be named? How?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"
= Is a statement is useful?
= For a conjecture
= What are the dependencies of statement? (premise selection)
= Should a theorem be named? How?

= What should the next proof step be?

= Tactic? Instantiation?

Artificial Intelligence in Theorem Proving

Problems for Machine Learning

= |s my conjecture true? a"+ b"=c"
= |Is a statement is useful?
= For a conjecture
= What are the dependencies of statement? (premise selection)
= Should a theorem be named? How?
= What should the next proof step be?
= Tactic? Instantiation?
= What new problem is likely to be true?

= Intermediate statement for a conjecture

Artificial Intelligence in Theorem Proving

Premise selection

Intuition

Given:
= set of theorems T (together with proofs)
= conjecture ¢

Find: minimal subset of T that can be used to prove ¢

More formally
argmin{|t| | t F ¢}
tCT

(or () if not provable)
Note: implicit assumption on a proving system. ATP in practice.

Artificial Intelligence in Theorem Proving

In machine learning terminology

Multi-label classification
Input: set of samples S, where samples are triples s, F(s), L(s)

= s is the sample ID

= F(s) is the set of features of s

= L(s) is the set of labels of s
Output: function f : features — labels

Predicts n labels (sorted by relevance) for set of features

Sample features
Sample add_comm (a + b = b + a) characterized by:
= F(add_comm) = {"+", “=", “num”
= L(add_comm) = {num_induct, add_0, add_suc, add_def}

Artificial Intelligence in Theorem Proving

Not exactly the usual machine learning problem

Labels correspond to premises and samples to theorems
= Very often same

Artificial Intelligence in Theorem Proving

Not exactly the usual machine learning problem

Labels correspond to premises and samples to theorems
= Very often same

Similar theorems are likely to be useful in the proof
= Also likely to have similar premises

Artificial Intelligence in Theorem Proving

Not exactly the usual machine learning problem

Labels correspond to premises and samples to theorems

= Very often same

Similar theorems are likely to be useful in the proof
= Also likely to have similar premises

Theorems sharing logical features are similar
= Theorems sharing rare features are very similar

Artificial Intelligence in Theorem Proving

Not exactly the usual machine learning problem

Labels correspond to premises and samples to theorems

= Very often same

Similar theorems are likely to be useful in the proof
= Also likely to have similar premises

Theorems sharing logical features are similar
= Theorems sharing rare features are very similar

Temporal order
= Recently considered theorems and premises are important

= Also in evaluation

Artificial Intelligence in Theorem Proving

Not exactly for the usual machine learning tools

Needs efficient learning and prediction

= Frequent major data updates
= Automation cannot wait more than 10 seconds, often less

Multi-label classifier output

= Often asked for 1000 or more most relevant lemmas

Easy to get many interesting features

= Complicated feature relations
= PCA/LSA /.7

Artificial Intelligence in Theorem Proving

Premise Selection

= Syntactic methods

= Neighbours using various metrics
= Recursive SInE, MePo

= Naive Bayes, k-Nearest Neighbours

= Linear / Logistic Regression

= Needs feature and theorem space reduction
= Kernel-based multi-output ranking

= Decision Trees (Random Forests)

= Neural Networks

= Winnow, Perceptron SNoW, MaLARea
= DeepMath

Artificial Intelligence in Theorem Proving

Machine Learning Algorithms

k-Nearest Neighbours:
= finds a fixed number (k) of proved facts nearest to the conjecture ¢
= weight the dependencies each such fact f by the distance between f and ¢
= relevance is the sum of weights across the k nearest neighbors
= Naive Bayes:
= probability of f being needed to prove ¢
= based on the previous use of f in proving conjectures similar to ¢
= assumes independence of features to use the Bayes theorem
= MePo: (Meng—Paulson)
= score of a fact is r/(r + i), where r is the number of relevant features and i
the number of irrelevant features
= iteratively select all top-scoring facts and add their features to the set of
relevant features.

