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Computer Theorem Proving

Computer used to automate reasoning in a logic

Traditionally part of artificial intelligence

(not machine learning)

Field of research since the fifties

Applications: program verification, mathematical deduction, ...

Theorem proving logics, precision, automation, ... very varied.
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Computer Theorem Proving: Historical Context

1940s: Algorithmic proof search (λ-calculus)

1960s: de Bruijn’s Automath

1970s: Small Certifiers (LCF)

1990s: Resolution (Superposition)

2000s: Large proofs and theories

2010s: Machine Learning for Reasoning?
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Covered Topics

Part I

Theorem proving systems

Machine learning problems

Lemma relevance

Deep learning for theorem proving

Part II

Guided Automated Reasoning

Lemma mining

Unsupervised methods

Longer proofs
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What is a Proof Assistant? (1/2)

A Proof Assistant is a
a computer program
to assist a mathematician
in the production of a proof
that is mechanically checked

What does a Proof Assistant do?
Keep track of theories, definitions, assumptions
Interaction - proof editing
Proof checking
Automation - proof search

What does it implement? (And how?)

a formal logical system intended as foundation for mathematics
decision procedures
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The Kepler Conjecture (year 1611)

The most compact way of stacking
balls of the same size in space is a
pyramid.

V =
π√
18
≈ 74%
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The Kepler Conjecture (year 1611)

Proved in 1998
Tom Hales, 300 page proof using computer programs

Submitted to the Annals of Mathematics

99% correct. . . but we cannot verify the programs

1039 equalities and inequalities
For example:

−x1x3−x2x4+x1x5+x3x6−x5x6+
+x2(−x2+x1+x3−x4+x5+x6)√√√√4x2

(
x2x4(−x2+x1+x3−x4+x5+x6)+
+x1x5(x2−x1+x3+x4−x5+x6)+
+x3x6(x2+x1−x3+x4+x5−x6)−
−x1x3x4−x2x3x5−x2x1x6−x4x5x6

) < tan(
π

2
− 0.74)
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The Kepler Conjecture (year 1611)

Solution? Formalized Proof!
Formalize the proof using Proof Assistants

Implement the computer code in the system

Prove the code correct

Run the programs inside the Proof Assistant

Flyspeck Project

Project results published 2017

Many Proof Assistants and contributors
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Intel Pentium R© P5 (1994)

Superscalar; Dual integer pipeline; Faster floating-point, ...

4159835

3145727
= 1.333820...

4159835

3145727
P5
= 1.333739...

FPU division lookup table: for certain inputs division result off

Replacement

Few customers cared, still cost of $475 million

Testing and model checking insufficient:

Since then Intel and AMD processors formally verified (*)
HOL Light and ACL2 (along other techniques)
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Proof Assistant (2/2)

Keep track of theories, definitions, assumptions

set up a theory that describes mathematical concepts
(or models a computer system)
express logical properties of the objects

Interaction - proof editing

typically interactive
specified theory and proofs can be edited
provides information about required proof obligations
allows further refinement of the proof
often manually providing a direction in which to proceed.

Automation - proof search

various strategies
decision procedures

Proof checking

checking of complete proofs
sometimes providing certificates of correctness

Why should we trust it?

small core
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Can a Proof Assistant do all proofs?

Decidability!

Validity of formulas is undecidable

(for non-trivial logical systems)

Automated Theorem Provers
Specific domains

Adjust your problem

Answers: Valid (Theorem with proof)

Or: Countersatisfiable (Possibly with counter-model)

Proof Assistants
Generally applicable

Direct modelling of problems

Interactive
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What are the other classes of tools?

(Many already covered in the courses in past few days)

ATPs (tomorrow)

Built in automation (model elimination, resolution)

Vampire, Eprover, SPASS, . . .

