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® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability
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® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

® Requires synchronisation: contact other
replicas when processing a request
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® Expensive: communication increases latency

® |mpossible: either strong Consistency or

Availability in the presence of network Partitions
[CAP theorem]
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Availability in the presence of network Partitions
[CAP theorem]



Relaxing synchronisation
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Process an update locally, propagate effects to
other replicas later




Relaxing synchronisation
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Process an update locally, propagate effects to
other replicas later

+ Better scalability & availability

- Weakens consistency: deposit seen with a delay
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® Common application: collaborative
editing (Google Docs, Office Online)

® Would accept edits before
communicating with Google servers
or other clients




NoSQL data stores

New generation of data stores with high scalability and
low latency, but weak consistency
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So what consistency guarantees do they provide?
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post.write(photo)

*‘

post.read() : photo
access.read() : all




Anomalies

facebook

| access.write(noboss) |\

| post.write(photo) |~

*‘

| post.read() : photo |
Causal dependency: one
operation is aware of another

| access.read() : all |




Anomalies

| access.write(noboss) i\

| post.write(photo) |~

*‘

| post.read() : photo |
Causal consistency model:
disallows this anomaly

| access.read() : all |




Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?
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eventually reach a consistent state™
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Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a greatvariety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, I present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective
In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.®

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-
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This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct
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ABSTRACT consistent and correct data.

F1 1s a distributed relational database system built at Designing  applications to cope with concurrency

Google to support the AdWords business. F1 is a hybrid anomalies in their data is very error-prone, time-
database that combines high availability, the scalabilitv of consuming, and ultimately not worth the performance
NoSQL systems like Bigtable, and the consistency and us- gatfis.




Strong vs weak consistency

® Pay-off from weakening consistency often worth it:
higher scalability, lower latency in geo-distribution,
offline access

» Both strong and weak systems used in industry

® But programmers need help in using it:
» Programming abstractions for weak consistency

» Methods for reasoning about how weakening
consistency affects application correctness



Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency
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Microsoft®

SQL Server
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Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency
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Granularity of Locks apnd Degreeg of Consistency
in a Shared Data Base

Je.N. Gray
R.A. Lorie
G.KR. Putzolu
I.L. Traiger

IBM Research Laboratory
San Jose, California

ABSTRACT: In the first part of the paper the problem of choosing
the granularity (size) of lockable objects is introduced and the
related tradeoff between concurrency and overhead is discussed. A
locking protocol which allows simultaneous 1locking at various
granularities by different transactions is presanted. It is based
on the introduction of addi+tional lock modes besides the
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ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT

In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and
deployed on over 2M websites. We identify and verify 22 critical
ACIDRain attacks that allow attackers to corrupt store inventory,
over-spend gift cards, and steal inventory.

1 | def withdraw(amt, user_.id): (a)
2 bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal — amt, user_id)

1 | def withdraw(amt, user_.id): (b)
2 beginTxn()

3 bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal — amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 > $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SELECT FOR UPDATE is used. While this scenario closely re-
sembles textbook examples of improper transaction use, in this
paper, we show that widely-deployed eCommerce applications
are similarly vulnerable to such ACIDRain attacks, allowing
corruntion of annlication state and theft of assets.
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Weak shared-memory models

® Multicore processors: x86, ARM

Multiprocessor ~ distributed system

® Programming languages: C/C++, Java

Due to compiler optimisations




This course

Programming abstractions for weak consistency
Methods for specification

Methods and tools for reasoning about
application correctness and consistency needs

Implementing strong consistency



Strong consistency and
the CAP theorem



Data model

® Database system manages a set of objects:
Obj = {x,y,z...}

® Obijects associated with types Type = {T, ...}

® For each type T € Type:

» Set of operations Opr, including arguments

» Return values:Valt



Data model

® |nteger register
>  Opintreg = {read, write(k) | k € Z}

4 Valintreg — Z U {Ok}

® Counter:

»  Opcounter = {read, add(k) | k € N}

) Valcounter — N U {Ok}



Sequential semantics

® Semantics in an ordinary programming language

® For each type T € Type: set of states Stater,
initial state Op € Stater

) Stateintreg — Z

» Statecounter = N

® Semantics of an operation op:

4 [[OP]]vaI e Stater — Valuer

) [[OP]]state e Stater — Stater



Register semantics

State = Z

[write(k) Istate(O) = k
[write]va(O) = ok
[read]state(0) = O

[read ]]val(o-) =0



Counter semantics

State = N
[add(k)Isute(0) = O+k
[add(k)vai(O) = ok
[read]state(0) = O

[read ]]val(o-) =0



Counter semantics

State = N
[add(k)Istee(0) = O+k
[add(k)]vai(O) = ok
[read]state(0) = O

[read]va(0) = O

read-only operation:
H:OP]]state(O-) =0




Counter semantics

State = N
[add(k)Istee(0) = O+k
[add(k)]vai(O) = ok
[read]state(0) = O

[read]va(0) = O

update operation

read-only operation:
[[OP]]state(O-) =0




Consistency specification

— . A

request request| ‘ :
responsec| response|
request? request?
response; FresSponse;

Clients issue requests and get responses:
history records the interactions in a single execution
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request request| ‘ :
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request? request?
response; FresSponse;

Assume every request yields a response
No next request until the previous one responded



Consistency specification

— \A

request| request ‘ )
response| response|
requesty request

9 } event e
responsez reSsponse?

Assume every request yields a response
No next request until the previous one responded



Consistency specification

obj(e) opge) rval(e)

B "< »,'
x.write(42) : ok

request) A ,5

request
response| response|
requesty request
g } event e
responsez reSsponse?

Assume every request yields a response
No next request until the previous one responded



Consistency specification

— \gl

request request; .V
response| response|
request; request;

L } event e
response; response;
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Consistency specification

/
request; rec
response; res
requests rec
response; res

DONSE?

} event e

\ 4

session
(= process, thread)

Session order so: the order in which events are issued:
union of total per-client total orders



Consistency specification

/

request; rec
response; res
requests rec
response; res

DONSE?

Total order: transitive and irreflexive
relation ordering any pair of
elements one way or another

} event e

v

session
(= process, thread)

Session order so: the order in which events are issued:
union of total per-client total orders




Consistency specification

/

request;
response|
request;
response;

red
res
red
res

= History H = (E, so)

~A

uest t )
DONSE|
uest

DONSE?



Consistency specification

= History H = (E, so)

request request| ‘
responsec| response|
request? request?
response; FresSponse;

Consistency model - a set of histories
the set of allowed database behaviours



Visualising histories

x.read: 0

lso

y.write(l)

lso

z.write(2)

lso

c.add(1)

lso

c.add(1)

x.write(l)

lso

c.add(l)

lso

c.read: |

lso

Z.read: 2



Visualising histories

x.read: 0

lso

y.write(l)

lso

z.write(2)

lso

c.add(1)

lso

c.add(1)

x.write(l)

lso

c.add(l)

lso

c.read: |

lso

Z.read: 2

A
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under arbitrary clients
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Using a consistency model

® Consistency model # behaviour of the database
under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P ] = {)( c [P] \ history(X) S =7f}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);



Using a consistency model

® Consistency model # behaviour of the database

under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P.#] = {X e [P] ‘ hiStOI”)’(X) S t7£}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);

[P1:

x.read(): 42; x.read(): 42;
x.read(): 42; x.read():43;
y.write(l); y.write(0);



Using a consistency model

® Consistency model # behaviour of the database

under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P.#] = {X e [P] ‘ hiStOI”)’(X) S t75}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);

[P A]:

[P1:
x.read(): 42; x.read()742;
x.read(): 42; x.regd(): 43;
ywrite(l);  yrite(0);




Defining a consistency model

® Operational specification: by an idealised
implementation

® Axiomatic specification: more declarative



Strong consistency operationally

X: O

5

X: C;'A= 0

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order



Strong consistency operationally

x.write(42)
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x:0=0

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order
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® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply
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order



Strong consistency operationally

x.write(42)
/\
x: 0 =0
x.write(42)
X: 0 =42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order



Strong consistency operationally

& x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order



Strong consistency operationally

@ x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42
Xx.read : 42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order



Strong consistency operationally

@ x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42
Xx.read : 42

Could write a formal operational semantics: maintain the state
of the database, clients and sets of messages between them



Strong consistency operationally

x.write(42)

/\ x.read

x.write(42)
X: 0 =42
Xx.read : 42

e Consistency model = {H | 3 execution with history H
produced by the abstract implementation}

® Sequential consistency: one form of strong consistency

® Weaker than linearizability: takes into acount the duration of
operations



Operational specifications

® | et one understand intuitions behind
implementations

® May become unwieldy for weaker consistency
models

® Sometimes overspecify behaviour



Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how
operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ri, .., ra. (H, 11, ..., 1n) E

<4
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Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how

operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ry, ..., rn. (H, 11, ..., )

= of)

Consistency model = {H | 3 execution with history H

produced by the abstract implementation}




Sequential consistency axiomatically

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

& x.write(42)
X.read
__,/ W LD



Sequential consistency axiomatically

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

& x.write(42)
X.read
s Ty
_» W L P

Abstract execution: (H, to) = (E, so, to), where to € EXE

SC = {(E, so) | 3 total order to. (E, so, to) & ofsc}




(E, so, to) & I'sc iff

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to



(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)



(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)



(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)Istate(...[op(€e1)Istate(T0))

el, ..., en = to-l(e).select(obj(e)).sort(to)



(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)lstate(...LOp(e1) Istate(O0))

el, ..., en = to-l(e).select(obj(e)).sort(to)

Integer registers: a read returns the value written by
the last preceding event in to (or O if there are none)

x.write(0); x.write(42); x.read: 42



(E, so, to) &= f'sc iff SC ={(E, so) | 3to. (E, so, to) = ofsc}

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)lstate(...LOp(e1) Istate(O0))

el, ..., en = to-l(e).select(obj(e)).sort(to)

Integer registers: a read returns the value written by
the last preceding event in to (or O if there are none)

x.write(0); x.write(42); x.read: 42



SC example

SC = {(E, so) | 3to. (E, so, to) E Isc}

x.read: 0 x.write( )
y.w}istoe( ) c.adl;c() )
z.w&is':e(Z) c.relasc: a
c.adlcslz ) z.refccl): 2

lso

c.add(1)




SC example

SC ={(E, so) | 3to. (E, so, to) = s}

x.read: 0 x.write( )
y.write(l) c.add(l)
lso o lso
z.write(2) c.read: |
c.add(l) z.read: 2

lso

c.add(1)




Operational vs axiomatic

x.write(42)

Nk |

® Got rid of messages between clients and the
server, but didn't go far from the operational spec

® There's more difference for weaker models:
complex processing can be concisely specified by
axioms



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"




Dekker example

Process A: Process B:

x.write() y.write(l)

if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Claim: under sequential consistency,
there can be at most one winner




Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO SO
\ 4 \
y.read(): 0 x.read(): O

Need to construct a total order to



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

\ 4 \
y.read(): 0 x.read(): 0

so C to



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

\ 4 \
y.read(): 0 x.read(): 0
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x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

v \
y.read(): 0 x.read(): 0
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x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

v \
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() X y.write(l)
O
SO, tO / S0, tO
v \
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() X y.write(l)
O
S0, tO / S0, tO
\ 4 v
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
to to
SO, to SO, to
\ 4 v
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write



Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
to to
SO, to SO, to
\ 4 \
y.read(): 0 x.read(): O

But to must be acyclic, so no such total order
exists - QED.



