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Data is replicated and partitioned 
across multiple nodes
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With thousands of machines inside

Load-balancing, fault-tolerance



Replicas on mobile devices

Offline use
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• Strong consistency model: the system behaves as 
if it processes requests serially on a centralised 
database - linearizability, serializability
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• Strong consistency model: the system behaves as 
if it processes requests serially on a centralised 
database - linearizability, serializability

• Requires synchronisation: contact other 
replicas when processing a request



• Expensive: communication increases latency

• Impossible: either strong Consistency or 
Availability in the presence of network Partitions 
[CAP theorem]
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Relaxing synchronisation

Process an update locally, propagate effects to 
other replicas later

add(100)



Relaxing synchronisation

Process an update locally, propagate effects to 
other replicas later

add(100)

Better scalability & availability+

- Weakens consistency: deposit seen with a delay



• Common application: collaborative 
editing (Google Docs, Office Online)

• Would accept edits before 
communicating with Google servers 
or other clients



New generation of data stores with high scalability and 
low latency, but weak consistency

NoSQL data stores

So what consistency guarantees do they provide?



Anomalies

access.write(noboss)

post.write(photo)
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Anomalies

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causal consistency model: 
disallows this anomaly
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Strong vs weak consistency

• Pay-off from weakening consistency often worth it: 
higher scalability, lower latency in geo-distribution, 
offline access

‣ Both strong and weak systems used in industry

• But programmers need help in using it: 

‣ Programming abstractions for weak consistency

‣ Methods for reasoning about how weakening 
consistency affects application correctness



Also centralised SQL databases

Don't provide strong consistency either by default or 
at all: to exploit single-node concurrency
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Also centralised SQL databases

...since 1975

Are applications OK with this?

Don't provide strong consistency either by default or 
at all: to exploit single-node concurrency



[SIGMOD'17]



[SIGMOD'17]

No! E-commerce applications can 
be hacked by exploiting weak 
consistency of back-end databases



Weak shared-memory models

• Multicore processors: x86, ARM

• Programming languages: C/C++, Java

Due to compiler optimisations

Multiprocessor ~ distributed system



This course

• Programming abstractions for weak consistency

• Methods for specification

• Methods and tools for reasoning about 
application correctness and consistency needs

• Implementing strong consistency



Strong consistency and        
the CAP theorem



• Database system manages a set of objects: 
Obj = {x, y, z...}

• Objects associated with types Type = {τ, ...}

• For each type τ ∈ Type:

‣ Set of operations Opτ, including arguments

‣ Return values: Valτ

Data model



• Integer register

‣ Opintreg = {read, write(k) | k ∈ ℤ}

‣ Valintreg = ℤ ∪ {ok}

• Counter:

‣ Opcounter = {read, add(k) | k ∈ ℕ}

‣ Valcounter = ℕ ∪ {ok}

Data model



• Semantics in an ordinary programming language

• For each type τ ∈ Type: set of states Stateτ, 
initial state σ0 ∈ Stateτ

‣ Stateintreg = ℤ

‣ Statecounter = ℕ

• Semantics of an operation op: 

‣ ⟦op⟧val ∈ Stateτ ➞ Valueτ

‣ ⟦op⟧state ∈ Stateτ ➞ Stateτ

Sequential semantics



Register semantics

• State = ℤ

• ⟦write(k)⟧state(σ) = k

• ⟦write⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ



Counter semantics

• State = ℕ

• ⟦add(k)⟧state(σ) = σ+k

• ⟦add(k)⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ
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Counter semantics

• State = ℕ

• ⟦add(k)⟧state(σ) = σ+k

• ⟦add(k)⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ
read-only operation: 
⟦op⟧state(σ) = σ

update operation



request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

Clients issue requests and get responses:
history records the interactions in a single execution
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Consistency specification

request1

response1

request2

response2
...

} event e

Assume every request yields a response
No next request until the previous one responded



request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

obj(e) op(e) rval(e)

x.write(42) : ok

Assume every request yields a response
No next request until the previous one responded
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...

Consistency specification

request1

response1

request2

response2
...

} event e

Session order so: the order in which events are issued:
union of total per-client total orders

session 
(= process, thread) 

Total order: transitive and irreflexive 
relation ordering any pair of 

elements one way or another
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request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

History H = (E, so)➡

Consistency model - a set of histories ℋ: 
the set of allowed database behaviours



x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

Visualising histories
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so

c.add(1)

so

x.write(1)

c.add(1)
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c.read: 1

so

z.read: 2

so

Visualising histories
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• Consistency model ℋ: behaviour of the database 
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under 
arbitrary behaviour of the database

• Semantics of P when using ℋ:                                    
⟦P, ℋ⟧ = {X ∈ ⟦P⟧ |  history(X) ∈ ℋ}

Using a consistency model

⟦P⟧: 
x.read(): 42; 
x.read(): 42;
y.write(1);

x.read(): 42; 
x.read(): 43;
y.write(0);

P: 
r1 = x.read(); 
r2 = x.read(); 
y.write(r1==r2);

⟦P, ℋ⟧: 



Defining a consistency model

• Operational specification: by an idealised 
implementation

• Axiomatic specification: more declarative



Strong consistency operationally

x: σ

x: σ = 0

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42) x: σ

x: σ = 0

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42)

x.write(42)

x: σ

x: σ = 0

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42)

ok

x.write(42)

x: σ

x: σ = 0

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42)

ok

x.write(42)

x: σ

x: σ = 0

x.read

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt 
order



Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

Could write a formal operational semantics: maintain the state 
of the database, clients and sets of messages between them



Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

• Consistency model = {H | ∃ execution with history H 
produced by the abstract implementation}

• Sequential consistency: one form of strong consistency

• Weaker than linearizability: takes into acount the duration of 
operations



• Let one understand intuitions behind 
implementations

• May become unwieldy for weaker consistency 
models

• Sometimes overspecify behaviour

Operational specifications



Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how 
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract 
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}



Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how 
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract 
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H 
produced by the abstract implementation}

vs



Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how 
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract 
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H 
produced by the abstract implementation}

vs



Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how 
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract 
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H 
produced by the abstract implementation}

vs



An SC history can be explained by a total order over all 
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An SC history can be explained by a total order over all 
events: the order in which the server processes client 
operations

Sequential consistency axiomatically

x.write(42)

ok

x.read

42

Abstract execution: (H, to) = (E, so, to), where to ⊆ E×E

SC = {(E, so) | ∃ total order to. (E, so, to) ⊨ 𝒜SC}
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1. so ⊆ to
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x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

SC example

SC = {(E, so) | ∃to. (E, so, to) ⊨ 𝒜SC}



x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

SC example

to

SC = {(E, so) | ∃to. (E, so, to) ⊨ 𝒜SC}



• Got rid of messages between clients and the 
server, but didn't go far from the operational spec

• There's more difference for weaker models: 
complex processing can be concisely specified by 
axioms

Operational vs axiomatic

x.write(42)

ok

x.read

42



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B:



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B:

Dekker example

Claim: under sequential consistency, 
there can be at most one winner



Assume there are two winners. Then there must 
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

so

Need to construct a total order to
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y.write(1)
if (x.read() == 0)
  print "B wins"

Process B:
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Assume there are two winners. Then there must 
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
  print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B:

But to must be acyclic, so no such total order 
exists - QED.

toto



CAP theorem

No system with at least 2 processes can implement a 
read-write register with strong consistency, availability, 
and partition tolerance

• strong consistency = sequential consistency

• availability = all operations eventually complete

• partition tolerance = system continues to function 
under permanent network partitions

(processes in different partitions can no longer 
communicate in any way)



CAP proof

No system with at least 2 processes can implement a 
read-write register with strong consistency, availability, 
and partition tolerance

x.write(1)
if (y.read() == 0)
  print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B:

• By contradiction: assume the desired system exists

• Run some experiments with the Dekker program

• Network is partitioned between the two processes



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A Process B

• Process A runs its code, process B is idle



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A
execution XA

of process A

Process B

• Process A runs its code, process B is idle

• Availability ⟹ A must terminate and produce an 
execution XA



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A
execution XA

of process A

✔

Process B

• Process A runs its code, process B is idle

• Availability ⟹ A must terminate and produce an 
execution XA

• Sequential consistency ⟹ XA must print "A wins"



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A
execution XA

of process A

✔

Process B

• Process B runs its code, process A is idle

• Availability ⟹ B must terminate and produce an 
execution XB

• Sequential consistency ⟹ XB must print "B wins"

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B

✔

Process A

execution XB

of process B



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A
execution XA

of process A

✔

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B

✔

execution XB

of process B

• Network is partitioned in both experiments: 
processes didn't receive any messages