= Combination

Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a,b) = Z fEF(a)NF(b) 1

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a,b) = Z feF(a)nF(b) w(f)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a,b) = Z feF(a)nF(b) w(f)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a, b) = Z feF(a)nF(b) w(f)

Relevance of fact a for goal g

s(b, g)
(ZbeMaGD(b) |D(b)|)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a, b) = Z feF(a)nF(b) w(f)

Relevance of fact a for goal g

Z s(b,g) s(a,g) ifaeNlN
beN|aeD(b) |D(b)| 0 otherwise

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a, b) = Z feF(a)nF(b) w(f)

Relevance of fact a for goal g

s(b,g) s(a,g) ifaeNlN
(Tz Zb€N|a€D(b) |D(b)|) + {0 otherwise

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

k-NN (2/2)

let knn_eval csyms (sym_ths, sym_wght) deps maxth no_adv =
let neighbours = Array.init maxth (fun j -> (j, 0.)) in
let ans = Array.copy neighbours in

(* for each symbol, increase the importance of the theorems
which contain the symbol by a given symbol weight *)
List.iter (fun sym —>
let ths = sym_ths sym and weight = sym_wght sym in
List.iter (fun th ->
if th < maxth then map_snd neighbours th ((+.) (weight ** 6.0))) ths) csyms;

Array.fast_sort sortfun neighbours;

let no_recommends = ref 0 in
let add_ans k i o =
if snd (ams.(i)) <= 0. then begin
incr no_recommends;
map_snd ans i (fun _ -> float_of_int (age k) +. 0))
end else map_snd ans i ((+.) o) in

(* Additionally stop when given no_recommends reached *)
Array.iteri (fun k (nn, o) ->

add_ans k nn o;

let ds = deps nn in

let ol = 2.7 *. o /. (float_of_int (List.length ds)) in

List.iter (fun d -> if d < maxth then add_ans k d ol) ds;
) neighbours;

Array.fast_sort sortfun ans;

Naive Bayes

P(f is relevant for proving g)
P(f is relevant | g's features)
= P(f is relevant | f,...,f,)

P(f is relevant)?_, P(f; | f is relevant)
##f; appears when f is a proof dependency
#f is a proof dependency

Q

oc #f is a proof dependency - 17,

Artificial Intelligence in Theorem Proving

Naive Bayes: adaptation to premise selection

extended features F(a) of a fact a
features of a and of the facts that were proved using a

More precise estimation of the relevance of ¢ to prove ~:

P(a is used in 1’s proof)
. erF(’y)ﬂE(a) P(z/) has feature f | a is used in ¥’s proof)

. erF(-y)ff(a) P (¢ has feature f | a is not used in ¥’s proof)

. HfEf(a)—F(’y) P(1/1 does not have feature f | a is used in 1’s proof)

Artificial Intelligence in Theorem Proving

Naive Bayes: adaptation to premise selection

extended features F(a) of a fact a

features of a and of the facts that were proved using a
(only one iteration)

More precise estimation of the relevance of ¢ to prove ~:

P(a is used in 1’s proof)
. erF(’y)ﬂE(a) P(z/) has feature f | a is used in ¥’s proof)

. erF(-y)ff(a) P (¢ has feature f | a is not used in ¥’s proof)

. HfEf(a)—F(’y) P(1/1 does not have feature f | a is used in 1’s proof)

Artificial Intelligence in Theorem Proving

All these probabilities can be computed efficiently

Update two functions (tables):
= t(a): number of times a fact a was dependency

= s(a, f):
number of times a fact a was dependency of a fact described by feature f

Then:
. : t(a)
P(a is used in a proof of (any) ¢) = a
f'
P(w has feature f | a is used in ¢’s proof) = S(t?;))
. : s(a, f)
P(z/; does not have feature f | a is used in ¢’s proof) =1- ()
s(a, f)—1
~1—————
t(a)