CAP theorem

No system with at least 2 processes can implement a

read-write register with strong consistency, availability,
and partition tolerance

® strong consistency = sequential consistency
® availability = all operations eventually complete

® partition tolerance = system continues to function
under permanent network partitions

(processes in different partitions can no longer
communicate in any way)



CAP proof

No system with at least 2 processes can implement a
read-write register with strong consistency, availability,
and partition tolerance

® By contradiction: assume the desired system exists
® Run some experiments with the Dekker program

® Network is partitioned between the two processes

Process A: Process B:

x.write(1) y.write(l)

if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"




Process A Process B

x.write(l)
if (y.read() == 0)
print "A wins"

® Process A runs its code, process B is idle



Process A Process B

execution Xa | x.write(l)

of process A | if (y.read() == 0)
print "A wins"

® Process A runs its code, process B is idle

e Availability = A must terminate and produce an
execution Xa



Process A Process B

execution Xa | x.write(l)
of process A | if (y.read() == 0)
print "A wins" ¢/

® Process A runs its code, process B is idle

e Availability = A must terminate and produce an
execution Xa

e Sequential consistency => Xa must print "A wins"



execution Xa
of process A

Process A Process B
x.write(l)
if (y. read() =
print "A wins' t/
Process B
y.write(l)

if (x.read() == 0)
print "B wins" ¢/

Process A I

® Process B runs its code, process A is idle

execution Xg
of process B

e Availability = B must terminate and produce an

execution Xg

e Sequential consistency => Xg must print "B wins"



Process A

execution Xa | x.write(l)
of process A | if (y.read() == 0)

print "A wins" ¢/
Process B
y.write(l) execution Xg
if (x.read() == 0) | of process B
print "B wins" ¢/

® Network is partitioned in both experiments:
processes didn't receive any messages

® Xa; Xg is an execution of A || B, i.e., Dekker

e Xa; Xg hot SC = contradiction, QED



Process A

execution Xa | x.write(l)
of process A | if (y.read() == 0)
print "A wins" ¢/

Process B

y.write(l) execution Xg
if (x.read() == 0) | of process B

print "B wins" ¢/

® Processes have to talk to each other (synchronise)
to guarantee strong consistency



Eventual consistency and
replicated data types,
operationally



System model

® Database system consisting of multiple replicas
(= data centre, machine, mobile device)

® FEach replica stores a copy of all objects



System model

* — by £

Replicas can communicate via channels

Asynchronous: no bound on how quickly a
message will be delivered

(in particular, because of network partitions)

Reliable: every message is eventually delivered

(so every partition eventually heals)

For now: replicas are reliable too



Righ availability

® Clients connect to a replica of their choice



@ wite()  High availability =~ ywrie() &
@ 3 3

® Clients connect to a replica of their choice



@ gﬁ(l) Righ availability it Q\

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others



@ x.write(l) H|gh avallablllty ?ﬂmﬂﬂ
Lh] 5 @ ok

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others

® Propagate effects to other replicas later



@ wite()  High availability =~ ywrie()

LT = gl o

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others

® Propagate effects to other replicas later

® Always available, low latency, but may not be
strongly consistent



) High availability 0

® Quiescent consistency: if no new updates are made
to the database, then replicas will eventually
converge to the same state

® |ater more precise and stronger formulations of
eventual consistency



Replicated data types

® Need a new kind of replicated data type: object
state now lives at multiple replicas

® Aka CRDTs: commutative, convergent, conflict-free

Just one type: operation-based replicated data types

® Object => Type = Operation signature

For now fix a single object and type



Sequential semantics recap

Set of states State
Initial state Op € State
[opIval € State — Value

[oplstate € State — State



Replicated data types

§

O

Object state at a replica: 0 € State



Replicated data types

op |

[[OP]]vaI

Object state at a replica: 0 € State

Return value: [op]val € State = Value



Replicated data types

| £ £

O E

| op |- i
O_I

[oplva -

Object state at a replica: 0 € State

Return value: [op]val € State = Value

The operation affects a different state g'!



Replicated data types

) 1}

O
_op |- [op].s(c |
[op]val E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)



Replicated data types

) 1}

O
&l " [ OP Jes( o )
[op]val E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)



Replicated data types

) 1}

O
\il = [ OP Jlesr( 0) ,
[[OP]]vaI EffeCtOr’ E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)



Replicated data types

) 1}

O
LIOP B [ OPler(a) ,
[oplva EffeCtOl‘ E
[oples(T)(T)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)



Counter

) 3

O
&' = [ OP]]eff( 0) ,
[[OP]]vaI E
[oples(T)(T7)
State = N

[read()Iva(O) = O
[read()]e(0) = AC.O



Counter

§ §

O
oP |- [ OPler(a) ,
[[OP]]vaI E
[oples(T)(T7)

[add(100)]ef(0) = AC’. (0" + 100)



Counter

) 3

O
&' = [ OP Jes( 0) 50
[op]val —
[oples(T)(T7)

[add(100)]ef(0) = AC’. (0" + 100)



Counter

) 1}

O
&I = [ OP Jes( 0) 50
[op]val —
|50

[add(100)]ef(0) = AC’. (0" + 100)



Counter

§

¥

O
&' = [ OP Jes( 0) 50
[op]val —
|50

[add(100)]ex(0) = AC’. (0 + 100)



2 2

count =0 count =0

| add(100) | | add(200) |




2 2

count =0 count =0
AG’. 100 AG’. 200
| add(100) t :i add(200) |
-« —>

count = |00 count = 200



count=0 count=0

AG’. 100 AG’. 200
add(100) add(200)
e —>
count = |00 count = 200
count = 200 count = |00

Quiescent consistency violated: all updates have been
delivered, yet replicas will never converge



Ensuring quiescent consistency

® [Effectors have to commute:

Vopi,op2, T, 02. [opi]

[opa]

(1) ;
f(02) ;

[opa]

[opi]

eff(02) =
f(O1)

® Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)



Ensuring quiescent consistency

® [Effectors have to commute:

Vopi, op2, 01, 02. [opi]ef(T1) ; [op2llef(02) =
[op2]leff(O02) ; [opilef(O1)

® Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)

® Quiescent consistency: if no new updates are made to
the database, then replicas will eventually converge to
the same state

(because update get eventually delivered)



Replicated data types

Counter
Last-writer-wins register
Multi-valued register
Add-wins set
Remove-wins set

List



Read-write register

s o8

writle( ) wrilte(Z)



Read-write register

VEET
"

write(l)



Read-write register

s 08

write(1) Conflict! write(2)



Read-write register

s 08

writle(l) Conflict! wrilte(2)

® No right or wrong solutions: depends on the
application requirements

® E.g,could report the conflict to the user:
multi-valued register



Last-writer-wins register

80 08

writle( ) wrilte(2)

® Shared memory: an arbitrary write will win
® Conflict arbitrated using timestamps: last write wins

® |ink to shared-memory consistency models



Last-writer-wins register

an 0a

write( 1) write(2)

State = Value X Timestamp

[read()Ivai(v, t) = v



Last-writer-wins register

A 18

writle( ) write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)



Last-writer-wins register

A = (g

write(l) 2 \write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueT$() in
AV, t). if thew > t’ then (Vnew, thew) else (v, t)



Last-writer-wins register

8 = 08

| 0

P

[write(Vnew) lef(V, t) =

write( 1) write(2)

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)



Last-writer-wins register

8 = 08

| 0

P

[write(Vnew) lef(V, t) =

write( 1) write(2)

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)



Last-writer-wins register

A == [g

Writle( I) ‘I///tz Write(Z)
readl(): 2
[write(Vnew) lef(V, t) =

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, thew) else (v, t)



Last-writer-wins register

8 = 08

| 0

writle( ) ><

readl(): 2 readl(): 2

write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) €lse (V, t)



Last-writer-wins register

80 = na

| 0

writle( ) ><

readl(): 2 readl(): 2

write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)



Last-writer-wins register

80 = na

writle( ) ><

readl(): 2 readl(): 2

write(2)

Effectors are commutative: the write with the highest
timestamp wins regardless of the order of application



Generating timestamps

® (Can use wall-clock time at the machine

® But can lead to strange results when clocks
are out of sync



-
=

A

]
write(l)



A 8o

]
write(l) —

read: |

wrilte(2)



ai

write(l) -

T

=18

t >t

read: |

wrilte(2)



an 8o

]
write(l) -

t >t reald: I

' t2
write(2) -







® Undesirable: 2 was meant to supersede |



® Undesirable: 2 was meant to supersede |

® Use logical (Lamport) clocks instead



Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |




Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |

write(l) |

time = 2




Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |
write(l) |
time = 2

write(2) 2



Lamport clock

Replica maintains a counter; incremented on each operation:

time = | time = |
write(l) | write(l) |
time = 2

write(2) 2



Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) | write(l) |
time = 2

write(2) 2

Timestamps need to be unique: ts = (CounterValue, ReplicalD)



Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)



Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

(cib,r)<(cpn)<=c<avc=caAar <nr)



Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r) (I,r1) < (1, r2)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

(cib,r)<(cpn)<=c<avc=caAar <nr)



A

time =

write(1)



At

time = t;

write(1)

time = t|+1

(tr, ri)



At

time = t;

write(l) —

(tr, ri)

ol

time = t

time = t|+1




A 8u

time = t| E
. ti, I 1 —
write(l) - (t. 1) time = ©
—>
time = t|+1 :

time = max{ty, t2}+1

When receiving an effector, bump up your clock above its
timestamp



At 8

time = t| E
. ti, I 1 —
write(l) - (t. ) time = ©
—>
time = t|+| :

time = max{ty, t2}+1

read: |

write(2)

When receiving an effector, bump up your clock above its
timestamp



At 8i

time = t| E
. ti, I 1 —
write(l) - (t. 1) time = ©
—>
time = t|+1 :
time = max{ty, t2}+1
read: |
> !
write(2)

When receiving an effector, bump up your clock above its
timestamp



Aty 81 all

time = t E 5
. t|’ i I — E
write(l) = (€, 1) time = © :
= E
time = t|+| - :
time = max{ty, ta}+]1 g
read: | 5
> : :
€ L 9) .- (tl'l'l, r2) E
write(2) -
-

read: 2

When receiving an effector, bump up your clock above its
timestamp



Replicated set

gl\ G cart = {book} [j @

cart.add(book) cart.remove(book)



Replicated set

{ & D cart = {book} D @

cart.add(book) Conflict! cart.remove(book)



Replicated set

.*QT D cart = {book} D @

cart.add(book) Conflict! cart.remove(book)

Should the remove cancel the concurrent add?
Depends on application requirements



Replicated set

gl\ [j cart = {book} G @

cart.add(book) Conflict! cart.remove(book)

Last writer wins: choose based on operation
time-stamps

Remove wins: cart =

Add wins: cart = {book}



Add-wins set

' A D cart = {book} D g

cart.add(book) cart.remove(book)

™~ ~

cart = {book}



Add-wins set

Q D cart = {book} D @

cart.add(book) cart.remove(book)

™~ ~

cart = {book}

® remove() acts differently wrt add() depending on
whether it's concurrent or not

® FEach addition creates a new instance:
State = set of pairs (element, unique id)



{(book, )}

add(book)

Each add() creates a new element instance:

[add(v)]e(0) = AGC’.(C" u {(v, uniqueid()})



P ——
!