Applications: Robbin’s conjecture, Programs, and AIM
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Users of Proof Assistants

Computer Science

Modelling and specifying systems

Proving properties of systems

Proving software correct

Mathematics
Defining concepts and theories

Proving (mostly verifying) proofs

(currently less common)
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Theorems and programs that use ITP

Theorems
Kepler Conjecture

4 color theorem

Feit-Thomson theorem (2012)

Software
Processors and Chips

Security Protocols

Project Cristal (Comp-Cert)

L4-Verified

Java Bytecode
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Coverage of Basic Mathematics

Freek Wiedijk’s list of 100 theorems

HOL Light 86
Isabelle 81
MetaMath 71
Coq 69
Mizar 69
any 94

Coverage by other tools

much less as single steps [Wiedijk’15 ]

(actually hard to compare)
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Proof Assistant Summary

Complicated Proofs (Math, Computer Science)

Proof Assistant
a computer program to assist a mathematician

keep track of theories, definitions, assumptions,
check individual steps, provide decision procedures

in the production of a proof

that is mechanically checked

formal logical system

Human proofs

Proof skeletons

Filling in the gaps: most of the work

Small intermediate steps

General Purpose Automation!

Sometimes also hard ones

Selected domains
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Fast progress in machine learning

What is Machine Learning?

Tuning a big number of parameters

Algorithms that improve their performance based on data

Face detection

Recommender systems

Speech recognition

Stock prediction

Spam detection

Molecule modeling

Automated translation

...
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Tasks related to proofs and reasoning

Tasks involving logical inference

Natural language question answering [Sukhbaatar+2015 ]

Knowledge base completion [Socher+2013 ]

Automated translation [Wu+2016 ]

Games

AlphaGo (Zero) problems similar to proving [Silver+2016 ]

Node evaluation

Policy decisions
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AI theorem proving techniques

High-level AI guidance

premise selection: select the right lemmas to prove a new fact

based on suitable features (characterizations) of the formulas

and on learning lemma-relevance from many related proofs

tactic selection

Mid-level AI guidance

learn good ATP strategies/tactics/heuristics for classes of problems

learning lemma and concept re-use

learn conjecturing

Low-level AI guidance

guide (almost) every inference step by previous knowledge

good proof-state characterization and fast relevance
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Problems for Machine Learning

Is my conjecture true?

an + bn = cn

Is a statement is useful?

For a conjecture

What are the dependencies of statement? (premise selection)

Should a theorem be named? How?

What should the next proof step be?

Tactic? Instantiation?

What new problem is likely to be true?

Intermediate statement for a conjecture
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Premise selection

Intuition

Given:

set of theorems T (together with proofs)

conjecture c

Find: minimal subset of T that can be used to prove c

More formally

arg min
t⊆T

{|t| | t ` c}

(or ∅ if not provable)

Note: implicit assumption on a proving system. ATP in practice.
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In machine learning terminology

Multi-label classification
Input: set of samples S, where samples are triples s,F (s), L(s)

s is the sample ID

F (s) is the set of features of s

L(s) is the set of labels of s

Output: function f : features → labels

Predicts n labels (sorted by relevance) for set of features

Sample features
Sample add comm (a + b = b + a) characterized by:

F(add comm) = {“+”, “=”, “num”}
L(add comm) = {num induct, add 0, add suc, add def}
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Not exactly the usual machine learning problem

Labels correspond to premises and samples to theorems

Very often same

Similar theorems are likely to be useful in the proof

Also likely to have similar premises

Theorems sharing logical features are similar

Theorems sharing rare features are very similar

Temporal order

Recently considered theorems and premises are important

Also in evaluation
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Not exactly for the usual machine learning tools

Needs efficient learning and prediction

Frequent major data updates

Automation cannot wait more than 10 seconds, often less

Multi-label classifier output

Often asked for 1000 or more most relevant lemmas

Easy to get many interesting features

Complicated feature relations

PCA / LSA / ...?
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Premise Selection

Syntactic methods

Neighbours using various metrics
Recursive SInE, MePo

Naive Bayes, k-Nearest Neighbours

Linear / Logistic Regression

Needs feature and theorem space reduction
Kernel-based multi-output ranking

Decision Trees (Random Forests)

Neural Networks

Winnow, Perceptron SNoW, MaLARea
DeepMath
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Machine Learning Algorithms

k-Nearest Neighbours:

finds a fixed number (k) of proved facts nearest to the conjecture c
weight the dependencies each such fact f by the distance between f and c
relevance is the sum of weights across the k nearest neighbors

Naive Bayes:

probability of f being needed to prove c
based on the previous use of f in proving conjectures similar to c
assumes independence of features to use the Bayes theorem

MePo: (Meng–Paulson)

score of a fact is r/(r + i), where r is the number of relevant features and i
the number of irrelevant features
iteratively select all top-scoring facts and add their features to the set of
relevant features.