Artificial Intelligence in Theorem Proving

Naive Bayes “in practice”

double NaiveBayes::score(sample_t i, set<feature_t> symh) const {
// number of times current theorem was used as dependency
const long n = tfreq[il;
const auto sfregh = sfreq[il;

double s = 30 * log(n);

for (const auto sv : sfreqh) {
// sv.first ranges over all features of theorems depending on %
// sv.second is the number of times sv.first appears among theorems
// depending on %
double sfreqv = sv.second;

// if sv.first exists in query features
if (symh.erase(sv.first) == 1)
s += tfidf.get(sv.first) * log (5 * sfreqv / n);
else
s += tfidf.get(sv.first) * 0.2 * log (1 + (1 - sfreqv) / n);
}

// for all query features that did not appear in features of dependencies
// of current theorem

for (const auto f : symh) s -= tfidf.get(f) * 18;

return s;

Cezary Kaliszyk

S InE [Hoder'09]

Basic algorithm

If symbol s is d-relevant and appears in axiom a,
then a and all symbols in a become d + 1-relevant.

Problem: Common Symbols

= Simple relevance usually selects all axioms
= Because of common symbols, such as subclass or subsumes

subclass (beverage, liquid).
subclass (chair, furniture).

Solution: Trigger based selection
“appears” is changed to “triggers”

But how to know if s is common?
Approximate by number of occurrences in the current problem

Artificial Intelligence in Theorem Proving

SInE: Tolerance

= Only symbols with t-times more occurrences than the least common symbol
trigger an axiom

= For t = oo this is the same as relevance

1:

subclass(X,Y) A subclass(Y,Z) = subclass(X,Z)

subclass(petrol,liquid) m

-subclass(stone,liquid)

A . subclass
subclass(beverage,liquid) i b
iquid, beer
subclass(beer,beverage)
2 beverage

subclass(guinness,beer)
subclass(pilsner,beer)

petrol, stone,
guinness, pilsner

[uy

? subclass(beer,liquid)
[Hoder]

Cezary Kaliszyk

Artificial Intelligence in Theorem Proving

SInE in E

Implementation: GSInE in e_axfilter

= Parameterizable filters

= Different generality measures (frequency count, generosity, benevolence)
= Different limits (absolute/relative size, # of iterations)
= Different seeds (conjecture/hypotheses)

= Efficient implementation

= E data types and libraries
= Indexing (symbol — formula, formula — symbol)

= Multi-filter support

= Parse & index once (amortize costs)
= Apply different independent filters
Primary use

= Initial over-approximation
(efficiently reduce HUGE input files to manageable size)

= Secondary use: Filtering for individual E strategies

Artificial Intelligence in Theorem Proving

Regression in Theorem Proving

Premises: Classification
= Dimensions in the input

= Matrix QR decomposition
Probabilities: Logistic
Non-linearity

= Kernels [Enigma]

= Multi-output Ranking [Kiihlwein'14, ..]

State space reduction

= Random projections [VowpalWabbit]

= Decomposition

Artificial Intelligence in Theorem Proving

Decision Trees (1/2)

Input: age, gender, occupation, ... Does the person like computer games

prediction score in each leaf —> +2 +0.1 -1

[Chen, Guestrin]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Decision Trees (2/2)

tree2

Use Computer
Daily

+0.9

f(@)=2+09=29 f @)=-1-09=-1.9

[Chen, Guestrin]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Decision Trees

Definition
= each leaf stores a set of samples

= each branch stores a feature f and two subtrees, where:

= the left subtree contains only samples having f
= the right subtree contains only samples not having f

Example

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa a=a

Artificial Intelligence in Theorem Proving

Single-path query

”

Query tree for conjecture “sin(0) = 0".
Features: "sin", "0".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

a=a

Single-path query

”

Query tree for conjecture “sin(0) = 0".
Features: "sin", "0".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

a=a

Single-path query

”

Query tree for conjecture “sin(0) = 0".
Features: "sin", "0".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

a=a

Single-path query

”

Query tree for conjecture “sin(0) = 0".
Features: "sin", "0".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

a=a

Single-path query

Query tree for conjecture “sin(0) =0".
Features: "sin”, "0".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa a=a

The overall result will be the premises of sin x = — sin(—x).