-
{(book, )}

add(book) Aa’. 0" u {(book, 2)}

o

{(book, | )I, (book,2)}

Each add() creates a new element instance:

[add(v)]e(0) = AGC’.(C" u {(v, uniqueid()})



-
£

{(book, 1)}
add(t:)ook)

{(book, | )I, (book,2)}



1(book, 1)}
add(ti)ook)
{(book, | ) (book,2)}
read():: {book}

Instance ids ignored when reading the set:

[read()]va(0) = {v|{3id. (v,id)} € O)



2

{(book, 1)} {(boolk, 1)}
add(l:Dook) removle(book)

{(book, | )I, (book,2)}



< T < T
{(boolk, 1)} {(boolk, 1)}
add(t:)ook) removle(book)

{(book, | )I, (book,2)}

remove(v) removes all currently present instances of x:

[remove(V)]e(0) = AC. (TG \{(v,id) € G})



P ———
: 1 :
J l J
« W

{(boolk, 1)} {(boolk, 1)}

add(book) AO’. 0" \ {(book, |)} remove(book)

-

{(book, | )I, (book,2)} %

remove(v) removes all currently present instances of x:

[remove(V)]e(0) = AC. (TG \{(v,id) € G})



£

{(book, 1)}
add(t:)ook)
{(book, | )I, (book,2)}

{(bo:ok,2)}

remove(v) removes all currently present instances of x:

P —
l

| 1

< U

{(boolk, 1)}

AO’. 0" \ {(book, |)} remove(book)

D

[remove(V)]e(0) = AC. (TG \{(v,id) € G})



g

{(book, 1)}
add(l:)ook)
{(book, | )I, (book,2)}

{(bo;k,Z)}

g

{(boolk, 1)}
removle(book)

D



P ——
J i J
e »

{(book, 1)} {(book, 1)}

add(ti)ook) AT-0TUABook 2} remove(book)
{(book, ) (book,2)} @

{(book.2)) {(boc;k,Z)}

Effectors commutative => replicas converge



Take-aways

® Need to ensure commutativity to
guarantee quiescent consistency

® Need to make choices about how to
resolve conflicts



Replicated data type uses

® Provided by some data stores:

® |mplemented by programmers on their own:

'Pavpa' \!rk?m il e

SOUNDCLOUD
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Operational specification

® Given a database with a set of objects of replicated
data types

® Eventual consistency model = set of all histories
produced by arbitrary client interactions with the
data type implementations (with any allowed
message deliveries)

® |mplies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state



Eventual consistency and
replicated data types,
axiomatically



Anomalies

&

c.add(l)

c.read(): !



A
no
malies

/’_\
e —

\@

cadd(l)

c.read()* 0



Anomalies

c.read(): 0

Can be disallowed if the client sticks to the same replica:
Read Your Writes guarantee



Anomalies

-
-

access.write(all)

&

access.write(noboss)

post.write(photo)

-

=
\



Anomalies

(] §

&

access.write(noboss)/

access.write(all) >

post.write(photo)



Anomalies

-
-

&

access.write(all)

access.write(noboss)/

post.write(photo)

post.read() : photo

access.read() : all



Anomalies

R B
= =
& A

access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all



Anomalies

e — P ——
1 i
: :

R . R s

- S

access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all

Causality violation: disallowed by causal consistency



access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all

Causality violation: disallowed by causal consistency



Specification

® | ots of replicated data type implementations: e.g.,
can send snapshots of object states instead of

operations

® | ots of message delivery guarantees: different
implementations of causal consistency

® Want specifications that abstract from
implementation details: both replicated data types
and anomalies



Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how
operations are processed inside the system

Abstract execution (H, ry, ..., rn)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ri, .., ra. (H, 11, ..., 1n) E

<4



Sequential consistency

(E,so) | 3 total order to. (E, so, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to



Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to



Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

Order inclusion
|. so C to axioms: anomalies

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to




Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

Order inclusion
|. so C to axioms: anomalies

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Return value axiom:
replicated data types




Execution: (E, so, vis, ar)

access.write(all)

ar SO

e Y
access.write(noboss)

SO

post.write(pﬁoto)

Vis

post.read() : photo

VIS
SO

access.read () :all



Execution: (E, so, vis, ar)

‘ Events '

Return
_value

access.write(all)

ar SO

Object Op

access.write(noboss) pc;st.réad() : phcfto

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all



Execution: (E, so, vis, ar)

access.write(all)

ar SO

access.write(noboss) post.read() : photo
Session o vis .

order vis

post.write(photo) access.read() :all

The order of requests by the same session



Execution: (E, so, vis, ar)

access.write(all)

ar

SO

access.write(noboss) post.read() : photo

SO

VIS
SO

Vis

post.write(pﬁoto) access.read () :all

Declaratively specify ways in which the
database processes requests



-

@ Lé'; ;/1 Q

access.write(all)

.

SO

access.write(noboss) post.réad () : photo

SO SO

post.write(pﬁoto) access.read () :all



g U U g

. Delivered? :
access.write(all) >
access.write(noboss) post.read() : photo

post.write(pﬁoto) access.read () :all



g U

Delivered?

doa

>

access.write(all)

SO

access.write(noboss)

SO

post.write(pﬁoto)

Visible!? :
post.read() : photo

SO

access.read () :all



Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all



Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

vis is irreflexive and acyclic



Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

vis is irreflexive and acyclic



- -

& A

x.write(1) x.write(2)
' t) >< 2
x.wrij:e(Z) C <o x.write( )
{x - 2} {x - 2}

System includes a time-stamping mechanism
that can be used in conflict resolution



- -

g : Arbitrated before : A

x.write(1) > X.write(2)
' t) >< 2
x.wrij:e(Z) C <o x.write( )
{x . 2} {x . 2}

System includes a time-stamping mechanism
that can be used in conflict resolution



Execution: (E, so, vis, ar)

access.write(all)

Arbltrgtlon . =
relation

access.write(noboss)

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution



Execution: (E, so, vis, ar)

access.write(all)

Arbltrgtlon . =
relation

access.write(noboss)

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution

ar is total on E and vis C ar



Data type specification

® How do | compute the return value of an event e!

® Only actions on the same object visible to e are important:
have been delivered to the replica performing e

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pF\oto) access.read () : noboss



Data type specification

® How do | compute the return value of an event e!

® Only actions on the same object visible to e are important:
have been delivered to the replica performing e

access.write(all)

al"l SO

access.write(noboss)

Context of e - projection of the
execution onto such actions

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss



Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

access.write(all)

access.write(noboss)

Vis

Vis

access.read() : noboss



Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

F for Last-Writer-Wins registers:
sort all actions according to ar
and return the last value written

access.write(all)

ar

access.write(noboss)

access.read() : noboss



Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

What gets taken into account
depends only on vis

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all



Counter

F: context of e = return value of e

c.add(l) c.add(2) c.add(3)

Vis Vis Vis

c.read(): 6

F: reads return the sum of all additions in the context



Counter

F: context of e = return value of e

c.add(1) cadd? " cadd(3)
c.read(): 6

Relations between events in the context don't matter



Counter with decrements

F: context of e = return value of e

c.add(l) c.add(Z)/ * Nc.subtract(4)
c.read(): - |

F: reads return additions minus subtractions



Multi-valued register

F: context of e = return value of e

x.write(1) xwrite(2) xwrite(3)
x.read(): !

F: reads return the set of all conflicting writes



Multi-valued register

F: context of e = return value of e

xwrite(1)  [xwrite?)] © [xwrite(3)]
x.read(): !

F: reads return the set of all conflicting writes



Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

v

x.read(): !

F: reads return the set of all conflicting writes



Multi-valued register

F: context of e = return value of e

" [xwrite(3) |

x.write(l) | xwrite(2)

Vis Vis Vis

v

x.read(): !

F: reads return the set of all conflicting writes



Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

x.reavd(): {1, 3}



Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

x.reavd(): {1, 3}

F: discard all writes seen by a write



Multi-valued register

F: context of e = return value of e

— is — s —
x.write(l) sewritell) x.write(3)

Vis Vis Vis

x.reavd(): {3}

F: discard all writes seen by a write



Add-wins set

F: context of e = return value of e

/Vi;\
set.add(book) set.add(book) set.remove(book)

Vis Vis Vis

v

set.read() :?



Add-wins set

F: context of e = return value of e

Vis

set.add(book) ' set.add(book) | | set.remove(book) |

Vis Vis Vis

v

set.read() :?



Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

v

set.read() :?



Add-wins set

F: context of e = return value of e

~— . ™

' set.add(book) | setadd(book) ~ [set.remove(book)]

Vis Vis Vis

v

set.read() :?



Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}



Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}

F: cancel all adds seen by a remove



Add-wins set

F: context of e = return value of e

— is =
set.add{beosk) setadd{beolk)- set.remove(book)

Vis Vis Vis

v

set.read() : @

F: cancel all adds seen by a remove



Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))



" " .
No causal cycles™ axiom

x.read(): 42

SO

\ 4
y.write(42)

Vis

Vis

y.read(): 42

SO

v
X.write(42)

® so U vis is acyclic: no causal cycles/out-of-thin-air values

® so and vis consistent with execution order



"No causal cycles” axiom

x.read(): 42 «_ ;. y.read(): 42
v v
y.write(42) vis x.write(42)

so U vis is acyclic: no causal cycles/out-of-thin-air values

so and vis consistent with execution order

Could result from speculative execution, uncommon in
distributed systems



"No causal cycles” axiom

x.read(): 42 «_ ;. y.read(): 42
v v
y.write(42) vis x.write(42)

so U vis is acyclic: no causal cycles/out-of-thin-air values

so and vis consistent with execution order

Could result from speculative execution, uncommon in
distributed systems

Some forms allowed by shared-memory models (ARM,
C++, Java): defining semantics is an open problem



Eventual visibility

@ X.write(42) x.read(): 0

x.read(): 0

lso

x.read(): 0

lso

x.read(): 0

ve € E.e - ffor all but finitely many f € E



Eventual visibility

& x.write(42) x.readl(): 0 ' A

x.read(): 0

Vis
l SO

x.read(): 42

lso

x.read(): 42

ve € E.e - ffor all but finitely many f € E



Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e 25 f for all but finitely many f € E




Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e 25 f for all but finitely many f € E

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same
state



Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state




Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))




Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)




Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

c.add(l) c.add(2) c.read: 0 c.add(I) c.add(2)

vis vis vis vis vis

v \

c.read(): 3 c.read(): 3



Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)
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database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value
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® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value

® Eventual visibility: each update is seen by all but finitely many ops



Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value

® Eventual visibility: each update is seen by all but finitely many ops

® Assuming finitely many updates, all but finitely many ops will
see all of these updates



Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Convergence': two operations with the same context
projection to updates return the same value

Eventual visibility: each update is seen by all but finitely many ops

Assuming finitely many updates, all but finitely many ops will
see all of these updates

Quiescent consistency: assuming finitely many updates, all but
finitely many operations on a given object return values

computed based on the same context: same op =—> same rval



Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E




Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar




Why is this spec sound wrt implementations!’ immary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar



Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/
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with any allowed message deliveries




Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

D,

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries




Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

D,

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

® YV concrete execution of the implementation with a
history (E, so)