• XA; XB is an execution of A || B, i.e., Dekker

• XA; XB not SC ⟹ contradiction, QED



x.write(1)
if (y.read() == 0)
  print "A wins"

Process A
execution XA

of process A

✔

y.write(1)
if (x.read() == 0)
  print "B wins"

Process B

✔

execution XB

of process B

• Processes have to talk to each other (synchronise) 
to guarantee strong consistency



Eventual consistency and 
replicated data types, 

operationally



System model

x, y x, y x, y

• Database system consisting of multiple replicas    
(= data centre, machine, mobile device)

• Each replica stores a copy of all objects



System model

x, y x, y x, y

• Replicas can communicate via channels

• Asynchronous: no bound on how quickly a 
message will be delivered

(in particular, because of network partitions)

• Reliable: every message is eventually delivered

(so every partition eventually heals)

• For now: replicas are reliable too



High availability

x, y x, y x, y

• Clients connect to a replica of their choice



High availability

x, y x, y x, y

• Clients connect to a replica of their choice

x.write(1) y.write(1)



High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately, 
without communicating with others

x.write(1)

ok

y.write(1)

ok



High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately, 
without communicating with others

• Propagate effects to other replicas later

x.write(1)

ok

y.write(1)

ok



High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately, 
without communicating with others

• Propagate effects to other replicas later

• Always available, low latency, but may not be 
strongly consistent

x.write(1)

ok

y.write(1)

ok



High availability

x, y x, y x, y

• Quiescent consistency: if no new updates are made 
to the database, then replicas will eventually 
converge to the same state

• Later more precise and stronger formulations of 
eventual consistency

x.write(1)

ok

y.write(1)

ok



Replicated data types

• Need a new kind of replicated data type: object 
state now lives at multiple replicas

• Aka CRDTs: commutative, convergent, conflict-free

Just one type: operation-based replicated data types

• Object  ➔  Type ➔ Operation signature

For now fix a single object and type



• Set of states State 

• Initial state σ0 ∈ State

• ⟦op⟧val ∈ State ➞ Value

• ⟦op⟧state ∈ State ➞ State

Sequential semantics recap



σ

Object state at a replica: σ ∈ State

Replicated data types



σ

⟦op⟧val

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types



σ

σʹ
⟦op⟧val

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types

The operation affects a different state σʹ!



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Effector

Replicated data types



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Effector

Replicated data types



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦read()⟧eff(σ)  =  λσ. σ

State  =  ℕ

op

⟦read()⟧val(σ)  =  σ

Counter



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)

op

Counter



σ

50

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)

op

Counter



σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)

op

Counter



σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

op

⟦add(100)⟧eff(σ)  =  λσʹ. (σ + 100)

Counter



count = 0

add(100)

count = 0

add(200)



count = 0

add(100)

count = 0

count = 200count = 100

λσʹ. 100
add(200)

λσʹ. 200



count = 0

add(100)

count = 0

count = 200

count = 100

count = 100

λσʹ. 100

count = 200

add(200)
λσʹ. 200

Quiescent consistency violated: all updates have been 
delivered, yet replicas will never converge



• Effectors have to commute:

• Convergence: replicas that received the same sets of 
updates end up in the same state

(even when messages are received in different orders)

∀op1, op2, σ1, σ2.  ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) = 
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring quiescent consistency



• Effectors have to commute:

• Convergence: replicas that received the same sets of 
updates end up in the same state

(even when messages are received in different orders)

• Quiescent consistency: if no new updates are made to 
the database, then replicas will eventually converge to 
the same state

(because update get eventually delivered)

∀op1, op2, σ1, σ2.  ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) = 
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring quiescent consistency



• Counter

• Last-writer-wins register

• Multi-valued register

• Add-wins set

• Remove-wins set

• List

• ...

Replicated data types



Read-write register

write(1) write(2)



Read-write register

write(1) write(2)



Read-write register

write(1) write(2)Conflict!



Read-write register

write(1) write(2)Conflict!

• No right or wrong solutions: depends on the 
application requirements

• E.g., could report the conflict to the user: 
multi-valued register



Last-writer-wins register

write(1) write(2)

• Shared memory: an arbitrary write will win

• Conflict arbitrated using timestamps: last write wins

• Link to shared-memory consistency models



Last-writer-wins register

write(1) write(2)

State  =  Value × Timestamp 

⟦read()⟧val(v, t)  =  v



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2 read(): 2



Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t)  =  

    let tnew = newUniqueTS() in

    λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2 read(): 2



Last-writer-wins register

write(1) write(2)
t1 t2

t1 < t2

read(): 2 read(): 2

Effectors are commutative: the write with the highest 
timestamp wins regardless of the order of application



• Can use wall-clock time at the machine

• But can lead to strange results when clocks 
are out of sync

Generating timestamps



write(1)
t1



write(1)

write(2)

read: 1

t1



write(1)

write(2)

read: 1t1 > t2

t2

t1



write(1)

write(2)

read: 1t1 > t2

t2

t1



write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1



write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1

• Undesirable: 2 was meant to supersede 1



write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1

• Undesirable: 2 was meant to supersede 1

• Use logical (Lamport) clocks instead



Lamport clock

time = 1

Replica maintains a counter, incremented on each operation:



Lamport clock

write(1) 1

time = 1

time = 2

Replica maintains a counter, incremented on each operation:



Lamport clock

write(1) 1

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

2



Lamport clock

write(1) 1

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

write(1) 1

time = 1

2



Lamport clock

write(1) 1

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

write(1) 1

time = 1

2



Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

Replica maintains a counter, incremented on each operation:



Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

(c1, r1) < (c2, r2) ⟺ c1 < c2 ∨ (c1 = c2 ∧ r1 < r2)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

Replica maintains a counter, incremented on each operation:



Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

(c1, r1) < (c2, r2) ⟺ c1 < c2 ∨ (c1 = c2 ∧ r1 < r2)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

(1, r1) < (1, r2)

Replica maintains a counter, incremented on each operation:



write(1)

time = t1



write(1)
(t1, r1)

time = t1

time = t1+1



write(1)
(t1, r1) time = t2

time = t1

time = t1+1



write(1)
(t1, r1) time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its 
timestamp

time = t1

time = t1+1



write(1)

write(2)

read: 1

(t1, r1) time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its 
timestamp

time = t1

time = t1+1



write(1)

write(2)

read: 1

(t1, r1)

t1 > t2

time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its 
timestamp

time = t1

(t1+1, r2)

time = t1+1



write(1)

write(2)

read: 1

(t1, r1)

read: 2

t1 > t2

time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its 
timestamp

time = t1

(t1+1, r2)

time = t1+1



cart.add(book)

cart = {book}

cart.remove(book)

Replicated set



cart.add(book)

cart = {book}

cart.remove(book)

Replicated set

Conflict!



cart.add(book)

Should the remove cancel the concurrent add? 
Depends on application requirements

cart = {book}

cart.remove(book)

Replicated set

Conflict!



Remove wins:        cart = ∅

Add wins:              cart = {book}

Last writer wins: choose based on operation 
time-stamps

cart = {book}

cart.add(book) cart.remove(book)

Replicated set

Conflict!



Add-wins set

cart = {book}

cart.add(book) cart.remove(book)

cart = {book}



Add-wins set

cart = {book}

cart.add(book) cart.remove(book)

• remove() acts differently wrt add() depending on 
whether it's concurrent or not

• Each addition creates a new instance:              
State  =  set of pairs (element, unique id) 

cart = {book}



add(book)

{(book,1)}

⟦add(v)⟧eff(σ)  =  λσʹ. (σʹ ∪ {(v, uniqueid()})

Each add() creates a new element instance:



add(book)

{(book,1)}

{(book,1), (book,2)}

⟦add(v)⟧eff(σ)  =  λσʹ. (σʹ ∪ {(v, uniqueid()})

Each add() creates a new element instance:

λσʹ. σʹ ∪ {(book, 2)}



add(book)

{(book,1)}

{(book,1), (book,2)}



add(book)

{(book,1)}

{(book,1), (book,2)}

read() : {book}

⟦read()⟧val(σ)  =  {v | {∃ id. (v, id)} ∈ σ)

Instance ids ignored when reading the set:



add(book)

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}



add(book)

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ)  =  λσʹ. (σʹ \ {(v, id) ∈ σ})



add(book)

∅

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ)  =  λσʹ. (σʹ \ {(v, id) ∈ σ})

λσʹ. σʹ \ {(book, 1)}



add(book)

∅

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ)  =  λσʹ. (σʹ \ {(v, id) ∈ σ})

{(book,2)}

λσʹ. σʹ \ {(book, 1)}



add(book)

∅

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}

{(book,2)}



add(book)

∅

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}

{(book,2)} {(book,2)}

Effectors commutative ➔ replicas converge

λσʹ. σʹ ∪ {(book, 2)}



• Need to ensure commutativity to 
guarantee quiescent consistency

• Need to make choices about how to 
resolve conflicts

Take-aways



Replicated data type uses

• Provided by some data stores:

• Implemented by programmers on their own:



Collaborative editing: at the core -   
list data type (of formatted characters)



• Given a database with a set of objects of replicated 
data types

• Eventual consistency model = set of all histories 
produced by arbitrary client interactions with the 
data type implementations (with any allowed 
message deliveries)

• Implies quiescent consistency: if no new updates 
are made to the database, then replicas will 
eventually converge to the same state

Operational specification



Eventual consistency and 
replicated data types, 

axiomatically



c.add(1)

c.read(): ?