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Single-path query (2)

Query tree for conjecture “(a+b) x c=axc+bxc".
Features: "+", " x".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Single-path query (2)

Query tree for conjecture “(a+b) x c=axc+bxc".
Features: "+", " x".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Single-path query (2)

Query tree for conjecture “(a+b) x c=axc+bxc".
Features: "+", " x".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Single-path query (2)

Query tree for conjecture “(a+b) x c=axc+bxc".
Features: "+", " x".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Single-path query (2)

Query tree for conjecture “(a+b) x c=axc+bxc".
Features: "+", " x".

ax(b+c)= a+b= sinx=
axb+axc b+a —sin(—x)

axb=bxa a=a

a x b= b x ais not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Multi-path query

Weight samples by the number of errors on each path.

won

Features: “4", “x".

ax(b+c)= a+b=
axb+axc b+a —sin(—x)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Splitting feature

Agrawal et al.
= Take n random features from samples and choose feature with lowest Gini
impurity (probability of mis-labeling)
= Problem: Gini impurity calculation slow

= Choose feature that divides samples most evenly (|S¢| & |S-¢])

Online / Offline forests
tree is updated or completely rebuilt [Agraval, Saffari]
Approach for premise selection
= when a branch learns new samples, check whether the branch feature is still
an optimal splitting feature wrt. the new data
= if yes, update subtrees with new data
= if no, rebuild tree

learning takes 21 min for the Mizar dataset...

Artificial Intelligence in Theorem Proving

Neural Networks (Introduction in 2 slides)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Neural Networks (Introduction in 2 slides)

Recognize a handwritten character

Measure: recognition rate

atput layer

hidden layer

7

input layer
(784 neurons)

Q- M fr e
Q= m IS oo
S~ >0\ ~oo
O~AMm>nNS An
N=™ < F WS~ o
O~ OTWS thse o
Qs NP N o
©=NOF bW =0
O~ K MmITWVS cw
O —gmTno Nwo
O~ TN o>
O~ (W T 09 (o
O — o T nS oo
Q~cdm>\o oo
S —(FMm IS - o
O = 0 I \0I -5
D~ e F oo Nbo o
O= AN TS o o
O~Qm¥>rue ~nw N

O~ DT ONG «

Works ok on MNIST

Neural Networks: Third edition

Modelling of Neurophysiological Networks (1950s — 1960s)

= Simple networks of individual perceptrons, with basic learning

= Severe limitations [Minsky, Papert]

Paralled Distributed Processing (1990s)

= rejuvenated interest [Rumelhart, MacClelland)]

= But statistical algorithms were comparably powerful (SVM)

Deep Learning (2010s)

= Data-oriented algorithms
= Data and processing were a limitation before

Artificial Intelligence in Theorem Proving

Expressiveness of multilayer perceptron networks

Perceptrons implement linear separators, but:
= Every continuous function modeled with three layers (= 1 hidden)
= Every function can be modeled with four layers
= But the layers are assumed to be arbitrarily large!