® 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f




Specification soundness

® Proofs depend on replicated data types
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e 225 fve-=-f—=— e was issued before fin the

operational execution
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Ve € E.e — f for all but finitely many f € E

r.g Y -

® Channels are reliable (every partition eventually heals) —>
the effector of e is eventually delivered to

® From some point on, all events f; at the replica r; see e

® True for any replica = only finitely many events don't see e



Correctness of counters

Ve € E.rval(e) = Fype(obje))(context(e))

c.add(l)

Vis

c.add(2)

Vis

c.read(): 6

c.add(3)

Vis

F: reads return the sum of all additions in the context
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Correctness of counters

5

c.read: O

A read returns the value of the counter at the replica:

[read()[va(0) = O
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Correctness of counters

R v U

Vis w

c.read: O

c.add(v;

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

[add(V)]e(O) = AC’. (T + v)



Correctness of counters

0 o

c.add(v; \®\>
vis ‘ c:O '

c.read: O

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

= increments visible to the read, QED.
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Vis

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty



Correctness of registers

Ve € E.rval(e) = Fype(obje))(context(e))

x.write(l) > X.write(2)

\_/

x.read(): 2

F: reads return the last value in ar
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Correctness of registers

§

é‘x:(v,t)'

X.read: v

A read returns the value part of the register at the replica:
[read()Iva(v,t) = v



Correctness of registers
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x.write(v':) \®\>
‘ X: (V, t) '

X.read: v

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes
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AV, t).if thew > t' then (Vnew, thew) else (V, t)
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Correctness of registers

1 o

x.write(v':) \g\)
VIS
‘ X: (V, t) '

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)



Correctness of registers
- -
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x.write(v':) \®\)

Vis :
e 5 fem te < tf X (v 1) |

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)



Correctness of registers

=
x.write(v'; \®\

VIS :
e 2 fems to <t [xwo]

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

= the last write in arbitration out of the ones visible to
the read, QED.
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Proof technique summary

® YV concrete execution of the implementation with a
history (E, so)

e 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

® Construct vis from message deliveries and ar from
timestamps

® Prove invariants relating replica state with message
deliveries: the value of a counter at a replica is the
sum of all increments of the counter delivered to it

® Use the invariants to prove that return values of
operations correspond to data type specs




In-between eventual and
strong consistency



Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =% f for all but finitely many f € E




Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =% f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar
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Consistency zoo

Eventual consistency
Session guarantees
Causal consistency
Prefix consistency

Sequential consistency

Keep soundness justifications informal:
can be shown using previous techniques



Read Your VWVrites

c.add(100)

SO

c.read(): 0
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® An operation sees all prior operations by the same
process

® Session guarantees: clients only accumulate information



Read Your VWVrites

S [

c.add(100)

so C vis

SO Vis

c.read(): 00

® An operation sees all prior operations by the same
process

® Session guarantees: clients only accumulate information

® |mplementation: client sticks to the same replica



Monotonic Reads

c.add(100)
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c.read(): 00
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Monotonic Reads

& T c.add(100)

c.add(| OO) vis

Vis; so C vis l

SO Vis

c.read(): 00

® An operation sees what prior operations by the same
session see

® |mplementation: client sticks to the same replica



Causal consistency

access.write(all)
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Disallows causality violation anomaly
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access.write(all)
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post.write(photo) “access.read () :all

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Mandate that all actions that happened before an action
be visible to it
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to the read: write happened before the read

Mandate that all actions that happened before an action
be visible to it
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Mandate that all actions that happened before an action
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Causal consistency

(so U vis)* C vis I

post.read() : photo

VIS
A S SO
.
.
.
.
.

‘access.read() : all X

access.write(all)

ar SO

. Y
access.write(noboss)

.
.
.
.
SO .
VIS

post.write(photo)

Implies session guarantees: so C vis and vVis;so C vis
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Clients stick to the same replica
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access.write(noboss)/

access.write(all) >

post.write(photo)

Clients stick to the same replica
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access.write(all) >

post.read() : photo

access.write(noboss)/

post.write(photo) access.read() : all

Clients stick to the same replica



8 A

access.write(all) >

access.write(noboss)/ post.read() : photo

post.write(photo) access.read() : all

Cannot deliver an operation before
delivering its causal dependencies



& A

access.write(all) >

access.write(noboss)/ post.read() : photo
l o :
post.write(photo) access.read() : all

Replica order ro: the order in which
operations are issued at a replica



e — P ——
1 i
: :

R . R s

8 A

access.write(all) >

access.write(noboss)/

lm

post.write(photo) access.read() : all

post.read() : photo

Delivery order del: one operation got
delivered before another was issued



E hb = (ro u del)* D
& A

access.write(all) >

access.write(noboss)

l ro, hb

post.write(photo) access.read() : all

post.read() : photo
del :

® (Causal dependencies of e: hb-!(e)
® An op can only be delivered after all its causal dependencies

® |mplementations summarise dependencies concisely



Dekker example

x.write(1) y.write(l)
VIS SO SO VIS

vy vy
y.read(): 0 x.read(): O




Dekker example

- -
! !
- -
x.write( ) y.wrife( )
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0

Implementations: updates delivered later
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before y before x



Independent reads of independent writes (IRIWV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written
before y before x

Implementations: no causal dependency between the two writes
=¥ can be delivered in different orders at different replicas
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Independent reads of independent writes (IRIWV)

Vis Vis
/ /<_\
x.write(l) =—> y.write(l) x.read: | : ;
SO
\
y.read: 0
X written Y written
before y before x

Not sequentially consistent



Sequential consistency

so C vis and vis is total
vis C ar = can equivalently require so C vis = ar

Every operation sees the effect of all operations
preceding it in vis

Like the original definition with to = vis = ar
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Dekker example

x.write(1) y.write(l)

vis| | so \ SO Vis
\A 4 \A 4

y.read(): 0 x.read(): O

ar, vis
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Dekker example

ar, vis

x.write( ) ar, vis _ y.write(l)

Vvis SO >< SO Vvis
vy vy

y.read(): 0 x.read(): O

No execution with such history



Consistency zoo

Eventual consistency

Session guarantees: Dekker, IRIVY, causality violation

sO C vVis, Vis; so C vis

Causal consistency: Dekker, IRIVW

(so U vis)* C vis

Prefix consistency: Dekker

ar; (vis \ so) C vis

Sequential consistency

VIS = ar



Shared-memory models

® Sequential consistency first proposed in the
context of shared memory (1979)

® Processors and languages don’t provide sequential
consistency: weak memory models, due to
processor and compiler optimisations

® Our specifications similar to weak memory model
definitions

® Consistency axioms for last-writer-wins registers
~ shared-memory models



Consistency zoo

Eventual consistency

Session guarantees: Dekker, IRIVY, causality violation

sO C vVis, Vis; so C vis

Causal consistency: Dekker, IRIVW

(so U vis)* C vis

Prefix consistency: Dekker

ar; (vis \ so) C vis

Sequential consistency

VIS = ar

for last-writer-wins =
C++ release/acquire




Theoretical results

Eventual consistenc
4 ® What's the best we can do while

. staying available under network
Session guarantees Lo

partitionings?
so C vis, Vvis;so C vis
® (Causal consistency is a strongest

such model [Attiya et al., 2015]

Causal consistency

(so U vis)* C vis

Prefix consistency

ar; (vis \ so) C vis

Sequential consistency

VIS = ar
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Theoretical results

® Eventual consistenc , ,
/ ® What's the best we can do while

. staying available under network
® Session guarantees B

partitionings!
so C vis, vis; so C vis . .
® Causal consistency is a strongest

such model [Attiya et al., 2015]

® (Causal consistency

(so U vis)* C vis .
Terms and conditions apply:

® Prefix consistency ® for a certain version of CC and a
ar; (vis \ so) C vis certain class of implementations

® a strongest model: cannot be
® Sequential consistency strengthened, but can be other
vis = ar alternative incomparable models




Theoretical results

Application of eventual consistency - collaborative
editing: Google Docs, Office Online

At the core: list data type (of formatted characters)
List data type has an inherently high metadata
overhead: can't discard a character when deleting it

from a Google Docs document! [Attiya et al., 2016]

Discarding may allow previously deleted elements
to reappear



Determining the right level of
consistency



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database



Challenge

Vanilla weak consistency often too weak to
preserve correctness

Need to strengthen consistency in parts of
the application
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balance = 100
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balance = 100
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balance = 0

100) else (AC”. 0)
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balance = 100 balance = 100

/ /

withdraw(100) : ¢/

Ao’.o’ - 100 Lwithdraw(IOO) 4

(7
balance = 0

—>

balance = 0

balance = -100

[withdraw(100)]es(0) =
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balance = 100 balance = 100

withdraw(100) : ¢/ ANG'.0 - 100 4 withdraw(100) : ¢/ |
-« —>
balance = 0 balance = 0
D balance = -100
balance = 100

| add(100) : v/ |
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balance = 100

withdraw(100) : ¢/

(7
balance = 0

2

balance = 100

add(100) : v/

§

balance = 100

Ao’.o’ - 100 Lwithdraw(IOO) 4

—
balance = 0

balance = -100

Tune consistency:
® Withdrawals strongly consistent

® Deposits eventually consistent



Strengthening consistency

add(100)

Vis Vis

withdraw(100) : ¢/ withdraw(100) : ¢/

® Baseline model: causal consistency

® Problem: withdrawals are causally independent



Strengthening consistency
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® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:
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add(100)

vis
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® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:
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Strengthening consistency

add(100) add(100) add(100)

vis

withdraw(100) : ¥/ —————————— withdraw(100) : X

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEople) Xop(fl=>e—fvf—e

® No constraints on additions: =(add X op)



Strengthening consistency

add(100) add(100) add(100)

vis

withdraw(100) : ¥/ —————————— withdraw(100) : X

® |mplementation requires replicas executing withdraw()
to synchronise

® add() doesn't need synchronisation



withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account
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£ £
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withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

§ §

balance = 100 balance = 100

balance = 0

withdraw(100) : ?

Acquiring the lock requires bringing all operations the
replica holding it knows about



withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 balance = 100

withdraw(100) : ¢/

)

- —

balance = 0

withdraw(100) : X




withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 balance = 100

withdraw(100) : ¢/ § ~
|

G balance = 0
| add(100) | | withdraw(IOO):Xl

—(add X op): no locks,

so no synchronisation



Consistency choices

® Databases with multiple consistency levels:

» Commercial: Amazon DynamoDB, Microsoft
DocumentDB

» Research: Lit OSDI’'12;Terry* SOSP’ I 3;
Balegas* EuroSys’|5; Li* USENIXATC’I8

® Stronger operations require synchronisation between
replicas

® Pay for stronger semantics with latency, possible
unavailability and money



Consistency choices

Hard to figure out the minimum consistency level
necessary to maintain correctness

Reason about all possible abstract executions!?

» Abstract from some of implementation details, but
still describe behaviour of the whole system

» Number of possible executions is exponential: e.g.,
choices of vis = order of message deliveries

Need verification techniques that limit the exponential
blow-up



Verification problem

Given

® a set of operations: withdraw(), deposit(), ...

® 3 conflict relation: withdraw X withdraw

Do the operations always preserve a given
integrity invariant?

| = (balance = 0)



Verification problem

Given

® a set of operations: withdraw(), deposit(), ...