Anomalies



c.add(1)

Anomalies

c.read(): 0



Can be disallowed if the client sticks to the same replica:
Read Your Writes guarantee

c.add(1)

Anomalies

c.read(): 0



access.write(all)

access.write(noboss)

post.write(photo)

Anomalies



access.write(all)

access.write(noboss)

post.write(photo)

Anomalies



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Anomalies



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Anomalies



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causality violation: disallowed by causal consistency

Anomalies



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causality violation: disallowed by causal consistency

Anomalies



• Lots of replicated data type implementations: e.g., 
can send snapshots of object states instead of 
operations

• Lots of message delivery guarantees: different 
implementations of causal consistency

• Want specifications that abstract from 
implementation details: both replicated data types 
and anomalies

Specification



Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how 
operations are processed inside the system

• Abstract execution (H, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract 
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders

Order inclusion 
axioms: anomalies



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders

Order inclusion 
axioms: anomalies

Return value axiom: 
replicated data types



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

Eventsaccess.write(all)

soar Object Op Return 
value



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis
Session 
order

access.write(all)

soar

The order of requests by the same session



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

access.write(all)

soar

post.read() : photo

access.read() : all

Declaratively specify ways in which the 
database processes requests



access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so



access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so

Delivered?



access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so
Visible?

Delivered?



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility relationaccess.write(all)

soar

post.read() : photo

access.read() : all



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility relationaccess.write(all)

soar

post.read() : photo

access.read() : all

vis is irreflexive and acyclic



Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

Visibility relation

vis is irreflexive and acyclic



x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 2}

x.write(1)

t1 t2

t1 < t2

System includes a time-stamping mechanism 
that can be used in conflict resolution



x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 2}

x.write(1)

Arbitrated before

t1 t2

t1 < t2

System includes a time-stamping mechanism 
that can be used in conflict resolution



Execution: (E, so, vis, ar)

so so
vis

vis

soarArbitration 
relation

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

System includes a time-stamping mechanism 
that can be used in conflict resolution



Execution: (E, so, vis, ar)

so so
vis

vis

soarArbitration 
relation

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

System includes a time-stamping mechanism 
that can be used in conflict resolution

ar is total on E and vis ⊆ ar



Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an event e?

• Only actions on the same object visible to e are important: 
have been delivered to the replica performing e



Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

Context of e - projection of the 
execution onto such actions

• How do I compute the return value of an event e?

• Only actions on the same object visible to e are important: 
have been delivered to the replica performing e



Data type specification

vis

access.write(all)

ar

vis

F: context of e → return value of e

access.write(noboss)

access.read() : noboss

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))



Data type specification

vis

access.write(all)

ar

vis

F for Last-Writer-Wins registers: 
sort all actions according to ar 
and return the last value written

F: context of e → return value of e

access.write(noboss)

access.read() : noboss

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))



Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

F: context of e → return value of e

What gets taken into account 
depends only on vis

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))



c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

Counter

c.read(): 6

F: context of e → return value of e

F: reads return the sum of all additions in the context



c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

Counter
F: context of e → return value of e

Relations between events in the context don't matter

vis

c.read(): 6



c.subtract(4)

vis

c.add(1)

vis

c.add(2)

vis

Counter with decrements

c.read(): -1

F: context of e → return value of e

vis

F: reads return additions minus subtractions



x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes
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x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes
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x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes



x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes



x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {1, 3}

F: context of e → return value of e



x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {1, 3}

F: context of e → return value of e

F: discard all writes seen by a write



x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {3}

F: context of e → return value of e

vis

F: discard all writes seen by a write



set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e
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vis

set.add(book)

vis
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set.read() : ?

F: context of e → return value of e
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vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e



set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e



set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Add-wins set
F: context of e → return value of e



F: cancel all adds seen by a remove

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Add-wins set
F: context of e → return value of e



vis

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ∅

vis

Add-wins set
F: context of e → return value of e

F: cancel all adds seen by a remove



Data type specification

F: context of e → return value of e

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))



y.read(): 42

x.write(42)

"No causal cycles" axiom

x.read(): 42

y.write(42)

so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order
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x.read(): 42
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so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order

• Could result from speculative execution, uncommon in 
distributed systems



y.read(): 42

x.write(42)

"No causal cycles" axiom

x.read(): 42

y.write(42)

so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order

• Could result from speculative execution, uncommon in 
distributed systems

• Some forms allowed by shared-memory models (ARM, 
C++, Java): defining semantics is an open problem



Eventual visibility

so

x.write(42) x.read(): 0

so

x.read(): 0

so

x.read(): 0

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E
vis

x.read(): 0
...



Eventual visibility

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E
vis

so

x.write(42) x.read(): 0

so

x.read(): 0

so

x.read(): 42

x.read(): 42
...

vis



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:
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∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic
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∀e ∈ E. e ⟶ f for all but finitely many f ∈ E
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Quiescent consistency:  if no new updates are made to the 
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same 
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context 
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)



Quiescent consistency:  if no new updates are made to the 
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same 
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context 
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

c.read: 0

vis

c.add(1)

vis

c.add(2)

vis

c.read(): 3

vis

c.add(1) c.add(2)

vis

c.read(): 3
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• Eventual visibility: each update is seen by all but finitely many ops

• Convergence': two operations with the same context 
projection to updates return the same value

• Assuming finitely many updates, all but finitely many ops will 
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Quiescent consistency:  if no new updates are made to the 
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same 
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context 
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

• Eventual visibility: each update is seen by all but finitely many ops

• Convergence': two operations with the same context 
projection to updates return the same value

• Quiescent consistency: assuming finitely many updates, all but 
finitely many operations on a given object return values 
computed based on the same context: same op ⟹ same rval

• Assuming finitely many updates, all but finitely many ops will 
see all of these updates



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary
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The set of histories (E, so) such that for some vis, ar:



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary
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The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms 
on vis and ar



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms 
on vis and ar

Why is this spec sound wrt implementations?



Specification soundness

The set of all histories (E, so) such that for some vis, ar 
the abstract execution (E, so, vis, ar) satisfies 
consistency axioms 𝒜
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Specification soundness

The set of all histories (E, so) produced by arbitrary 
client interactions with the data type implementations 
with any allowed message deliveries

⊇

The set of all histories (E, so) such that for some vis, ar 
the abstract execution (E, so, vis, ar) satisfies 
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history (E, so)
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Specification soundness

• ∀ concrete execution of the implementation with a 
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Proofs depend on replicated data types

• Example: replicated counters and last-writer-wins 
registers

• There are also generic proof techniques that work 
for whole classes of data types
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e

vis
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e ⟶ f ⟺ effector of e delivered to replica of f 
before f is executed

vis

so ∪ vis is acyclic?



e

vis

f

e ⟶ f ∨ e ⟶ f ⟹ e was issued before f in the 

operational execution

vis

so ∪ vis is acyclic?

so



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

r1



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

r1 r2



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

• Channels are reliable (every partition eventually heals) ⟹ 
the effector of e is eventually delivered to r2

r1 r2



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

f1

• Channels are reliable (every partition eventually heals) ⟹ 
the effector of e is eventually delivered to r2

• From some point on, all events fi at the replica r2 see e

f2
vis

vis

r1 r2



∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

f1

• Channels are reliable (every partition eventually heals) ⟹ 
the effector of e is eventually delivered to r2

• From some point on, all events fi at the replica r2 see e

• True for any replica ⟹ only finitely many events don't see e

f2
vis

vis

r1 r2



c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

c.read(): 6

F: reads return the sum of all additions in the context

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

Correctness of counters



c.read: ?