(Results recently formalized)

Artificial Intelligence in Theorem Proving

Deep Learning vs Shallow Learning

Predictor

1

Hand crafted Features

=y
Traditional machine
learning

Artificial Intelligence in Theorem Proving

Deep Learning vs Shallow Learning

Predictor Predictor

1 T

Hand crafted Features Learned Features

= =
Traditional machine
learning Deep Learning

Artificial Intelligence in Theorem Proving

Deep Learning vs Shallow Learning

Predictor Predictor

1 T

Hand crafted Features Learned Features

Traditional machine

learning Deep Learning
= Mostly convex, provably tractable = Mostly NP-Hard
= Special purpose solvers = General purpose solvers
= Non-layered architectures « Hierarchical models

Atrtificial Intelligence in Theorem Proving

DeepMath intuition [Alemi'16]

Simple classifier on top of concatenated embeddings
= different model of premise selection
= trained to estimate usefulness

= positive and negative examples

Architecture

‘ Statement to be proved ‘ ‘ Potential Premise ‘

J

‘ Embedding network ‘ ‘ Embedding network ‘

—

Combiner network

|

Classifier/Ranker

Artificial Intelligence in Theorem Proving

Deep Learning for Mizar Lemma Selection

No hand-engineered features

Comparison of various neural architectures

Semantic-aware definition embeddings

Complementary to previous approaches

Can be ensembled

Artificial Intelligence in Theorem Proving

DeepMath: Dataset

The Mizar Mathematical Library (MML) is a corpus of formal mathematical proofs, containing 57,917 theorems from a wide
varity of mathematical subjects. We worked with a version converted to first order logic in the TPTP format.

:: t99_jordan: Jordan curve theorem in Mizar
for C being Simple_closed_curve holds C is Jordan;

:: Translation to first order logic
fof (t99_jordan, axiom, (! [A] : ((vi_topreal2(A) & ml_subset_1(4,
k1_zfmisc_1(ul_struct_0(k15_euclid(2))))) => vi_jordani(4)))).

Figure 1: (top) The final statement of the Mizar formalization of the Jordan curve theorem. (bottom) The
translation to first-order logic, using name mangling to ensure uniqueness across the entire corpus.

10* 10 10° 10*

10° 10° 10! 10

10? 10? 10° 102

1 1 102 1

10u 100 10! 10"

g g i, - g TN
10° 100 10* 10° 10* 10° 10" 10" 10° 10° 10* 10° 0 200 400 600 800 1000 0 20 40 60 80 100
(a) Length in chars. (b) Length in words. (c) Word occurrences. (d) Dependencies.

Figure 2: Histograms of statement lengths, occurrences of each word, and statement dependencies in the
Mizar corpus translated to first order logic. The wide length distribution poses difficulties for RNN models and
batching, and many rarely occurring words make it important to take definitions of words into account.

DeepMath: Problem, Metric, Model

Definition (Premise selection problem). Given a large set of premises P, an ATP system A with

given resource limits, and a new conjecture C, predict those premises from P that will most likely
lead to an automatically constructed proof of C by A.

aMRR = mean max rank(P’ Pavail(c))
C PEPix(C) | Pavait (C)]

Logistic loss
Fully connected layer with 1
output

Fully connected layer with
1024 outputs

Concatenate embeddings
[[CNN/RNN Sequence model | [CNN/RNN Sequence model | ‘} "b\ /‘b\'/‘
I
pemyyea l [————— [1] ﬂ SENCIMEME
sequence

Figure 3: (left) Our network structure. The input sequences are either character-level (section 5.1) or word-level
(section 5.2). We use separate models to embed conjecture and axiom, and a logistic layer to predict whether the
axiom is useful for proving the conjecture. (right) A convolutional model.