® 3 conflict relation: withdraw X withdraw

Do the operations always preserve a given
integrity invariant?

| = (balance = 0)

Later: operations =¥ whole transactions



O el «<—— Assume invariant holds

“op |

«<—— Check it’s preserved after
executing op

Single check: no state-space explosion from
concurrency
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[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

2. Precondition stability: P will hold when f(0) is
applied at any replica
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dependencies before receiving op
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® Effectors commute, so 0 = (f; g;...)(O)
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® Causal consistency =% receive op’s causal
dependencies before receiving op

® But can have additional effectors of
operations concurrent with op:f, g, ...

® Effectors commute, so 0 = (f; g;...)(O)




® e/ op’s causal
® / dependencies

oecl ® o .f o8
[op F——_ [0ply(o S
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}
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Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}
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Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal :=bal+100 {bal = 100} ¢
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Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal := bal-100 {bal = 100}
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Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal := bal-100 {bal = 100}
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Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal :=bal-100 {bal = 100} X
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withdraw' is a causal dependency of op

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw X withdraw; -(add X withdraw) ¢/
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withdraw' delivered before op: causality violated

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw X withdraw; -(add X withdraw) ¢/




® e/ op’s causal
® /' dependencies | |
withdraw

O el ® o (o
[op F——_ [0ply(o S
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}
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Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

Only requires checking each pair of operations: no
exponential explosion!
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{bal = 100} bal := bal+100 {bal = 100} ¢/, no X
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withdraw

O el ® o (o
[op F——_ [0ply(o S
P(O)v —> :

Can infer the conflict relation X: op; X op2 if the
precondition of op| unstable under the effector of op»

Pre of withdraw under effector of withdraw:

{bal > 100} bal := bal-100 {bal = 100} X, need X



Correct Eventual Consistency Tool

® Developed by Sreeja Nair (UPMC, Paris)

® Model application in a domain-specific language,
including replicated data type libraries

® Model compiled into a Boogie program encoding the
conditions of the proof rule

® Discharged using SMT

® Automatically infers a conflict relation

https://github.com/LightKone/correct-eventual-
consistency-tool



https://github.com/LightKone/correct-eventual-consistency-tool
https://github.com/LightKone/correct-eventual-consistency-tool

Demo



Transactions



Transactions

Fundamental abstraction in databases

Allow clients to group operations to be processed
indivisibly

Provided by virtually any single-node SQL database

NoSQL data stores: starting to reappear
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Causal consistency isn't enough
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® Consistency model = set of histories (E, so, ~)
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® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive
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® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

® For simplicity, assume every transaction completes
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set.add(photo) set.read() > photo
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® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

® For simplicity, assume every transaction completes

® Transaction T: equivalence class of events of ~
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A session is a sequence of
transactions: events from the same
transaction contiguous in so
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Strongly consistent transactions

Sequential consistency ~ serializability



Serializability operationally

set, reg

§

® Server with a single copy of all objects
® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order
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® Server with a single copy of all objects
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® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)
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set, reg

set.read()

reg.read()
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® Server with a single copy of all objects

® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)
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(ok, ok)

set, reg

tx2

set.read()

reg.read()
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({photo}, post)

® Server with a single copy of all objects

A

® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg write(post) set.read()

@ /\ set, reg regread()
(ok, ok) \/ .

({photo}, post)

tx2

Serializability = {H | 3 execution with history H produced
by the abstract implementation}



Sequential consistency

(E,so) | 3 total order to. (E, so, to) satisfies:
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2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to



Serializability

(E,so, ~) | 3 total order to. (E, so, ~, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

3. Operations from the same transaction are
contiguous in to



& 3

/——_\

-

set.add(photo)

SO

reg.wrige(post)

—

SO

\4

-

set.add(photo2)

-

set.read() > photo

SO

reg.reazl () : post

Operations from the same
transaction are contiguous in to
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Operations from the same
transaction are contiguous in to

reg.reazl () : post

Induces a total to/~ on whole tx



Weakening consistency

® Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...



Weakening consistency

® Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...

® To better exploit single-node parallelism

set.add(photo)

reg.write(post)

set, reg
@ -~ N

,

(ok, ok)

tx |

tx2

TN
/\/

set.read()

reg.read()

A
4 )

({photo}, post)



Eventually consistent transactions

® Single-node consistency models also applicable in
distributed setting

® But many still require some synchronisation
between replicas: unavailability, high latency

® Want eventually consistent transactions: always
available, low latency

® Preserve some aspects of the invisibility
abstraction



System model recap

Database system consisting of multiple reliable
replicas

Each replica stores a copy of all objects of
replicated data types

Replicas can communicate via asynchronous
reliable channels



U ® A client connects to a replica and
¥ Issues transactions
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X.write(post) ® High availability: the transaction

y.write(comment) commits immediately, without

x.read : post communication with other replicas,
N / no aborts!
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® A client connects to a replica and
Issues transactions

® High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

® Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation
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X.write(post)
y.write(comment)
x.read : post
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x.read : post
y.read : comment

A client connects to a replica and
Issues transactions

High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation

Reads are indivisible: access a fixed
snapshot of the database (plus own
writes)
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Upon commit: send the
effectors of all tx operations
to other replicas together
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Upon commit: send the Receive in between txs:
effectors of all tx operations incorporate all the

to other replicas together updates together
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i X.write(post)
. y.write(comment)
® Writes are indivisible ) ’
® Reads are indivisible . .
. x.read :
® Readst+writes: no! post
y.read : comment
\. Y,
Upon commit: send the Receive in between txs:
effectors of all tx operations incorporate all the

to other replicas together updates together
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No reads+writes indivisibility

reg: last-writer-wins register, initially O
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Lost update anomaly



Use appropriate data type

counter: replicated counter, accumulates increments

initially O
counter.add(|) counter.add(|)

counter.read() : 2

\. S




Operational specification

® Eventual consistency with transactions = the set
of all histories produced by arbitrary client
interactions with the data type implementations
(with any allowed message deliveries)

® |mplies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state



Axiomatic specification

® Serializability: operations from the same
transaction are contiguous in the total order to

® Approach: require the same of vis and ar
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Execution: (E, so, ~, vis, ar)
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Eventually consistent transactions

The set of histories (E, so, ~) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fype(obje))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

VIS

ve € E.e — f for all but finitely many f € E

® Transaction indivisibility:

VIS

ve,f,e . f.e - fA e ~e S, e f = e VS,

ve,f e f.e~fre~eH f~f—=¢ef



Define transactional variants
of other consistency models
by just adding prior axioms

Istent transactions

Serializability: vis = ar , SO, ~) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fype(obje))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e X f for all but finitely many f € E

® Transaction indivisibility:

VIS

ve,fe fe~fre ~e S f~f—=—¢ Vs, ¢

ve,f e f.e~fre~eH f~f—=¢ef



Session guarantees

g E
! A so C vis '
set.add(photo)

SO

v
reg.write(post)
. y Transactions in the same
session only accumulate
So information
v
4 )

reg.read():?

. W
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Session guarantees

-

set.add(photo)

SO

reg.wrige(post)

SO vis

v

~N

\%_J

-

reg.read(): post

~N

—_—

so C vis l

Transactions in the same
session only accumulate
information
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Causal consistency

set.add(photo)

lso

reg.write(post) _| Vs

\L Y

4 )

reg.read(): post

lso

reg2.write(comment)

. Y

(so U vis)* C vis I
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set.add(photo)

Vis
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Causal consistency

set.add(photo)

reg.write(post) _| Vs ( reg.read(): post \

lso

reg2.write(comment)

. Y

/

Vis oK’ ™
vset.read(): ?

(so U vis)* C vis I reg2.read(): comment
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Causal consistency
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\_

set.add(photo)

lso

reg.write(post) _

Vis

Vis

-

Y,

\_

reg.read(): post

lso

reg2.write(comment)

W

(so U vis)* C vis I

Vis

Vis

/

(¥

\_

“set.read()  photo

lso

reg2.read(): comment

~N

J




Concurrent withdrawals

c: counter with decrements, initially 100

r A 4

v = c.read() v = c.read()
if (v=100) |=° if (v=100) |
c.subtract(100) c.subtract(100)

. Y, \.




Concurrent withdrawals

c: counter with decrements, initially 100

-

\_

v = c.read()

if (v=100)

SO

// 100

c.subtract(100) // 0

-

)

\_

v=c.read() // 100

if (v=100)

SO

c.subtract(100) // 0

)




Concurrent withdrawals

c: counter with decrements, initially 100

-

\_

v = c.read()

if (v=100)

SO

-

// 100

v=c.read() // 100

if (v=100) |s
C. subtract( 100) // O

C. subtract(IOO) /] OQ 9

Both transactions decremented successfully -
synchronisation needed!




Recap: strengthening consistency

withdraw(100) : ¢/ withdraw(100) : ¢/

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Recap: strengthening consistency

withdraw(100) : ¢/ ——————5 withdraw(100) : X

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis

Ve, feEop(e) Xop(fl = e 25fvise



Strengthening transactions

(

\_

v = c.read()

if (v=100) l
c.subtract(100) // O

// 100

W

(

\_

v = c.read()

// 100
if (v=100) l s
c.subtract(100) // 0

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

v = c.read()

if (v=100) l

\_

c.subtract(100) // O

// 100

v = c.read()

if (v=100) l s

W

Vis

\_

>c.subtract(100) // 0

/1 100

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

v = c.read()

if (v=100) l

\_

c.subtract(100) // O

// 100

rd

Vis

v = c.read()

if (v=100) l s

W

Vis

\_

>c.subtract(100) // 0

/1 100

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:
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Vis
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Strengthening transactions

(

\_

v = c.read()

if (v=100) l
c.subtract(100) // O

// 100

rd

Vis

. X
v =c.read() // 100

if (v=100) l s

W

Vis

>c.subtract(100) // 0

. Y

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

(- ) (- )

c.add(100) c.add(100) ~(add X op)

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Recap: implementation
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c.withdraw(100) : ¢/ c.withdraw(100) :?

® withdraw X withdraw: as if withdraw grabs an
exclusive lock on the account

® Acquiring the lock requires bringing all operations
the replica holding it knows about
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Recap: implementation

2 H

c.withdraw(100) : ¢/ > c.withdraw(100) : X

® withdraw X withdraw: as if withdraw grabs an
exclusive lock on the account

® Acquiring the lock requires bringing all operations
the replica holding it knows about



Implementation for transactions

D subtract X subtract

(

v=cread() // 100
if (v=100)
‘' | c.subtract(100) // 0 V4

. .




Implementation for transactions

D subtract X subtract D

(

v=cread() // 100
if (v=100)
‘' | c.subtract(100) // 0 V4

. . . .

(" )




Implementation for transactions

D subtract X subtract U

(" ("

v=c.read() // 100 v=c.read() // 100
if (v=100)
‘s | c.subtract(100) // Of oz

. . . .