Combination
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k-NN (1/2)

Definition: Distance of two facts (similarity)

s(a, b) =
∑

f∈F (a)∩F (b)
1

w(f )τ1

Relevance of fact a for goal g(

τ2

∑
b∈N|a∈D(b)

s(b, g)

|D(b)|

)

+

{
s(a, g) if a ∈ N
0 otherwise
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k-NN (2/2)

let knn_eval csyms (sym_ths, sym_wght) deps maxth no_adv =
let neighbours = Array.init maxth (fun j -> (j, 0.)) in
let ans = Array.copy neighbours in

(* for each symbol, increase the importance of the theorems
which contain the symbol by a given symbol weight *)

List.iter (fun sym ->
let ths = sym_ths sym and weight = sym_wght sym in
List.iter (fun th ->

if th < maxth then map_snd neighbours th ((+.) (weight ** 6.0))) ths) csyms;

Array.fast_sort sortfun neighbours;

let no_recommends = ref 0 in
let add_ans k i o =

if snd (ans.(i)) <= 0. then begin
incr no_recommends;
map_snd ans i (fun _ -> float_of_int (age k) +. o))

end else map_snd ans i ((+.) o) in

(* Additionally stop when given no_recommends reached *)
Array.iteri (fun k (nn, o) ->

add_ans k nn o;
let ds = deps nn in
let ol = 2.7 *. o /. (float_of_int (List.length ds)) in
List.iter (fun d -> if d < maxth then add_ans k d ol) ds;

) neighbours;

Array.fast_sort sortfun ans;
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Naive Bayes

P(f is relevant for proving g)

= P(f is relevant | g ’s features)

= P(f is relevant | f1, . . . , fn)

∝ P(f is relevant)Πn
i=1P(fi | f is relevant)

∝ #f is a proof dependency · Πn
i=1

#fi appears when f is a proof dependency
#f is a proof dependency
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Naive Bayes: adaptation to premise selection

extended features F (a) of a fact a

features of a and of the facts that were proved using a

(only one iteration)

More precise estimation of the relevance of φ to prove γ:

P(a is used in ψ’s proof)

·
∏

f∈F (γ)∩F (a)
P
(
ψ has feature f | a is used in ψ’s proof

)
·
∏

f∈F (γ)−F (a)
P
(
ψ has feature f | a is not used in ψ’s proof

)
·
∏

f∈F (a)−F (γ)
P
(
ψ does not have feature f | a is used in ψ’s proof

)
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All these probabilities can be computed efficiently

Update two functions (tables):

t(a): number of times a fact a was dependency

s(a, f ):
number of times a fact a was dependency of a fact described by feature f

Then:

P(a is used in a proof of (any) ψ) =
t(a)

K

P
(
ψ has feature f | a is used in ψ’s proof

)
=

s(a, f )

t(a)

P
(
ψ does not have feature f | a is used in ψ’s proof

)
= 1− s(a, f )

t(a)

≈ 1− s(a, f )− 1

t(a)
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Naive Bayes “in practice”

double NaiveBayes::score(sample_t i, set<feature_t> symh) const {
// number of times current theorem was used as dependency
const long n = tfreq[i];
const auto sfreqh = sfreq[i];

double s = 30 * log(n);

for (const auto sv : sfreqh) {
// sv.first ranges over all features of theorems depending on i
// sv.second is the number of times sv.first appears among theorems
// depending on i
double sfreqv = sv.second;

// if sv.first exists in query features
if (symh.erase(sv.first) == 1)

s += tfidf.get(sv.first) * log (5 * sfreqv / n);
else

s += tfidf.get(sv.first) * 0.2 * log (1 + (1 - sfreqv) / n);
}

// for all query features that did not appear in features of dependencies
// of current theorem
for (const auto f : symh) s -= tfidf.get(f) * 18;

return s;
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SInE [Hoder’09 ]

Basic algorithm
If symbol s is d-relevant and appears in axiom a,
then a and all symbols in a become d + 1-relevant.