Artificial Intelligence in Theorem Proving

Recurrent Neural Networks

Recurrent Neural Networks (RNN)
process sequences by feeding back the output into the next input

Long-Short Term Memory (LSTM)
add forgetting to RNNs

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

DeepMath: Architectures

Char-level 1-layer CNN

Char-level 2-layer CNN

Char-level 3-layer CNN

1-hot encoded
character sequence

1-hot encoded
character sequence

1-hot encoded
character sequence

Convolution1D, filters: 128

activation: relu

Convolution1d, filters: 128
window size: 5
stride: 2

activation: relu

Convolution1D, filters: 512
window size

stride: 2

activation: relu

Char-level CNN-LSTM

Convolution1D, filters: 1024
window size:

stride: 2

activation: relu

e =

Convolutionld, filters: 1024
window size: 5

stride: 1

activation: relu

Convolution1D, filters: 1024
window size

stride: 1

activation: relu

1-hot encoded
character sequence

Char-level 2-layer CNN

=

Global temporal MaxPooling

[G\obat temporal MaxPooling |

| Global temporal MaxPooling |

1024-dimensional
sequence embedding

1024-dimensional
sequence enbedding

1024-dinensional
sequence embedding

LSTM, 1024 units (last state)

24-dinensional
sequence embedding

Word-level CNN

sequence of

Char-level LSTM

Char-level GRU

Convolution1D, filters: 1024
window size: 5

stride: 1

activation: relu

1-hot encoded
character sequence

1-hot encoded
character sequence

| LSTM, units: 1024 |

| GRU, units: 1024 |

Global temporal MaxPooling]

| last state l

| last state |

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

Figure 4: Specification of the different embedder networks.

DeepMath: Results

Cutoff | k-NN Baseline (%) | char-CNN (%) | word-CNN (%) | def-CNN-LSTM (%) | def-CNN (%) | def+char-CNN (%)

16 674 (24.6) 687 (25.1) 709 (25.9) 644 (23.5) 734 (26.8) 835 (30.5)

32 1081 (39.4) 1028 (37.5) 1063 (38.8) 924 (33.7) 1093 (39.9) 1218 (44.4)

64 1399 (51) 1295 (47.2) 1355 (49.4) 1196 (43.6) 1381 (50.4) 1470 (53.6)

128 1612 (58.8) 1534 (55.9) 1552 (56.6) 1401 (51.1) 1617 (59) 1695 (61.8)
256 1709 (62.3) 1656 (60.4) 1635 (59.6) 1519 (55.4) 1708 (62.3) 1780 (64.9)
512 1762 (64.3) 1711 (62.4) 1712 (62.4) 1593 (38.1) 1780 (64.9) 1830 (66.7)
1024 1786 (65.1) 1762 (64.3) 1755 (64) 1647 (60.1) 1822 (66.4) 1862 (67.9)

Table 1: Results of ATP premise selection experiments with hard negative mining on a test set of 2,742 theorems.

= E-prover proved theorem percentages
= Union of all methods: 80.9%
= Union of deep network methods: 78.4%

Artificial Intelligence in Theorem Proving

DeepMath: Accuracy

2-layer CNN|
3-layer CNN|
| 1-1ayer cNN
CNN-LSTM |
GRU |

LSTM

Accuracy

0 50000 150000 200000 250000 300000

100000
Gradient descent steps

(a) Training accuracy for different character-level
models without hard negative mining. Recurrent
models seem underperform, while pure convolutional
models yield the best results. For each architecture,
we trained three models with different random initial-
ization seeds. Only the best runs are shown on this
graph; we did not see much variance between runs
on the same architecture.

Word-level CNN (random)
Char-level 3-layer CNN
Char-level 1-laver CNN
Char-level 2-layer CNN
Word-level CNN (2nd level))

Test average max relative rank

600000 1000000

800000

400000
Gradient descent steps

o 200000

(b) Test average max relative rank for different mod-
els without hard negative mining. The best is a
word-level CNN using definition embeddings from
a character-level 2-layer CNN. An identical word-
embedding model with random starting embedding
overfits after only 250,000 iterations and underper-
forms the best character-level model.