Implementation for transactions

D subtract X subtract D

(" ("

v=c.read() // 100 v =c.read() // 100
if (v=100) if (v=100)
‘s | c.subtract(100) // Of oz
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Implementation for transactions

D subtract X subtract D
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Implementation for transactions

U subtract X subtract U

v=c.read() // 100 v =c.read() // 100
if (v=100) i (v 100)
Q c.subtract(100) // O"‘/ c.subtract(100)

® Need to incorporate the effector of the previous transaction



(

)

Implementation for transactions

U subtract X subtract U

v=c.read() // 100 v=c.read() // 100
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Need to incorporate the effector of t

ne previous transaction

Recall: transactions execute on a fixec

snapshot

Too late: effectors from other replicas only get applied in-

between transactions

Have to abort the transaction and re-execute it



Implementation for transactions

D subtract X subtract U A~

v=c.read() // 100
if (v=100)
c.subtract(100) // O v

® Need to incorporate the effector of the previous transaction

® Recall: transactions execute on a fixed snapshot

® TJoo late: effectors from other replicas only get applied in-
between transactions

® Have to abort the transaction and re-execute it



Implementation for transactions

D subtract X subtract U A~

(

\_

if (v=

c.subtract(100) // O v

L ———

(

v=c.read() // 100 v = c.read() /10

100)

. .

Need to incorporate the effector of t

Reca

ne previous transaction

|: transactions execute on a fixec

snapshot

Too late: effectors from other replicas only get applied in-
between transactions

Have to abort the transaction and re-execute it



Chosing X

Want to choose X to preserve application invariants

Previous proof rule for checking invariants applies

Instead of an effector of a single operation, consider
a sequential composition of effectors of all
operations in a transaction

Can also fix X so that it's easier to program: new

consistency models, disallowing some classes of
anomalies



Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:
Ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e
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Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

4 4

v=c.read() // 100 " v=c.read() // 100
if (v=100) l P if (v=100) l
c.subtract(100) // 0 > c.subtract(100) // O

Vis
\_ Y. \_ Y.




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

4 ) 4 x
v=c.read() // 100 v=c.read() // 100

if (v=100) l P if (v=100) l
c.subtract(100) // 0 > c.subtract(100) // O

Vis
\_ Y. \_ Y.




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No lost updates:
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lso

reg.write(v+l) // |
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v=regread() //0
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-
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reg.write(v+l) // |
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Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

eVIS fvaIS e

® No lost updates:

-

lso

reg.write(v+l) // |

.

v=regread() //0

\

-

v=reg.read() // 0

lso

W,

Vis

>reg.write(v+1) // |

. Y




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® No lost updates:

v = reg.read()

lso

.

reg.write(v+l) // |

\

/10

~

Vis

-

v=reg.read() // 0

lso

W,

Vis

>reg.write(v+1) // |

. Y




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis

— e —>fvf—e

® No lost updates:

Vis

v = reg.read()

lso
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reg.write(v+l) // |
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Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Updates on different accounts can go in parallel:

v = reg.read()

lso

.

reg.write(v+l) // |

\

/10

W,

-

.

v=reg.read() //0

lso

reg.write(v+1) // |

W,




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Visibility totally orders transactions updating the same
object = don't need replicated data types, don't need ar

set.add(l) - set.remove(l) —=> set.add(2)

Vis Vis Vis

set.read 0: {2}



Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Visibility totally orders transactions updating the same
object = don't need replicated data types, don't need ar

® Can use sequential data types: from now on just
sequential read-write registers
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Serializability (/

Snapshot Isolation
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Session guarantees .
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Prefix consistency \
Serializability N
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Robustness



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database




Parallel shapshot isolation

® Database with only sequential read-write registers

® Assume there is an implicit transaction writing initial
values to all registers



PS| = the set of histories (E, so, ~) such that for some vis:

® No causal cycles: so u vis is acyclic

® Eventual visibility: ve € E. e Y5, ffor all but finitely many f € E

® Transaction indivisibility:

Ve,f,e','f'.eoof/\e'~ev_ls>f~f' ; el VIS

® C(Causality preservation: (so U vis)* C vis

® Write-conflict detection:

Ve, f € E. obj(e) = obj(f) A op(e) = write(-) rop(f) = write(-)
—e—fvf—e

® A read event returns the value written by the last preceding
write In vis



PS| = the set of histories (E, so, ~) such that for some vis:

® No causal cycles: so u vis is acyclic

® Eventual visibility: ve € E. e Y5, ffor all but finitely many f € E

® Transaction indivisibility:

Ve,f,e','f'.eoof/\e'~ev_ls>f~f' ; el VIS

® C(Causality preservation: (so U vis)* C vis

® Write-conflict detection:

Ve, f € E. obj(e) = obj(f) A op(e) = write(-) rop(f) = write(-)
—e—fvf—e

® A read event returns the value written by the last preceding
write In vis

Well-formed because of
write-conflict detection
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VIS SO SO VIS

vy vy
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Transactional Dekker = write skew

( x.write( ) \ ( y.write(l) \
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0

Not serializable, allowed by transactional causal consistency
and parallel snapshot isolation
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Transactional Dekker = write skew

U

(- N 4 )

x.write(1) y.write(l)

vis| | so SO Vis
\A 4 \A 4

y.read(): 0 x.read(): 0




Independent reads of independent writes (IRIVV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
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before y before x



Independent reads of independent writes (IRIWV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written
before y before x

Implementations: no causal dependency between the two writes
=¥ can be delivered in different orders at different replicas



Transactional IRIW = long fork
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[x.write( I )J
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\.
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\ 4
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Transactional IRIW = long fork

VIS

VIS
/ e \ \
[prite(l)H y.write(l) x.read: | y.read: |

\.

SO

\/
y.read: 0

y,

\.

SO

\ 4
x.read: 0

y,

Not serializable, allowed by transactional causal consistency

and parallel snapshot isolation



Robustnhess

® |[s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database

Application behaves the same whether using a PS| or
a serializable database: [Alprsi = [Alser




Robustnhess

® Application: set of transactional programs {Pi, ..., Pn}

tx lookup() { tx deposit(n) {
return acct.bal acct.bal += n

} }

» Every program can generate multiple transactions
at run time

» Simplification: every program is in its own session



Robustnhess

® Application: set of transactional programs {Pi, ..., Pn}

tx lookup() { tx deposit(n) {
return acct.bal acct.bal += n

} }

» Every program can generate multiple transactions
at run time

» Simplification: every program is in its own session

® Checking robustness via static analysis:
over-approximate the set of program behaviours



Application



Application

Vv PSI| execution




Application

Vv PSI| execution

3 serial execution



Application

Vv PSI| execution

3 serial execution

Each read returns the value written by the last write



Application
\ 4
s

E/~ |

Vv PSI| execution

to/~ I \ 4

3 serial execution [l]—»@—>

Each read returns the value written by the last write




First determine if a given PS| execution is serializable

Vv PSI| execution

to/~ l \ 4

.
3 serial execution T —{E]—>

Each read returns the value written by the last write




Build constraints on the serial order: relations on E/~ that
should be included into to/~ - transactional dependencies

E/~ |

Vv PSI| execution

to/~ | \ 4

.
3 serial execution T —>[E]—>

Each read returns the value written by the last write




Write-read dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

Wr

T L x.write(val) ] > [ x.read : val ] S

T 25 S <= S reads a value written by T
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Write-read dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

Wr

T L x.write(val) J > [ x.read : val J S

to/~ I

T 25 S <= S reads a value written by T

WwWr
T —S<T =+ S AT contains the most recent write of

an object x visible to a read from x in S according to vis
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Write-write dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

WW

T L x.write(old) J > [x.write(new)J S

to/~

WW
T — S < S overwrites a value written by T

WW

T — S < T and S contain writes to the same
, vis/~

object xand T — S



Read-write dependency (rw)

T L x.read : old J AAREEEN [x.write(new)J S

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S
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Read-write dependency (rw)

wr [ x.write(old) J Q
/ |ww  |eol~]

T L x.read : old J < [x.write(new)J S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
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Read-write dependency (rw)

wr [ x.write(old) ] Q
new ww to/ ~|
T L x.read : old f< [x.write(new)] S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

/ [ x.write(old) J
[

T L x.read : old ] AN [x.write(new)J S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Dependency graphs

® PS| execution (E, ~, vis) =¥
dependency graph (E/~, wr, ww, rw)

® Theorem: If the dependency graph is
acyclic, then the execution is serializable



If (wr U ww U wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] =»
the desired order to

wr U ww U Wr

l T ’l T, ’l T3 > oo to/~ =¥ to




If (wr U ww U wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] =»
the desired order to

wr U ww U Wr

Each read returns the value written by the last write in to!?



T[ x.write(val) ] ™ >[ x.read :val ] S

wr . . .
T — S < T # S AT contains the most recent write of an object x

visible to a read from x in S according to vis

WWwW

T [ x.write(old) ] > [ x.write(new) J S

wWW , , , vis/~
T —> S < T and S contain writes to the same object xand T — S

/[ x.write(old) ]Q
lWW

T [ x.read : old ] AN [ x.write(new) ] S

T 5SeaT#5A3QQ 5TAQ S s



If the dependency graph (E/~, wr, ww, rw) of a PS| execution
(E, ~, vis) is acyclic, then the execution is serializable
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If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs Py, P, ..., Pn

4

Set of all their PSI| executions (E, ~, vis)

4

Set of corresponding dependency graphs (E/~, wr, ww, rw)

4

Check wr u ww U wr is acyclic in each graph

Over-approximate the set of possible dependency
graphs from the program text




Static dependency graphs

tx lookup() {
return acct.bal

}

® Nodes: transactional programs

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

® Edges: over-approximations of dependencies wr#, ww#, rw#




Static dependency graphs

_ WWH rwH wr#

A
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr# }

® Nodes: transactional programs

® Edges: over-approximations of dependencies wr#, ww#, rw#

o T » S <> 3Ix. writes(T, x) A reads(T, x): over-approximated

by static analyses (or even by hand)



Static dependency graphs

_ WWH rwH wr#

A
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr# }

Nodes: transactional programs

Edges: over-approximations of dependencies wr#, ww#, rw#

T W—r#> S <> 3Ix. writes(T, x) A reads(T, x): over-approximated

by static analyses (or even by hand)

Represents an over-approximation of all dynamic dependency
graphs that can be produced by the programs



Dynamic dependency graph =¥ a subgraph of the static
dependency graph

_ wWwH rw#, wr#

’ .

"%
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal acct.bal += n

} wr# }




Dynamic dependency graph =¥ a subgraph of the static
dependency graph

_ wWwH rw#, wr#

"4
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal acct.bal += n

} wr# }




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

_ WWH rwH wr#

.
I )

tx deposit(n) {
acct.bal += n

Transactions arising from the same program map to the

same node




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

dependency graph
tx lookup() { | . ?ﬂ%"m.
return acct.bal €
} wr# }
Wwr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

tx lookup() { | . ?ﬂ%"m.
return acct.bal €
} wr# }
reads(x)
Wr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

reads(x) / writes(x)

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

Wwr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

reads(x) / writes(x)

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

Wwr

Cycle in the dynamic graph =¥ cycle in the static graph
If the static graph is acyclic, so is the dynamic one




We're considering PSI executions: jubgraph of the static
some cycles can't occur

_ WWH rwH wr#

’ .