Correctness of counters



c.read: σ

A read returns the value of the counter at the replica:

Correctness of counters

⟦read()⟧val(σ)  =  σ

c: σ



c.add(v)

c.read: σ

Invariant: the value of a counter at a replica is the sum 
of all increments of the counter delivered to it

Correctness of counters

c: σ



c.add(v)

c.read: σ

Invariant: the value of a counter at a replica is the sum 
of all increments of the counter delivered to it

Correctness of counters

⟦add(v)⟧eff(σ)  =  λσʹ. (σʹ + v)

c: σ



c.add(v)

vis

c.read: σ

Invariant: the value of a counter at a replica is the sum 
of all increments of the counter delivered to it

Correctness of counters

⟦add(v)⟧eff(σ)  =  λσʹ. (σʹ + v)

c: σ



c.add(v)

vis

c.read: σ

Invariant: the value of a counter at a replica is the sum 
of all increments of the counter delivered to it

Correctness of counters

= increments visible to the read, QED.

c: σ



Constructing ar

te

tf

e

f

e ⟶ f ⟺ te < tf
ar

Every event e gets assigned a timestamp te from 
a logical Lamport clock
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When receiving 
the effector of e, 
bumps up the 
clock above te



e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from 
a logical Lamport clock

e

vis

f

When receiving 
the effector of e, 
bumps up the 
clock above te

te < tf  ⇒ e ⟶ far



x.write(1) x.write(2)

x.read(): 2

Correctness of registers

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

F: reads return the last value in ar

visvis

ar



x.read: ?

Correctness of registers



x.read: v

A read returns the value part of the register at the replica:

⟦read()⟧val(v, t)  =  v

x: (v, t)

Correctness of registers



x.write(v')

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)



x.write(v')

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t)  = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)



x.write(v')

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t)  = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew



x.write(v')

vis

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t)  = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew



x.write(v')

vis

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t)  = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew

e ⟶ f ⟺ te < tf
ar



x.write(v')

Invariant: the value of a register at a replica is the one 
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

tnew

= the last write in arbitration out of the ones visible to 
the read, QED.

e ⟶ f ⟺ te < tf
ar

vis



Proof technique summary

• ∀ concrete execution of the implementation with a 
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜



• Construct vis from message deliveries and ar from 
timestamps
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• Construct vis from message deliveries and ar from 
timestamps

• Prove invariants relating replica state with message 
deliveries: the value of a counter at a replica is the 
sum of all increments of the counter delivered to it

Proof technique summary

• ∀ concrete execution of the implementation with a 
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜



• Construct vis from message deliveries and ar from 
timestamps

• Prove invariants relating replica state with message 
deliveries: the value of a counter at a replica is the 
sum of all increments of the counter delivered to it

• Use the invariants to prove that return values of 
operations correspond to data type specs

Proof technique summary

• ∀ concrete execution of the implementation with a 
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜



In-between eventual and 
strong consistency



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms 
on vis and ar



Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Sequential consistency

Consistency zoo



Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Sequential consistency

Consistency zoo

Keep soundness justifications informal: 
can be shown using previous techniques
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Read Your Writes

c.add(100)

c.read(): 100

so

so ⊆ vis
vis

• An operation sees all prior operations by the same 
process

• Session guarantees: clients only accumulate information

• Implementation: client sticks to the same replica



Monotonic Reads

c.add(100)

c.read(): 100

so vis
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Monotonic Reads

c.add(100)

c.read(): 100

so

vis; so ⊆ vis
vis

• An operation sees what prior operations by the same 
session see

c.add(100)
vis

vis



Monotonic Reads

c.add(100)

c.read(): 100

so

vis; so ⊆ vis
vis

• An operation sees what prior operations by the same 
session see

• Implementation: client sticks to the same replica

c.add(100)
vis

vis



access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

Disallows causality violation anomaly

Causal consistency



access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

Mandate that all actions that happened before an action 
be visible to it

Unintuitive: chain of so and vis edges from write(noboss) 
to the read: write happened before the read

Causal consistency



access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

(so ∪ vis)+ ⊆ vis

Mandate that all actions that happened before an action 
be visible to it

Unintuitive: chain of so and vis edges from write(noboss) 
to the read: write happened before the read

Causal consistency



access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

✘

(so ∪ vis)+ ⊆ vis

Mandate that all actions that happened before an action 
be visible to it

Unintuitive: chain of so and vis edges from write(noboss) 
to the read: write happened before the read

Causal consistency



access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

✘

(so ∪ vis)+ ⊆ vis

Causal consistency

Implies session guarantees:  so ⊆ vis  and  vis; so ⊆ vis



access.write(all)

access.write(noboss)

post.write(photo)

Clients stick to the same replica



access.write(all)

access.write(noboss)

post.write(photo)

Clients stick to the same replica



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Clients stick to the same replica



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Cannot deliver an operation before 
delivering its causal dependencies



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro

Replica order ro: the order in which 
operations are issued at a replica



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro del

Delivery order del: one operation got 
delivered before another was issued



access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro del

• Causal dependencies of e: hb-1(e)

• An op can only be delivered after all its causal dependencies

• Implementations summarise dependencies concisely

hb = (ro ∪ del)+

, hb



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

Implementations: updates delivered later



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

x written 
before y

y written 
before x

visvis



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

Implementations: no causal dependency between the two writes 
➜ can be delivered in different orders at different replicas

x written 
before y

y written 
before x

visvis



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written 
before y

y written 
before x

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written 
before y

y written 
before x

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

Not sequentially consistent



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written 
before y

y written 
before x

✘

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

Not sequentially consistent



• so ⊆ vis and vis is total

• vis ⊆ ar ⟹ can equivalently require so ⊆ vis = ar

• Every operation sees the effect of all operations 
preceding it in vis

• Like the original definition with to = vis = ar

Sequential consistency



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis

ar, vis



x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis

ar, vis

No execution with such history



• Eventual consistency

• Session guarantees: Dekker, IRIW, causality violation

so ⊆ vis, vis; so ⊆ vis

• Causal consistency: Dekker, IRIW 

(so ∪ vis)+ ⊆ vis

• Prefix consistency: Dekker

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Consistency zoo



Shared-memory models

• Sequential consistency first proposed in the 
context of shared memory (1979)

• Processors and languages don’t provide sequential 
consistency: weak memory models, due to 
processor and compiler optimisations

• Our specifications similar to weak memory model 
definitions

• Consistency axioms for last-writer-wins registers 
~ shared-memory models



• Eventual consistency

• Session guarantees: Dekker, IRIW, causality violation

so ⊆ vis, vis; so ⊆ vis

• Causal consistency: Dekker, IRIW 

(so ∪ vis)+ ⊆ vis

• Prefix consistency: Dekker

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Consistency zoo

for last-writer-wins = 
C++ release/acquire



• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

• What's the best we can do while 
staying available under network 
partitionings?

• Causal consistency is a strongest 
such model [Attiya et al., 2015]

Theoretical results



• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

• What's the best we can do while 
staying available under network 
partitionings?

• Causal consistency is a strongest 
such model [Attiya et al., 2015]

Theoretical results



• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Terms and conditions apply: 

• for a certain version of CC and a 
certain class of implementations

• a strongest model: cannot be 
strengthened, but can be other 
alternative incomparable models

• What's the best we can do while 
staying available under network 
partitionings?

• Causal consistency is a strongest 
such model [Attiya et al., 2015]

Theoretical results



• Application of eventual consistency - collaborative 
editing: Google Docs, Office Online

• At the core: list data type (of formatted characters)

• List data type has an inherently high metadata 
overhead: can't discard a character when deleting it 
from a Google Docs document! [Attiya et al., 2016]

• Discarding may allow previously deleted elements 
to reappear

Theoretical results



Determining the right level of 
consistency



Application correctness

• Does an application satisfy a particular correctness 
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular 
consistency model?

Application behaves the same as when using a strongly 
consistent database



Application correctness

• Does an application satisfy a particular correctness 
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular 
consistency model?