DeepMath: Statistics

§22%:;: Model | Test min average relative rank
R R char-CNN 0.0585
KNN Baseline 096 word-CNN 0.06
charcan 052 def-CNN-LSTM 0.0605
Word-CNN 0.88 def-CNN 0.0575

word-CNN-LSTM

(b) Best sustained test results obtained by the above
models. Lower values are better. This was moni-
tored continuously during training on a holdout set
with 400 theorems, using all true positive premises
(a) Jaccard similarities between proved sets of con- ~ and 128 randomly selected negatives. In this setup,
jectures across models. Each of the neural network the lowest attainable max average relative rank with
model prediction are more like each other than those ~ perfect predictions is 0.051.

of the k-NN baseline.

def-CNN

def+char-CNN 0.78

Hard Negatives

Artificial Intelligence in Theorem Proving

Learning Lemma Usefulness

HOLStep Dataset

= Intermediate steps of the Kepler proof
= Only relevant proofs of reasonable size

= Annotate steps as useful and unused
= Same number of positive and negative

= Tokenization and normalization of statements

Statistics

Train Test Positive Negative

Examples 2013046 196030 1104538 1104538
Avg. length 503.18 440.20 535.52 459.66
77.40

Avg. tokens 87.01 80.62 95.48
Conjectures 9999 1411 -
Avg. deps 29.58 22.82 -

Artificial Intelligence in Theorem Proving

Considered Models

Logistic regression Siamese 1D CNN-LSTM
(conditioned) (conditioned)
statement conjecture statement conjecture

1D CNN 1D CNN-LSTM Logistic regression
(unconditioned) (unconditioned) (unconditioned)
statement statement statement

e
Dropout Sigmoid Logreg

Sigmoid Logreg Siamese 1D CNN

(conditioned)
statement conjecture

| Embedding
prier

Embedding MaxPooling1D MaxPooling1D
din=256 sizess sizecs

stride-3 stride-3

MaxPooling1D
sizecs
stridess

MaxPooling1D
sizess
stoides

Embedding Embedding
dine256 ain-256

Conv1D
312

Dense
din=256

Dropout
rates0.5

Signoid Logreg

Dense

MaxPooling1D MaxPooling1D
dim=256 vl e

stride

stride

Dropout
rate=0.5

Dropout. [[GlobalMaxPooling | [GlobalMaxPooling

rate=0.5

Sigmoid logreg

Concat

Sigmoid logreg

Baselines (Training Profiles)

token-level

char-level

60

oned)

1D GNN

(unconditioned)

1D CNN—LSTM
(unconditioned)
50

40

30

20
Epochs (128000 steps / epoch)

10

sion

gistic regres:
50

o

40

30
Epochs (128000 steps / epoch)

Char-level 1D CNN.

(unconditioned)

20

1

0.6 -
0.5

Aoeinooe uonepljep

pauoilipuodun

led)

(condition

——VS\amssejﬂDGNNr

Siamese 10 CNN-LSTM

(conditioned)

o
s
Aoeinooe uonepijep
! z :
! z e
g 1 G S
8 : o 2
Esi e
STl R
©nZ| [\0
BTE| [E e
822 = 2
B 1=
9| Ts! o7
2ol 38! =8
52! =Y ol
RORCETR | R~ S 1 S R
! 3 c! 2=
i £ 9 W o
i 5.&! 5 e
! : 85
H | (SR
o = ~
S S S

Aoeindoe uoneplieA

pauoIlIpuUod
a4n323[0d

What about full automated proofs?

Proof by contradiction

= Assume that the conjecture does not hold

= Derive that axioms and negated conjecture imply L

Saturation
= Convert problem to CNF
= Enumerate the consequences of the available clauses

= Goal: get to the empty clause

Redundancies
Simplify or eliminate some clauses (contract)

Artificial Intelligence in Theorem Proving

Summary

Today

= Theorem proving systems
= Machine learning problems
= Lemma relevance

= Deep learning for theorem proving

Tomorrow
= Guided Automated Reasoning
= More human-like proof
= Logical translations

= Unsupervised methods

Cezary Kaliszyk

Artificial Intelligence in Theorem Proving