"4
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr }
reads(x) writes(x)
wr

Cycle in the dynamic graph =¥ cycle in the static graph
If the static graph is acyclic, so is the dynamic one



Wwr

T { x.write(val) J > { x.read : val J S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

WWwW

T | x.write(old) > | x.write(new) | S
| | | ]

T 25 S« T and S contain writes to the same object x

andT\ﬂ; S




Wwr

T { x.write(val) J > { x.read : val J S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

WWwW

T { x.write(old) J > {x.write(new)J S

T 25 S« T and S contain writes to the same object x

andT\ﬂ; S

wr U ww C vis/~ - acyclic



Wwr
>

T | x.write(val) x.read :val | S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

ww
> | X

T | x.write(old) write(new) | S

T 25 S <= T and S contain writes to the same object x

andT\ﬂ; S

wr U ww C vis/~ - acyclic

PSI allows only cycles in (wr U ww U rw) with at
least one rw edge



_ WwWH rwH# wr#

a4
tx lookup() { | . rw#} tx deposit(n) {
return acct.bal | ___ . ______ acct.bal += n
} wr# }

wr U ww U Wr

Dynamic dependency graph =% a subgraph of the static
dependency graph
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tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | ___ . ______ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations
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tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | _____________ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations

® Enough to check no cycles in (wr u ww U rw) with =1 rw



~WwWH rwH, wr#

. IN
4 LN

i A
tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | _____________ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations

® Enough to check no cycles in (wr u ww U rw) with =1 rw

® Enough to check no cycles in (wr# u ww# u rw#) with > | rw#



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges
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at least two distinct rw edges

Wi C vis/~ [ x.write(old) J
lww C vis/~
[ x.read : old J — {x.write(new)}
\/
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Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

Wi C vis/~ [ x.write(old) J
lww C vis/~
[ x.read : old J — {x.write(new)}
\/

(wr U ww)* C vis/~



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

4

If (wr U ww U wr) for a PSI execution contains a
cycle, then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects



Transactional Dekker = write skew

(- )

x.write(0)
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Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write( ) y.write(l)
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Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write(l) e rw(x) y.write(l)
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Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write(l) e rw(x) y.write(l)

y.read(): 0 »| x.read(): 0
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Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

4 ) 4 )

x.write(l) e rw(x) y.write(l)

y.read(): 0 »| x.read(): 0
\ y I"W()’) \ y

Cycle with 2 rw on different objects: allowed by PSI



Transactional IRIW = long fork

4 )
i | ) x.read : |
x.write()
N y y.read : 0
. /
4 )
i h y.read : |
y.write(l)
. y x.read : 0
. W,




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

N y y.read : 0

i te(l) h y.read : |
y.write , >

. ) Vvisl=wr(y) | x.read:0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

N J% Y°read ‘0

i te(l) h y.read : |
y.write . >

. ) Vvisl=wr(y) | x.read:0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

. J}(X)<\ y.read : 0 J

i o) h ) y.read : |

. pwrice(]) ) Vis/~ wr(y) ] x.read : 0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

. J}(X)<\ y.read : 0 ,

i o) h ) y.read : |

. pwrice(]) ) Vis/~ wr(y) ] x.read : 0

Cycle with 2 rw on different objects: allowed by PSI



Lost update anomaly

x.write(0)
vis/~ vis/~

x.read: 0 x.read: 0

x.write(1) x.write()

vis& A/ ~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
x.read: 0 x.read: 0
x.write( ) x.write( )
vis& ‘A/ ~
{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection
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x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read: 0 x.read: 0
x.write( ) x.write( )
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{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection
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x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read:0 |« "w) x.read: 0
x.write( ) x.write( )

Vi X‘ ‘A/"'

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read:0 |« "w) x.read: 0
x.write( ) w0 > x.write(l)

vi x vis/~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)
x.read:0 |« rwix) x.read: 0

x.write( ) w0 > x.write(l)

vis& vis/~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection

The 2 rw edges are due to the same object



Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

L WwwH rwH wr(acct)

"y
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}
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Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

-

L WwwH rwH wr(acct)

s L2

"N
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}

No cycles in wr# u ww# u rw# with all rw# on different objects

—> no such cycles in wr U ww U rw



Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

-

L WwwH rwH wr(acct)

s L2

"N
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}

No cycles in wr# u ww# u rw# with all rw# on different objects

—> no such cycles in wr U ww U rw

—> application is serializable



Non-robustness

tx lookupAll() {
return acct[*].bal

}

{ deposit(l, €100)

[ deposit(2, €100)

_ WWH rwH wr (%)
"4

tx deposit(i, n) {
acct[i].bal += n

}

4 )

lookupAll :

/€100, 2/€0

\_ Y

4 )

lookupAll :
/€0, 2/€100

\_ Y




Automatic robustness checking

® Methods for other consistency models are similar

® Basis for practical tools [Warszawski et al.,
SIGMOD'17, Brutschy et al., PLDI' 8; Nagar et al,,
CONCUR'I 8]

® Static criterion on graphs sometimes used to
prune the search space before a more expensive
analysis with more semantic information

® Can be used for bug-finding in the absence of
specifications



Automatic robustness checking

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT

In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce annlications written in four lancuaces and

1 | def withdraw(amt, user_.id): (a)
2 bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal — amt, user_id)

1 | def withdraw(amt, user_.id): (b)
2 beginTxn()

3 bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal — amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 > $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation

levels at or below Read Committed, unless explicit locking such
ac SFI1 ECT EFOR I1IPDATE 1ic neced While thic ceenarin clocelv reo




Implementing strong consistency



Designing consistency protocols

® So far implementations have been lightweight:
"an operation can only be delivered after all its causal
dependencies”

® |n reality, designing consistency protocols and
proving them correct is very difficult!

® Even more so for strong consistency protocols



Strong consistency

@

c.withdraw(100) :? c.withdraw(100) :?

i



Strong consistency

(o %

c.withdraw(100) : ¢/ c.withdraw(100) :?

i

Sombody has to order commands



Strong consistency

Single server, clients send commands to the server



Strong consistency

1, "2, I3

Server totally orders commands and computes the
sequence of results



Strong consistency

cil, C2, C3

r"—_\
| |
W

1, "2, I3

Servers can crash! Need a fault-tolerant solution



State machine replication

‘ B
C2 7 G

y 4

C3, C2, C| ci, C2, C3 Cc2, Cl, C3
\ 1 ‘ ;
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Clients send commands to all replicas
Replicas may receive commands in different orders




State machine replication

c2,Cl, C3 c2, Cl, C3 c2, Cl, C3

A distributed protocol totally order commands:
needs synchronisation



State machine replication

c2,Cl, C3 c2, Cl, C3 c2, Cl, C3

ry, I, I3 r, I, I3 r, I, I3

Operations are deterministic —
replicas compute the same sequence of results



State machine replication

Implements sequential consistency (in fact, linearizability)



State machine replication

c2,Cl, C3 c2, Cl, C3

r2, 't, I'3 2, ', I'3

SMR requires solving a sequence of consensus instances:
agree on the next command to execute



Consensus

Ci C2

£ . &

® Several nodes, which can crash

® Fach proposes a value



Consensus

> [X

® Several nodes, which can crash
® Fach proposes a value

® All non-crashed nodes agree on a single value



Consensus

C| C2 C3
l 1 \ l \ l
R ) el § 5 P X
B ¥ e »
C2 C2

® Challenge: asynchronous channels =
can't tell a crashed node from a slow one!

® Assume only a minority of nodes can crash:
a majority reach an agreement



The zoo of consensus protocols

® Viewstamped replication
(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)

® Fast Paxos (2006)

® Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The zoo of consensus protocols

® Viewstamped replication
(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)

® Fast Paxos (2006)

® Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The zoo of cg Complex protocols: constant
fight for better performance

® Viewstamped replication °

(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)
Fast Paxos (2006)
Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [Computer-Communications Networks]: Distributed
Systems—Network operating systems; D4.5 [Operating Systems]: Reliability—Fault-tolerance;
J.1 [Administrative Data Processing]: Government

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.




The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Leslie Lamport

Abstract

The Paxos algorithm, when presented in plain English, is very simple.




The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Paxos Made Moderately Complex

ROBBERT VAN RENESSE and DENIZ ALTINBUKEN, Cornell University

This article explains the full reconfigurable multidecree Paxos (or multi-Paxos) protocol. Paxos is by no
means a simple protocol, even though it is based on relatively simple invariants. We provide pseudocode
and explain it guided by invariants. We initially avoid optimizations that complicate comprehension. Next
we discuss liveness, list various optimizations that make the protocol practical, and present variants of the
protocol.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Syst-
ems—Network operating systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms: Design, Reliability

Additional Key Words and Phrases: Replicated state machines, consensus, voting

ACM Reference Format:
Robbert van Renesse and Deniz Altinbuken. 2015. Paxos made moderately complex. ACM Comput. Surv. 47,

j‘ 3, Article 42 (February 2015), 36 pages.
DOI: http://dx.doi.org/10.1145/2673577




The Part- Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Paxos Made Moderately Complex

In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it 1s as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than

Paxos. Raft also includes a new mechanism for changing
the cliicter memberchin which neece overlannino maior -

to understand than Paxos: after learning both algorithms,

33 of these students were able to answer questions about

Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [27, 20]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leadership
than other consensus algorithms. For example, log en-
tries only flow from the leader to other servers. This
simplifies the management of the replicated log and
makes Raft easier to understand.

e Leader election: Raft uses randomized timers to elect
leaders. This adds only a small amount of mechanism

to the heartheate alreadv reanired for anv concanciic al
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Abstract
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In Search of an Understandable Consensus Algorithm

Untortunately, Paxos has two significant drawbacks.
The first drawback is that Paxos is exceptionally diffi-
cult to understand. The full explanation [15] is notori-
ously opaque; few people succeed in understanding it, and
only with great effort. As a result, there have been several
attempts to explain Paxos in simpler terms [16, 20, 21].
These explanations focus on the single-decree subset, yet
they are still challenging. In an informal survey of atten-
dees at NSDI 2012, we found few people who were com-
fortable with Paxos, even among seasoned researchers.
We struggled with Paxos ourselves; we were not able to
understand the complete protocol until after reading sev-
eral simplified explanations and designing our own alter-
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ABSTRACT

We describe our experience in building a fault-tolerant data-
base using the Paxos consensus algorithm. Despite the ex-
isting literature in the field, building such a database proved
to be non-trivial. We describe selected algorithmic and en-
gineering problems encountered, and the solutions we found
for them. Our measurements indicate that we have built a
competitive system.

Categories and Subject Descriptors

D.4.5 [Operating systems|: Reliability—Fault-tolerance;
B.4.5 [Input /output and data communications|: Reli-
ability, Testing, and Fault-Tolerance— Redundant design

General Terms

Experimentation, Performance, Reliability

Keywords

Experiences, Fault-tolerance, Implementation, Paxos

database is just an example. As a result, the consensus prob-
lem has been studied extensively over the past two decades.
There are several well-known consensus algorithms that op-
erate within a multitude of settings and which tolerate a
variety of failures. The Paxos consensus algorithm (8] has
been discussed in the theoretical [16] and applied commu-
nity [10, 11, 12] for over a decade.