Application behaves the same as when using a strongly 
consistent database



Challenge

Vanilla weak consistency often too weak to 
preserve correctness

Need to strengthen consistency in parts of 
the application



σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)

op

Deposits



σ
⟦op⟧eff(σ)

⟦op⟧val

op

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals



σ
⟦op⟧eff(σ)

⟦op⟧val

op

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals



σ
⟦op⟧eff(σ)

⟦op⟧val

op

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals



σ
⟦op⟧eff(σ)

⟦op⟧val

op

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals



balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 



balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0balance = 0

λσʹ. σʹ - 100

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 



balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 



balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

balance = 100

add(100) : ✔



balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

balance = 100

add(100) : ✔
• Withdrawals strongly consistent

• Deposits eventually consistent

Tune consistency:



add(100)

withdraw(100) : ✔ withdraw(100) : ✔

vis

Strengthening consistency

vis

• Baseline model: causal consistency

• Problem: withdrawals are causally independent



add(100)

withdraw(100) : ✔ withdraw(100) : ✔

vis

Strengthening consistency

vis

• Symmetric conflict relation on operations:                  
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis



add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis

Strengthening consistency

vis

vis

• Symmetric conflict relation on operations:                  
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis



Strengthening consistency

• Symmetric conflict relation on operations:                  
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ e

• No constraints on additions: ¬(add ⋈ op)

vis vis

add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis vis

vis

add(100)add(100)



add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis

Strengthening consistency

vis

vis

• Implementation requires replicas executing withdraw() 
to synchronise

• add() doesn't need synchronisation

add(100)add(100)



balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account



balance = 100

withdraw(100) : ✔

balance = 100

  withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account



balance = 100

withdraw(100) : ✔

balance = 100

  withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account



balance = 100 balance = 100

withdraw(100) : ✔

balance = 0

  withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account

Acquiring the lock requires bringing all operations the 
replica holding it knows about



balance = 100

  withdraw(100) : ✘

balance = 0

balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account



balance = 100

  withdraw(100) : ✘

balance = 0

add(100)

balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock 
(mutex) on the account

¬(add ⋈ op): no locks, 
so no synchronisation



Consistency choices

• Databases with multiple consistency levels:

‣ Commercial: Amazon DynamoDB, Microsoft 
DocumentDB

‣ Research: Li+ OSDI’12; Terry+ SOSP’13;        
Balegas+ EuroSys’15; Li+ USENIX ATC’18

• Stronger operations require synchronisation between 
replicas

• Pay for stronger semantics with latency, possible 
unavailability and money



• Hard to figure out the minimum consistency level 
necessary to maintain correctness

• Reason about all possible abstract executions? 

‣ Abstract from some of implementation details, but 
still describe behaviour of the whole system

‣ Number of possible executions is exponential: e.g., 
choices of vis = order of message deliveries

• Need verification techniques that limit the exponential 
blow-up

Consistency choices



Verification problem

• a set of operations: withdraw(), deposit(), ...

• a conflict relation: withdraw ⋈ withdraw

Do the operations always preserve a given 
integrity invariant?

I = (balance ≥ 0)

Given



Verification problem

• a set of operations: withdraw(), deposit(), ...

• a conflict relation: withdraw ⋈ withdraw

Do the operations always preserve a given 
integrity invariant?

I = (balance ≥ 0)

Given

Later: operations ➜ whole transactions



Check it’s preserved after 
executing op

σ ∈ I
op

Assume invariant holds

Single check: no state-space explosion from 
concurrency



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

Effect applied in a different state!



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

     if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ)  = 

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}
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⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

{bal ≥ 0 ∧ bal ≥ 100}  bal := bal-100  {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

P(σʹ)?

1. Effector safety: f(σ) preserves I when executed 
in any state satisfying P:  {I ∧ P} f(σ) {I}

2. Precondition stability: P will hold when f(σ) is 
applied at any replica



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?
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op’s causal 
dependencies

• Causal consistency ➜ receive op’s causal 
dependencies before receiving op



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

f g

• But can have additional effectors of 
operations concurrent with op: f, g, ...

• Effectors commute, so σʹ = (f; g; ...)(σ)

• Causal consistency ➜ receive op’s causal 
dependencies before receiving op



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

f g

• But can have additional effectors of 
operations concurrent with op: f, g, ...

• Effectors commute, so σʹ = (f; g; ...)(σ)

• Causal consistency ➜ receive op’s causal 
dependencies before receiving op

P(σ) ✔



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

f g

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}

P(σ) ✔



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

add

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} 

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

add

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} 

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} ✔

add

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

{bal ≥ 100}  bal := bal-100  {bal ≥ 100}

withdraw'

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} ✔

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

{bal ≥ 100}  bal := bal-100  {bal ≥ 100}

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} ✔

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

{bal ≥ 100}  bal := bal-100  {bal ≥ 100}

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} ✔

✘

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any operation:  {P} f {P}

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

withdraw' is a causal dependency of op

withdraw ⋈ withdraw;   ¬(add ⋈ withdraw) ✔

Precondition stability: P is preserved by any 
effector f of any non-conflicting operation:  {P} f {P}

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

withdraw' delivered before op: causality violated

withdraw ⋈ withdraw;   ¬(add ⋈ withdraw) ✔

Precondition stability: P is preserved by any 
effector f of any non-conflicting operation:  {P} f {P}

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

withdraw ⋈ withdraw;   ¬(add ⋈ withdraw)

Precondition stability: P is preserved by any 
effector f of any non-conflicting operation:  {P} f {P}

✔

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

Precondition stability: P is preserved by any 
effector f of any non-conflicting operation:  {P} f {P}

Only requires checking each pair of operations: no 
exponential explosion!

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

Can infer the conflict relation ⋈: op1 ⋈ op2 if the 
precondition of op1 unstable under the effector of op2

{bal ≥ 100}  bal := bal+100  {bal ≥ 100} ✔, no ⋈

Pre of withdraw under effector of add:

withdraw'



σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal 
dependencies

P(σ) ✔

{bal ≥ 100}  bal := bal-100  {bal ≥ 100}

Can infer the conflict relation ⋈: op1 ⋈ op2 if the 
precondition of op1 unstable under the effector of op2

Pre of withdraw under effector of withdraw:

✘, need ⋈

withdraw'



• Developed by Sreeja Nair (UPMC, Paris)

• Model application in a domain-specific language, 
including replicated data type libraries

• Model compiled into a Boogie program encoding the 
conditions of the proof rule

• Discharged using SMT

• Automatically infers a conflict relation

https://github.com/LightKone/correct-eventual-
consistency-tool

Correct Eventual Consistency Tool

https://github.com/LightKone/correct-eventual-consistency-tool
https://github.com/LightKone/correct-eventual-consistency-tool


Demo



Transactions



• Fundamental abstraction in databases

• Allow clients to group operations to be processed 
indivisibly

• Provided by virtually any single-node SQL database

• NoSQL data stores: starting to reappear

Transactions



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

✘



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

✘

Causal consistency isn't enough
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so so

• Consistency model = set of histories (E, so, ~)



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the 
same transaction: transitive, symmetric, reflexive



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the 
same transaction: transitive, symmetric, reflexive

• For simplicity, assume every transaction completes



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the 
same transaction: transitive, symmetric, reflexive

• For simplicity, assume every transaction completes

• Transaction T: equivalence class of events of ~



set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post



set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

A session is a sequence of 
transactions: events from the same 
transaction contiguous in so

∀e, f, g ∈ E. e ⟶ f ⟶ g ∧ e ~ g 

⟹ e ~ f ~ g

so so



Strongly consistent transactions

Sequential consistency ~ serializability



Serializability operationally

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order



Serializability operationally

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post)



Serializability operationally

(ok, ok)

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post)

tx1



Serializability operationally

(ok, ok)

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1



Serializability operationally

(ok, ok)

set, reg

({photo}, post)

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2



Serializability operationally

(ok, ok)

set, reg

({photo}, post)

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2

Serializability = {H | ∃ execution with history H produced 
by the abstract implementation}



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:



1. so ⊆ to

2. The return value of each operation in E is 
computed from a state obtained by executing all 
operations on the same object preceding it in to

3. Operations from the same transaction are 
contiguous in to

Serializability

(E,so, ~) | ∃ total order to. (E, so, ~, to) satisfies:



set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same 
transaction are contiguous in to



set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same 
transaction are contiguous in to

to



set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same 
transaction are contiguous in to

to/~

Induces a total to/~ on whole tx

to/~



• Even single-node databases don't provide 
serializability either by default or at all: read 
committed, snapshot isolation, ...

Weakening consistency



• Even single-node databases don't provide 
serializability either by default or at all: read 
committed, snapshot isolation, ...

• To better exploit single-node parallelism

Weakening consistency

(ok, ok)

set, reg

({photo}, post)

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2



• Single-node consistency models also applicable in 
distributed setting

• But many still require some synchronisation 
between replicas: unavailability, high latency

• Want eventually consistent transactions: always 
available, low latency

• Preserve some aspects of the invisibility 
abstraction

Eventually consistent transactions



• Database system consisting of multiple reliable 
replicas

• Each replica stores a copy of all objects of 
replicated data types

• Replicas can communicate via asynchronous 
reliable channels

System model recap



x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and 
issues transactions

• High availability: the transaction 
commits immediately, without 
communication with other replicas, 
no aborts!



x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and 
issues transactions

• High availability: the transaction 
commits immediately, without 
communication with other replicas, 
no aborts!