Problem: Common Symbols

Simple relevance usually selects all axioms

Because of common symbols, such as subclass or subsumes

subclass (beverage, liquid).

subclass (chair, furniture).

Solution: Trigger based selection
“appears” is changed to “triggers”

But how to know if s is common?
Approximate by number of occurrences in the current problem
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SInE: Tolerance

Only symbols with t-times more occurrences than the least common symbol
trigger an axiom

For t =∞ this is the same as relevance

[Hoder ]
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SInE in E

Implementation: GSInE in e axfilter

Parameterizable filters

Different generality measures (frequency count, generosity, benevolence)
Different limits (absolute/relative size, # of iterations)
Different seeds (conjecture/hypotheses)

Efficient implementation

E data types and libraries
Indexing (symbol → formula, formula → symbol)

Multi-filter support

Parse & index once (amortize costs)
Apply different independent filters

Primary use

Initial over-approximation
(efficiently reduce HUGE input files to manageable size)

Secondary use: Filtering for individual E strategies
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Regression in Theorem Proving

Premises: Classification
Dimensions in the input

Matrix QR decomposition

Probabilities: Logistic

Non-linearity

Kernels [Enigma]

Multi-output Ranking [Kühlwein’14, ...]

State space reduction

Random projections [VowpalWabbit]

Decomposition

X1

X2

Y
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Decision Trees (1/2)

. [Chen,Guestrin]
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Decision Trees (2/2)

. [Chen,Guestrin]
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Decision Trees

Definition
each leaf stores a set of samples

each branch stores a feature f and two subtrees, where:

the left subtree contains only samples having f
the right subtree contains only samples not having f

Example

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a
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Single-path query

Query tree for conjecture “sin(0) = 0”.
Features: ”sin”, ”0”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

The overall result will be the premises of sin x = − sin(−x).
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Single-path query (2)

Query tree for conjecture “(a + b)× c = a× c + b × c”.
Features: ”+”, ”×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

a× b = b × a is not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 43 / 64



Single-path query (2)

Query tree for conjecture “(a + b)× c = a× c + b × c”.
Features: ”+”, ”×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

a× b = b × a is not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 43 / 64



Single-path query (2)

Query tree for conjecture “(a + b)× c = a× c + b × c”.
Features: ”+”, ”×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

a× b = b × a is not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 43 / 64



Single-path query (2)

Query tree for conjecture “(a + b)× c = a× c + b × c”.
Features: ”+”, ”×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

a× b = b × a is not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 43 / 64



Single-path query (2)

Query tree for conjecture “(a + b)× c = a× c + b × c”.
Features: ”+”, ”×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

a× b = b × a is not considered!

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 43 / 64



Multi-path query

Weight samples by the number of errors on each path.
Features: “+”, “×”.

+

×

a× (b + c) =
a× b + a× c

a + b =
b + a

sin

sin x =
− sin(−x)

×

a× b = b × a a = a

0

0 1

1

2 1

1 2
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Splitting feature

Agrawal et al.

Take n random features from samples and choose feature with lowest Gini
impurity (probability of mis-labeling)

Problem: Gini impurity calculation slow

Choose feature that divides samples most evenly (|Sf | ≈ |S¬f |)

Online / Offline forests
tree is updated or completely rebuilt [Agraval, Saffari ]

Approach for premise selection

when a branch learns new samples, check whether the branch feature is still
an optimal splitting feature wrt. the new data

if yes, update subtrees with new data

if no, rebuild tree

learning takes 21 min for the Mizar dataset...
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Neural Networks (Introduction in 2 slides)

Recognize a handwritten character
Measure: recognition rate

Works ok on MNIST
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Neural Networks: Third edition

Modelling of Neurophysiological Networks (1950s – 1960s)

Simple networks of individual perceptrons, with basic learning

Severe limitations [Minsky,Papert]

Paralled Distributed Processing (1990s)

rejuvenated interest [Rumelhart,MacClelland ]

But statistical algorithms were comparably powerful (SVM)

Deep Learning (2010s)

Data-oriented algorithms

Data and processing were a limitation before
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Expressiveness of multilayer perceptron networks

Perceptrons implement linear separators, but:

Every continuous function modeled with three layers (= 1 hidden)

Every function can be modeled with four layers

But the layers are assumed to be arbitrarily large!