We used the Paxos algorithm (“Paxos”) as the base for
a framework that implements a fault-tolerant log. We then
relied on that framework to build a fault-tolerant database.
Despite the existing literature on the subject, building a
production system turned out to be a non-trivial task for a
variety of reasons:

e While Paxos can be described with a page of pseudo-
code, our complete implementation contains several
thousand lines of C++ code. The blow-up is not due
simply to the fact that we used C++ instead of pseudo
notation, nor because our code style may have been
verbose. Converting the algorithm into a practical,
production-ready system involved implementing many

features and optimizations — some published in the lit-
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e There are significant gaps between the description of /
the Paxos algorithm and the needs of a real-world sys-

: _ tem. In order to build a real-world system, an expert

base using the Paxos consensus algorithm. D . . . ‘

isting literature in the field, building such a day needs to use numerous ideas scattered in the literature

to be non-trivial. We describe selected algorit and make several relatively small protocol extensions.

gineering problems encountered, and the solut The cumulative effort will be substantial and the final

for them. Our measurements indicate that we system will be based on an unproven protocol.
competitive system. e -
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5.1 Handling disk corruption

Replicas witness disk corruption from time to time. A
disk may be corrupted due to a media failure or due to an
operator error (an operator may accidentally erase critical
data). When a replica’s disk is corrupted and it loses its
persistent state, it may renege on promises it has made to
other replicas in the past. This violates a key assumption
in the Paxos algorithm. We use the following mechanism to
address this problem [14].

Disk corruptions manifest themselves in two ways. Either
file(s) contents may change or file(s) may become inacces-
sible. To detect the former, we store the checksum of the
contents of each file in the file?. The latter may be indis-
tinguishable from a new replica with an empty disk — we
detect this case by having a new replica leave a marker in
GFS after start-up. If this replica ever starts again with an
empty disk, it will discover the GFS marker and indicate
that it has a corrupted disk.

A replica with a corrupted disk rebuilds its state as fol-
lows. It participates in Paxos as a non-voting member;
meaning that it uses the catch-up mechanism to catch up
but does not respond with promise or acknowledgment mes-
sages. It remains in this state until it observes one complete
instance of Paxos that was started after the replica started
rebuilding its state. By waiting for the extra instance of
Paxos, we ensure that this replica could not have reneged
on an earlier nromise.

production-ready system involved implementing many
features and optimizations — some published in the lit-
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Replicas witness disk corruption from time to time. A
disk may be corrupted due to a media failure or due to an
operator error (an operator may accidentally erase critical
data). When a replica’s disk is corrupted and it loses its
persistent state, it may renege on promises it has made to
other replicas in the past. This violates a key assumption
in the Paxos algorithm. We use the following mechanism to
address this problem [14].

Disk corruptions manifest themselves in two ways. Either
file(s) contents may change or file(s) may become inacces-
sible. To detect the former, we store the checksum of the
contents of each file in the file’. The latter may be indis-
tinguishable from a new replica with an empty disk — we
detect this case by having a new replica leave a marker in

GFS

empty| Broken [Michael et al., DISC'| 6]

that 1

A replica with a corrupted disk rebuilds its state as fol-
lows. It participates in Paxos as a non-voting member;
meaning that it uses the catch-up mechanism to catch up
but does not respond with promise or acknowledgment mes-
sages. It remains in this state until it observes one complete
instance of Paxos that was started after the replica started
rebuilding its state. By waiting for the extra instance of
Paxos, we ensure that this replica could not have reneged
on an earlier nromise.

production-ready system involved implementing many
features and optimizations — some published in the lit-




Another application: blockchain

c ® Blockchain = using consensus to agree

co on a sequence of blocks in a ledger

c3

) ® Tolerates malicious behaviour: some
nodes may deviate from the protocol

® Many protocols descended from
Paxos
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It is a hugely ambitious - some might say megalomaniacal - project to create
a new global currency. Facebook's David Marcus tells me it is about giving
billions of people more freedom with money and "righting the many wrongs
of the present system”.

The message is this is not some little side project a small team at the Facebook's
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HotStuff: BFT Consensus with Linearity and Responsiveness
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ABSTRACT

We present HotStuff, a leader-based Byzantine fault-tolerant repli-
cation protocol for the partially synchronous model. Once network
communication becomes synchronous, HotStuff enables a correct
leader to drive the protocol to consensus at the pace of actual (vs.
maximum) network delay—a property called responsiveness—and
with communication complexity that is linear in the number of
replicas. To our knowledge, HotStuff is the first partially synchro-
nous BFT replication protocol exhibiting these combined properties.
Its simplicity enables it to be further pipelined and simplified into
a practical, concise protocol for building large-scale replication
services.

CCS CONCEPTS

 Software and its engineering — Software fault tolerance; «
Security and privacy — Distributed systems security.

KEYWORDS

Byzantine fault tolerance; consensus; responsiveness; scalability;
blockchain

Michael K. Reiter
UNC-Chapel Hill
VMware Research
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VMware Research

Guy Golan Gueta

VMware Research

stabilization time (GST). In this model, n > 3f + 1 is required for
non-faulty replicas to agree on the same commands in the same
order (e.g., [12]) and progress can be ensured deterministically only
after GST [27].

When BFT SMR protocols were originally conceived, a typical
target system size was n = 4 or n = 7, deployed on a local-area net-
work. However, the renewed interest in Byzantine fault-tolerance
brought about by its application to blockchains now demands solu-
tions that can scale to much larger n. In contrast to permissionless
blockchains such as the one that supports Bitcoin, for example,
so-called permissioned blockchains involve a fixed set of replicas
that collectively maintain an ordered ledger of commands or, in
other words, that support SMR. Despite their permissioned nature,
numbers of replicas in the hundreds or even thousands are envi-
sioned (e.g., [30, 42]). Additionally, their deployment to wide-area
networks requires setting A to accommodate higher variability in
communication delays.

The scaling challenge. Since the introduction of PBFT [20], the
first practical BFT replication solution in the partial synchrony
model, numerous BFT solutions were built around its core two-
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stabilization time (GST). In this model, n > 3f + 1 is required for
non-faulty replicas to agree on the same commands in the same
order (e.g., [12]) and progress can be ensured deterministically only
after GST [27].

When BFT SMR protocols were originally conceived, a typical
target system size was n = 4 or n = 7, deployed on a local-area net-
work. However, the renewed interest in Byzantine fault-tolerance
brought about by its application to blockchains now demands solu-
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® 2f+| nodes,at most f can crash
® Fach node proposes a value

® All non-crashed nodes agree on a single value
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‘Acceptor' ‘Acceptor' ‘Acceptor'
‘ Leader '

® Acceptors = members of parliament:
can vote to accept a value, majority (quorum) wins

® | eader = parliament speaker:
proposes its value to vote on

® Good for state-machine replication: can elect the leader
once and get it to process multiple commands
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® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority
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® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client
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® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client
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® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client
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® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client
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Accepted: v, Accepted: v, v/

Reply v to client

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



Leader#: 2 Leader#: 2 v/
Accepted: v, Accepted: v, v/
Reply v to client

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



Leader#: 3 Leader#: 2 v/ Leader#: 3 v/

Accepted: v3 Accepted: v, v/ Accepted: vz v/
Reply v2 to client  Reply v3 to client

® Problem: node 3 may wake up, form a quorum of
| and 3, and accept value v3
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Leader#: 3 Leader#:2 ¢/ Leader#: 3 v/
Accepted: v3 Accepted: v, v/ Accepted: vz v/
Reply v2 to client  Reply v3 to client

® Problem: node 3 may wake up, form a quorum of
| and 3, and accept value v3

® Need to ensure once a value is chosen by a quorum,
it can’t be changed

® Use ballot numbers to distinguish different votes:
unique for each potential leader
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® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller
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® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller
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® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller



R o b. v R R o

UQ —2 9 -3

< U < U

Leader#: 2 Leader#: 2 v/ Leader#: ?

Ballot#: b Ballot#: b Ballot#: 0
Accepted: ! Accepted: v2(@b Accepted: !

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in
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Leader#: 2 Leader#: 2 v/ Leader#: ?
Ballot#: b Ballot#: b Ballot#: 0
Accepted: v2(@b Accepted: vo@b Accepted: !

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in
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Leader#: 2 Leader#: 2 v/ Leader#: !

Ballot#: b Ballot#: b Ballot#: 0

Accepted: v2(@b Accepted: vo@bv' Accepted:?
Reply v2 to client

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in
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Leader#: 2 v/ Leader#:?
Ballot#: b Ballot#: 0

Accepted: vo@bv' Accepted:?
Reply v2 to client
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Leader#: 2 Leader#: 2 v/ Leader#:?
Ballot#: b Ballot#: b Ballot#: 0

Accepted: vo(@b Accepted: vo@bv' Accepted:?
Reply v to client

® Need to ensure once a value is chosen by a quorum,
it can’t be changed

® Need do change Phase | to restrict which values
can be proposed



Leader#: 2 Leader#: 2 ¢/ Leader#: 3

Ballot#: b Ballot#: b Ballot#: b’ > b

Accepted: vo@b Accepted: v2@bv' Accepted:?
Reply v2 to client



ok, v2@b

_ . >

1 i -3

< U < U < U
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#:b" > b

Accepted: vo(@b Accepted: v2@bv' Accepted:?
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number



ok, v2@b

= - >
1 2 3
-« » -« » -« »
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number
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Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number

e Ensures the value chosen will not be changed —
nodes don't disagree about the chosen value
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Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot b’ > b will also propose v

e Ensures the value chosen will not be changed —
nodes don't disagree about the chosen value



Proof of the key invariant

® |nvariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v
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We prove by induction on b’ that: for any b’ > b, leader(b”) may only
propose V.



Proof of the key invariant

Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v

Fix an execution of a protocol and assume that in this execution Q
accepted v(@b.

We prove by induction on b’ that: for any b’ > b, leader(b”) may only
propose V.

Consider b” > b and assume leader(b’’) may only propose v if
b <b” <b’. We prove that leader(b’) may only propose v.
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® |eader(b”) may only propose v if b < b"” < b’
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and accepted v@b
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Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b

p couldn't accept v@b after voting for leader(b’): after voting, p joins b’
and rejects all messages with ballot b < b’

p accepted v@b before voting for leader(b’)

p's ballot when voting for leader(b’) is b, = b > 0, and it will reply with
v'@b, for some value v’

leader(b’) can't propose its own value, has to pick one accepted at the
highest ballot bmax = b in the votes it got




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax = b:
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bmax = b:

® A leader makes a single proposal per ballot,and Q accepted v@Qb =
any vote v @bmax for leader(b’) must have v/ = v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax = b:

® A leader makes a single proposal per ballot,and Q accepted v@Qb =
any vote v @bmax for leader(b’) must have v/ = v

® |eader(b’) has to choose v, QED.




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax > b:

® b < b’,since processes only vote for leaders of higher ballots




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots

® By induction hypothesis leader(bmax) could only propose v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v

® Processes that accepted a value at bmax could only accept v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v
® Processes that accepted a value at bmax could only accept v

® Any vote V' @bmax for leader(b’) must have v/ = v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v

® Processes that accepted a value at bmax could only accept v
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Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot b’ > b will also propose v

Ensures nodes don't disagree about the chosen value
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Multi-Paxos

State machine replication requires solving a sequence
of consensus instances

C3, C2, C| cil, C2, C3 c2, Ci, C3

® Naive solution: execute a separate Paxos instance
for each sequence element

® Multi-Paxos: execute Phase | once for multiple
sequence elements



Paxos verification

® | ots of work on formally verifying Paxos-like
protocols in theorem provers or semi-automatic

systems

® Fully automatic verification is an open problem



The end

® Spectrum of data consistency models in distributed
systems

® Downsides of weakening consistency can be
mitigated by verification techniques and
programming abstractions: replicated data types,
transactions

® Proving correctness of consistency protocols is a
verification challenge