• Replica processes transactions 
sequentially: anomalies arising from 
single-node concurrency covered by 
the absence of inter-node 
synchronisation

x.read : post
y.read : comment



x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and 
issues transactions

• High availability: the transaction 
commits immediately, without 
communication with other replicas, 
no aborts!

• Replica processes transactions 
sequentially: anomalies arising from 
single-node concurrency covered by 
the absence of inter-node 
synchronisation

• Reads are indivisible: access a fixed 
snapshot of the database (plus own 
writes)

x.read : post
y.read : comment



Upon commit: send the 
effectors of all tx operations 
to other replicas together

x.write(post)
y.write(comment)
x.read : post



Upon commit: send the 
effectors of all tx operations 
to other replicas together

Receive in between txs: 
incorporate all the 
updates together

x.write(post)
y.write(comment)

x.read : post
y.read : comment

x.write(post)
y.write(comment)
x.read : post



Upon commit: send the 
effectors of all tx operations 
to other replicas together

Receive in between txs: 
incorporate all the 
updates together

x.write(post)
y.write(comment)

x.read : post
y.read : comment

x.write(post)
y.write(comment)
x.read : post

• Writes are indivisible

• Reads are indivisible

• Reads+writes: no!



set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so

so

Reads/writes indivisibility



v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

No reads+writes indivisibility

so so



v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

reg.read() : 1

No reads+writes indivisibility

so so



v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

reg.read() : 1

No reads+writes indivisibility

so so

Lost update anomaly



counter.add(1) counter.add(1)

counter.read() : 2

counter: replicated counter, accumulates increments
initially 0

Use appropriate data type



• Eventual consistency with transactions = the set 
of all histories produced by arbitrary client 
interactions with the data type implementations 
(with any allowed message deliveries)

• Implies quiescent consistency: if no new updates 
are made to the database, then replicas will 
eventually converge to the same state

Operational specification



• Serializability: operations from the same 
transaction are contiguous in the total order to

• Approach: require the same of vis and ar

Axiomatic specification



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to
e f

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to



Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

to treats events in a transaction uniformly



Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar



Execution: (E, so, ~, vis, ar)
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reg.read() : ∅

so so

vis
e f

vis, ar treat events in a transaction uniformly:
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Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis

vis
e f

e' f'

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar



Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis

vis
e f

e' f'

✘

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar



Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

vis

vis
e f

e' f'

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar



Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

vis

vis

 T ⟶ S ⟺ ∃e ∈ T, f ∈ S. e ⟶ f

vis, ar induce acyclic vis/~, ar/~ on whole txs:

vis/~ vis

 T ⟶ S ⟺ ∃e ∈ T, f ∈ S. e ⟶ far/~ ar

vis/~



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

vis

The set of histories (E, so, ~) such that for some vis, ar:

vis vis

ar ar

Eventually consistent transactions



• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

vis

The set of histories (E, so, ~) such that for some vis, ar:

vis vis

ar ar

Eventually consistent transactionsDefine transactional variants 
of other consistency models 
by just adding prior axioms

Serializability: vis = ar



set.add(photo)

reg.write(post)

so

so

reg.read(): ?

Session guarantees

so ⊆ vis

Transactions in the same 
session only accumulate 
information



set.add(photo)

reg.write(post)

so

so

reg.read(): post

Session guarantees

vis

so ⊆ vis

Transactions in the same 
session only accumulate 
information



Causal consistency

(so ∪ vis)+ ⊆ vis



Causal consistency
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Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis
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reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment

so
vis



Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment
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vis

vis



Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment

so

vis

vis

vis



Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read() ∋ photo

reg2.read(): comment

so

vis

vis

vis



if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

v = c.read()

 c.subtract(100)

c: counter with decrements, initially 100

so so

Concurrent withdrawals



if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

v = c.read()

 c.subtract(100)

// 100

// 0

c: counter with decrements, initially 100

so so

Concurrent withdrawals



if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

v = c.read()

 c.subtract(100)

// 100

// 0

c: counter with decrements, initially 100

Both transactions decremented successfully - 
synchronisation needed!

so so

Concurrent withdrawals



vis vis

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ e

Recap: strengthening consistency

withdraw(100) : ✔ withdraw(100) : ✔



withdraw(100) : ✔ withdraw(100) : ✘
vis

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

Recap: strengthening consistency



if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis



if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis



if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis

vis



if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

✘

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis

vis



Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:                            
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

c.add(100) ¬(add ⋈ op)c.add(100)



Recap: implementation

• withdraw ⋈ withdraw: as if withdraw grabs an 
exclusive lock on the account

• Acquiring the lock requires bringing all operations 
the replica holding it knows about

c.withdraw(100) : ?c.withdraw(100) : ✔
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Recap: implementation

c.withdraw(100) : ✘c.withdraw(100) : ✔

• withdraw ⋈ withdraw: as if withdraw grabs an 
exclusive lock on the account

• Acquiring the lock requires bringing all operations 
the replica holding it knows about



Implementation for transactions

if (v≥100)
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// 100

// 0 ✔

subtract ⋈ subtract
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if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction



Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

✘✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it



Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100) ✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it

// 100

// 0



Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

v = c.read() // 0

✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it

// 100

// 0



• Want to choose ⋈ to preserve application invariants

• Previous proof rule for checking invariants applies

• Instead of an effector of a single operation, consider 
a sequential composition of effectors of all 
operations in a transaction

• Can also fix ⋈ so that it's easier to program: new 
consistency models, disallowing some classes of 
anomalies

Chosing ⋈



Write-conflict detection

• Operations updating the same object conflict, so cannot 
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f)) 
⟹ e ⟶ f ∨ f ⟶ evis vis
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if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)
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// 100

// 0
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Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg.read()
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// 1

so

✘
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Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg'.read()

reg'.write(v+1)

// 0

// 1

so

• Operations updating the same object conflict, so cannot 
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f)) 
⟹ e ⟶ f ∨ f ⟶ evis vis

• Updates on different accounts can go in parallel:



Write-conflict detection

• Operations updating the same object conflict, so cannot 
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f)) 
⟹ e ⟶ f ∨ f ⟶ evis vis

• Visibility totally orders transactions updating the same 
object ⟹ don't need replicated data types, don't need ar

set.add(2)

vis

set.add(1)

vis

set.remove(1)

vis

set.read(): {2}

vis vis



Write-conflict detection

• Operations updating the same object conflict, so cannot 
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f)) 
⟹ e ⟶ f ∨ f ⟶ evis vis

• Visibility totally orders transactions updating the same 
object ⟹ don't need replicated data types, don't need ar

• Can use sequential data types: from now on just 
sequential read-write registers
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Session guarantees
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Prefix consistency

Serializability

Transactional consistency zoo

Parallel Snapshot Isolation

Snapshot Isolation



Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Serializability

Transactional consistency zoo

Parallel Snapshot Isolation

Snapshot Isolation

Causal consistency + 
write-conflict detection



Robustness



• Does an application satisfy a particular correctness 
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular 
consistency model?

Application behaves the same as when using a strongly 
consistent database

Application correctness



• Does an application satisfy a particular correctness 
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular 
consistency model?

Application behaves the same as when using a strongly 
consistent database

Application correctness



• Database with only sequential read-write registers

• Assume there is an implicit transaction writing initial 
values to all registers

Parallel shapshot isolation



• No causal cycles: so ∪ vis is acyclic

• Eventual visibility: ∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

• Causality preservation: (so ∪ vis)+ ⊆ vis

• Write-conflict detection:

∀e, f ∈ E. obj(e) = obj(f) ∧ op(e) = write(-) ∧op(f) = write(-) 
⟹ e ⟶ f ∨ f ⟶ e

• A read event returns the value written by the last preceding 
write in vis

vis

PSI = the set of histories (E, so, ~) such that for some vis:

vis

vis

vis vis



• No causal cycles: so ∪ vis is acyclic

• Eventual visibility: ∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

• Causality preservation: (so ∪ vis)+ ⊆ vis

• Write-conflict detection:

∀e, f ∈ E. obj(e) = obj(f) ∧ op(e) = write(-) ∧op(f) = write(-) 
⟹ e ⟶ f ∨ f ⟶ e

• A read event returns the value written by the last preceding 
write in vis

vis

PSI = the set of histories (E, so, ~) such that for some vis:

vis

vis

vis vis

Well-formed because of 
write-conflict detection
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Not serializable, allowed by transactional causal consistency 
and parallel snapshot isolation
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x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

x written 
before y

y written 
before x

visvis



x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

Implementations: no causal dependency between the two writes 
➜ can be delivered in different orders at different replicas

x written 
before y

y written 
before x

visvis



Transactional IRIW = long fork

x.write(1) y.write(1)

so so

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0



Transactional IRIW = long fork

x.write(1) y.write(1) x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis

Not serializable, allowed by transactional causal consistency 
and parallel snapshot isolation



• Is an application robust against a particular 
consistency model?