(Results recently formalized)
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Deep Learning vs Shallow Learning

Hand crafted Features

Predictor

Data

Traditional machine 
learning

Mostly convex, provably tractable

Special purpose solvers

Non-layered architectures

Learned Features

Predictor

Data

Deep Learning

Mostly NP-Hard

General purpose solvers

Hierarchical models
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DeepMath intuition [Alemi’16 ]

Simple classifier on top of concatenated embeddings

different model of premise selection

trained to estimate usefulness

positive and negative examples

Architecture
Statement to be proved

Embedding network

Potential Premise

Embedding network

Combiner network

Classifier/Ranker
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Deep Learning for Mizar Lemma Selection [Alemi+2016 ]

No hand-engineered features

Comparison of various neural architectures

Semantic-aware definition embeddings

Complementary to previous approaches

Can be ensembled
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DeepMath: Dataset [Alemi+2016 ]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 52 / 64



DeepMath: Problem, Metric, Model [Alemi+2016 ]
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Recurrent Neural Networks

Recurrent Neural Networks (RNN)
process sequences by feeding back the output into the next input

Long-Short Term Memory (LSTM)
add forgetting to RNNs

Cezary Kaliszyk Artificial Intelligence in Theorem Proving 54 / 64



DeepMath: Architectures [Alemi+2016 ]
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DeepMath: Results [Alemi+2016 ]

Cutoff k-NN Baseline (%) char-CNN (%) word-CNN (%) def-CNN-LSTM (%) def-CNN (%) def+char-CNN (%)
16 674 (24.6) 687 (25.1) 709 (25.9) 644 (23.5) 734 (26.8) 835 (30.5)
32 1081 (39.4) 1028 (37.5) 1063 (38.8) 924 (33.7) 1093 (39.9) 1218 (44.4)
64 1399 (51) 1295 (47.2) 1355 (49.4) 1196 (43.6) 1381 (50.4) 1470 (53.6)

128 1612 (58.8) 1534 (55.9) 1552 (56.6) 1401 (51.1) 1617 (59) 1695 (61.8)
256 1709 (62.3) 1656 (60.4) 1635 (59.6) 1519 (55.4) 1708 (62.3) 1780 (64.9)
512 1762 (64.3) 1711 (62.4) 1712 (62.4) 1593 (58.1) 1780 (64.9) 1830 (66.7)

1024 1786 (65.1) 1762 (64.3) 1755 (64) 1647 (60.1) 1822 (66.4) 1862 (67.9)

Table 1: Results of ATP premise selection experiments with hard negative mining on a test set of 2,742 theorems.

E-prover proved theorem percentages

Union of all methods: 80.9%

Union of deep network methods: 78.4%
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DeepMath: Accuracy [Alemi+2016 ]
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DeepMath: Statistics [Alemi+2016 ]

Hard Negatives
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Learning Lemma Usefulness [ICLR 2017 ]

HOLStep Dataset

Intermediate steps of the Kepler proof

Only relevant proofs of reasonable size

Annotate steps as useful and unused

Same number of positive and negative

Tokenization and normalization of statements

Statistics
Train Test Positive Negative

Examples 2013046 196030 1104538 1104538
Avg. length 503.18 440.20 535.52 459.66
Avg. tokens 87.01 80.62 95.48 77.40
Conjectures 9999 1411 - -
Avg. deps 29.58 22.82 - -
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Considered Models
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Baselines (Training Profiles)

char-level token-level
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What about full automated proofs?

Proof by contradiction

Assume that the conjecture does not hold

Derive that axioms and negated conjecture imply ⊥

Saturation
Convert problem to CNF

Enumerate the consequences of the available clauses

Goal: get to the empty clause

Redundancies
Simplify or eliminate some clauses (contract)
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Summary

Today

Theorem proving systems

Machine learning problems

Lemma relevance

Deep learning for theorem proving

Tomorrow
Guided Automated Reasoning

More human-like proof

Logical translations

Unsupervised methods
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