Application behaves the same as when using a strongly 
consistent database

Application behaves the same whether using a PSI or 
a serializable database: ⟦A⟧PSI = ⟦A⟧SER

Robustness



Robustness

‣ Every program can generate multiple transactions 
at run time

‣ Simplification: every program is in its own session

• Application: set of transactional programs {P1, ..., Pn}

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}



Robustness

‣ Every program can generate multiple transactions 
at run time

‣ Simplification: every program is in its own session

• Application: set of transactional programs {P1, ..., Pn}

• Checking robustness via static analysis:        
over-approximate the set of program behaviours

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}
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...T1 T2 T3

T1

T2

T3

T4

T4

∀ PSI execution

∃ serial execution

⬇

First determine if a given PSI execution is serializable

vis/~

to/~

E/~

Each read returns the value written by the last write



...T1 T2 T3

Each read returns the value written by the last write

T1

T2

T3

T4

T4

∀ PSI execution

∃ serial execution

⬇

Build constraints on the serial order: relations on E/~ that 
should be included into to/~ - transactional dependencies

vis/~

to/~

E/~



Write-read dependency (wr)

T ⟶ S ⟺ S reads a value written by T

wr
x.write(val)T Sx.read : val

wr

Given a PSI execution (E, ~, vis) and T, S ∈ E/~
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Write-read dependency (wr)

T ⟶ S ⟺ S reads a value written by T

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of 

an object x visible to a read from x in S according to vis

wr

wr

to/~

Given a PSI execution (E, ~, vis) and T, S ∈ E/~
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Write-write dependency (wr)

T ⟶ S ⟺ S overwrites a value written by T

ww
x.write(old)T Sx.write(new)

Given a PSI execution (E, ~, vis) and T, S ∈ E/~
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Write-write dependency (wr)

T ⟶ S ⟺ S overwrites a value written by T

ww
x.write(old)T Sx.write(new)

ww

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

ww

to/~

T ⟶ S ⟺ T and S contain writes to the same 

object x and T ⟶ S
vis/~



T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S
wr ww

Read-write dependency (rw)



T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S
wr ww

wr

ww

x.write(old)

Read-write dependency (rw)

Q
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x.read : oldT Sx.write(new)
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wr

ww

x.write(old)

Read-write dependency (rw)

Q

wr wwrw



T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

to/~
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wr

ww

x.write(old)

Read-write dependency (rw)
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T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw
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T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)
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T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

to/~

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

✘
new

Q

to/~

wr wwrw



T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

to/~

wr wwrw



• PSI execution (E, ~, vis) ➜         
dependency graph (E/~, wr, ww, rw)

• Theorem: If the dependency graph is 
acyclic, then the execution is serializable

Dependency graphs



If (wr ∪ ww ∪ wr) is acyclic, then there is a total order 
on E/~ containing it [order-extension principle]  ➜   
the desired order to

...T1 T2 T3

T1

T2

T3

T4

T4

⬇

wr ∪ ww ∪ wr

to/~ ➜ to



If (wr ∪ ww ∪ wr) is acyclic, then there is a total order 
on E/~ containing it [order-extension principle]  ➜   
the desired order to

...T1 T2 T3

T1

T2

T3

T4

T4

⬇

wr ∪ ww ∪ wr

to/~ ➜ to

Each read returns the value written by the last write in to?



wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an object x 
visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x and T ⟶ S

vis/~

wr

ww

rw
x.read : oldT Sx.write(new)

x.write(old)

rw
T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr ww

Q
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If the dependency graph (E/~, wr, ww, rw) of a PSI execution 
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

Set of corresponding dependency graphs (E/~, wr, ww, rw)

Check wr ∪ ww ∪ wr is acyclic in each graph

⬇
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If the dependency graph (E/~, wr, ww, rw) of a PSI execution 
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

Set of corresponding dependency graphs (E/~, wr, ww, rw)

Check wr ∪ ww ∪ wr is acyclic in each graph

⬇

⬇

⬇

Over-approximate the set of possible dependency 
graphs from the program text



Static dependency graphs

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

• Nodes: transactional programs

• Edges: over-approximations of dependencies wr#, ww#, rw#
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Static dependency graphs

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

• Nodes: transactional programs

• Edges: over-approximations of dependencies wr#, ww#, rw#

• T ⟶ S ⟺ ∃x. writes(T, x) ∧ reads(T, x): over-approximated 
by static analyses (or even by hand)

• Represents an over-approximation of all dynamic dependency 
graphs that can be produced by the programs

ww#, rw#, wr#

wr#



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

Transactions arising from the same program map to the 
same node
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  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

Edge in the dynamic graph ➜ corresponding edge in 
the static graph
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  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

Edge in the dynamic graph ➜ corresponding edge in 
the static graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

reads(x) writes(x)

Edge in the dynamic graph ➜ corresponding edge in 
the static graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

reads(x) writes(x)

Edge in the dynamic graph ➜ corresponding edge in 
the static graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

reads(x) writes(x)

Cycle in the dynamic graph ➜ cycle in the static graph         
If the static graph is acyclic, so is the dynamic one



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph

reads(x) writes(x)

Cycle in the dynamic graph ➜ cycle in the static graph         
If the static graph is acyclic, so is the dynamic one

We're considering PSI executions: 
some cycles can't occur



wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an 
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x 

and T ⟶ Svis/~



wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an 
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x 

and T ⟶ Svis/~

wr ∪ ww ⊆ vis/~  -  acyclic



wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an 
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x 

and T ⟶ Svis/~

wr ∪ ww ⊆ vis/~  -  acyclic

PSI allows only cycles in (wr ∪ ww ∪ rw) with at 
least one rw edge



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

⬆

T3

Dynamic dependency graph ➜ a subgraph of the static 
dependency graph



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜                    
don't represent robustness violations

⬆

T3



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜                    
don't represent robustness violations

• Enough to check no cycles in (wr ∪ ww ∪ rw) with ≥1 rw

⬆

T3



tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜                    
don't represent robustness violations

• Enough to check no cycles in (wr ∪ ww ∪ rw) with ≥1 rw

• Enough to check no cycles in (wr# ∪ ww# ∪ rw#) with ≥1 rw#

⬆

T3



PSI allows only cycles in (wr ∪ ww ∪ wr) with 
at least two distinct rw edges

Tightening up the criterion



rw

(wr ∪ ww)+ ⊆ vis/~

x.read : old x.write(new)

PSI allows only cycles in (wr ∪ ww ∪ wr) with 
at least two distinct rw edges

Tightening up the criterion



wr ⊆ vis/~

ww ⊆ vis/~
rw

(wr ∪ ww)+ ⊆ vis/~

x.read : old x.write(new)

x.write(old)

PSI allows only cycles in (wr ∪ ww ∪ wr) with 
at least two distinct rw edges

Tightening up the criterion



wr ⊆ vis/~

ww ⊆ vis/~
rw

(wr ∪ ww)+ ⊆ vis/~

✘

x.read : old x.write(new)

x.write(old)

PSI allows only cycles in (wr ∪ ww ∪ wr) with 
at least two distinct rw edges

Tightening up the criterion



PSI allows only cycles in (wr ∪ ww ∪ wr) with 
at least two distinct rw edges

Tightening up the criterion

If (wr ∪ ww ∪ wr) for a PSI execution contains a 
cycle, then it also contains one:

‣ with at least two rw edges, and 

‣ where all rw edges are due to distinct objects

⬆



x.write(1)

y.read(): 0

Transactional Dekker = write skew

x.write(0)

y.write(0)
vis/~

y.write(1)

x.read(): 0

vis/~



x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

y.write(1)

x.read(): 0

vis/~



x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

y.write(1)

x.read(): 0

vis/~



x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~



x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

rw(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~



x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

rw(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~

Cycle with 2 rw on different objects: allowed by PSI



x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork



vis/~, wr(y)

vis/~, wr(x)
x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork



vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork



vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

rw(y)

Transactional IRIW = long fork



vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

rw(y)

Cycle with 2 rw on different objects: allowed by PSI

Transactional IRIW = long fork



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

vis/~

x.read: 0

x.write(1)

vis/~ vis/~

vis/~



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)
rw(x)



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)

rw(x)

rw(x)



x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)

rw(x)

rw(x)

The 2 rw edges are due to the same object



Static robustness criterion

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

If a dependency graph of a PSI execution contains a cycle, 
then it also contains one:

‣ with at least two rw edges, and 

‣ where all rw edges are due to distinct objects



Static robustness criterion

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects 

If a dependency graph of a PSI execution contains a cycle, 
then it also contains one:

‣ with at least two rw edges, and 

‣ where all rw edges are due to distinct objects



Static robustness criterion

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects 

⟹ no such cycles in wr ∪ ww  ∪ rw 

If a dependency graph of a PSI execution contains a cycle, 
then it also contains one:

‣ with at least two rw edges, and 

‣ where all rw edges are due to distinct objects



Static robustness criterion

tx lookup() { 
  return acct.bal 
}

tx deposit(n) { 
  acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects 

⟹ no such cycles in wr ∪ ww  ∪ rw 

⟹ application is serializable

If a dependency graph of a PSI execution contains a cycle, 
then it also contains one:

‣ with at least two rw edges, and 

‣ where all rw edges are due to distinct objects



deposit(1, €100)
lookupAll : 

1/€100, 2/€0

vis/~

deposit(2, €100)
lookupAll : 

1/€0, 2/€100

Non-robustness

tx lookupAll() { 
  return acct[*].bal
}

tx deposit(i, n) {
  acct[i].bal += n
}

rw#(*)

wr#(*)

ww#, rw#, wr#(*)

vis/~



• Methods for other consistency models are similar

• Basis for practical tools [Warszawski et al., 
SIGMOD'17, Brutschy et al., PLDI'18; Nagar et al., 
CONCUR'18]

• Static criterion on graphs sometimes used to 
prune the search space before a more expensive 
analysis with more semantic information

• Can be used for bug-finding in the absence of 
specifications

Automatic robustness checking



Automatic robustness checking



Implementing strong consistency



• So far implementations have been lightweight:     
"an operation can only be delivered after all its causal 
dependencies"

• In reality, designing consistency protocols and 
proving them correct is very difficult!

• Even more so for strong consistency protocols

Designing consistency protocols



Strong consistency

c.withdraw(100) : ?c.withdraw(100) : ?



Strong consistency

c.withdraw(100) : ?c.withdraw(100) : ✔

Sombody has to order commands 



c1 c2 c3

Single server, clients send commands to the server

Strong consistency



c1 c2 c3

Server totally orders commands and computes the 
sequence of results

r1, r2, r3

c1, c2, c3

Strong consistency



c1 c2 c3

Servers can crash! Need a fault-tolerant solution

r1, r2, r3

✘

c1, c2, c3

Strong consistency



c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

Clients send commands to all replicas
Replicas may receive commands in different orders

State machine replication



c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

A distributed protocol totally order commands:
needs synchronisation

State machine replication



c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

r2, r1, r3

c2, c1, c3 c2, c1, c3 c2, c1, c3

Operations are deterministic ⟹ 
replicas compute the same sequence of results

State machine replication



c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

c2, c1, c3 c2, c1, c3

Implements sequential consistency (in fact, linearizability)

State machine replication

✘



c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

c2, c1, c3 c2, c1, c3

SMR requires solving a sequence of consensus instances: 
agree on the next command to execute

State machine replication

✘



Consensus

c1

• Several nodes, which can crash

• Each proposes a value

c2 c3



Consensus

c1

c2

• Several nodes, which can crash

• Each proposes a value

• All non-crashed nodes agree on a single value

c2 c3

c2

✘



Consensus

c1

c2

• Challenge: asynchronous channels ⟹       
can't tell a crashed node from a slow one!

• Assume only a minority of nodes can crash:     
a majority reach an agreement

c2 c3

c2

✘



The zoo of consensus protocols

• Viewstamped replication 
(1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008) 

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)
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The zoo of consensus protocols

• Viewstamped replication 
(1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008) 

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)

Complex protocols: constant 
fight for better performance



















Broken [Michael et al., DISC'16]



Another application: blockchain

• Blockchain = using consensus to agree 
on a sequence of blocks in a ledger

• Tolerates malicious behaviour: some 
nodes may deviate from the protocol

• Many protocols descended from 
Paxos

c1
c2
c3
c4
....





[PODC'19]



[PODC'19]



v1 v2 v3

• 2f+1 nodes, at most f can crash

• Each node proposes a value

• All non-crashed nodes agree on a single value

1 2 3



v1 v2 v3

1 2 3



v1 v2 v3

• Acceptors = members of parliament:                   
can vote to accept a value, majority (quorum) wins

1 2 3

Acceptor Acceptor Acceptor



v1 v2 v3

• Acceptors = members of parliament:                   
can vote to accept a value, majority (quorum) wins

1 2 3

Acceptor Acceptor Acceptor

Leader

• Leader = parliament speaker:                           
proposes its value to vote on

• Good for state-machine replication: can elect the leader 
once and get it to process multiple commands



1 2 3

Leader ?

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



1 2 3

Leader#: 2

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



Leader#: 2

ok1 2 3

Leader#: 2

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority

✘



Leader#: 2

1 2 3

Leader#: 2 ✔

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority

✘



Leader#: 2

1 2 3

Leader#: 2 ✔

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

✘



Leader#: 2

1 2 3

Leader#: 2 ✔

v2

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

✘



Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔

✘ok

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔

✘ok ✘

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

✘✘

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Phase 2: the leader gets a quorum of acceptors to 
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum 
of acceptors to accept its authority



Leader#: 3
Accepted: v3

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Problem: node 3 may wake up, form a quorum of 
1 and 3, and accept value v3

Leader#: 3 ✔
Accepted: v3 ✔
Reply v3 to client



Leader#: 3
Accepted: v3

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Problem: node 3 may wake up, form a quorum of 
1 and 3, and accept value v3

Leader#: 3 ✔
Accepted: v3 ✔
Reply v3 to client

• Need to ensure once a value is chosen by a quorum, 
it can’t be changed

• Use ballot numbers to distinguish different votes: 
unique for each potential leader



1 2 3

Leader#: ?
Ballot#: 0
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

• Phase 1: a prospective leader choses a ballot b and 
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller



1 2 3

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

b

Leader#: ?
Ballot#: 0
Accepted: ?

• Phase 1: a prospective leader choses a ballot b and 
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: ?

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 1: a prospective leader choses a ballot b and 
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

b, v2

• Phase 2: the leader sends its value tagged with its 
ballot number

• Acceptor only accepts a value tagged with the 
ballot it is in



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 2: the leader sends its value tagged with its 
ballot number

• Acceptor only accepts a value tagged with the 
ballot it is in



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 2: the leader sends its value tagged with its 
ballot number

• Acceptor only accepts a value tagged with the 
ballot it is in



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

• Need to ensure once a value is chosen by a quorum, 
it can’t be changed

• Need do change Phase 1 to restrict which values 
can be proposed



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: 3
Ballot#: bʹ > b
Accepted: ?

bʹ



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ > b
Accepted: ?

ok, v2@b

• Phase 1: acceptor sends to the prospective leader 
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader 
proposes the value accepted at the highest ballot 
number



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

ok, v2@b

• Phase 1: acceptor sends to the prospective leader 
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader 
proposes the value accepted at the highest ballot 
number



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

• Ensures the value chosen will not be changed ⟹ 
nodes don't disagree about the chosen value

• Phase 1: acceptor sends to the prospective leader 
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader 
proposes the value accepted at the highest ballot 
number

ok, v2@b



1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

Key invariant: If a quorum Q accepted a value v at ballot 
b, then any leader of a ballot bʹ > b will also propose v

ok, v2@b

• Ensures the value chosen will not be changed ⟹ 
nodes don't disagree about the chosen value



• Invariant: If a quorum Q accepted a value v at ballot b, then any leader 
of a ballot bʹ > b may only propose v

Proof of the key invariant



• Invariant: If a quorum Q accepted a value v at ballot b, then any leader 
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• Invariant: If a quorum Q accepted a value v at ballot b, then any leader 
of a ballot bʹ > b may only propose v

• Fix an execution of a protocol and assume that in this execution Q 
accepted v@b.

• We prove by induction on bʹ that: for any bʹ > b, leader(bʹ) may only 
propose v.
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Multi-Paxos

c3, c2, c1 c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

State machine replication requires solving a sequence 
of consensus instances

• Naive solution: execute a separate Paxos instance 
for each sequence element

• Multi-Paxos: execute Phase 1 once for multiple 
sequence elements



Paxos verification

• Lots of work on formally verifying Paxos-like 
protocols in theorem provers or semi-automatic 
systems

• Fully automatic verification is an open problem



The end

• Spectrum of data consistency models in distributed 
systems 

• Downsides of weakening consistency can be 
mitigated by verification techniques and 
programming abstractions: replicated data types, 
transactions

• Proving correctness of consistency protocols is a 
verification challenge


