
Reasoning about data consistency
in distributed systems

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Data is replicated and partitioned
across multiple nodes

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

With thousands of machines inside

Load-balancing, fault-tolerance

Replicas on mobile devices

Offline use

≈

• Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

≈

• Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

• Requires synchronisation: contact other
replicas when processing a request

• Expensive: communication increases latency

• Impossible: either strong Consistency or
Availability in the presence of network Partitions
[CAP theorem]

≈

• Expensive: communication increases latency

• Impossible: either strong Consistency or
Availability in the presence of network Partitions
[CAP theorem]

≈

• Expensive: communication increases latency

• Impossible: either strong Consistency or
Availability in the presence of network Partitions
[CAP theorem]

≈

Relaxing synchronisation

Process an update locally, propagate effects to
other replicas later

add(100)

Relaxing synchronisation

Process an update locally, propagate effects to
other replicas later

add(100)

Better scalability & availability+

- Weakens consistency: deposit seen with a delay

• Common application: collaborative
editing (Google Docs, Office Online)

• Would accept edits before
communicating with Google servers
or other clients

New generation of data stores with high scalability and
low latency, but weak consistency

NoSQL data stores

So what consistency guarantees do they provide?

Anomalies

access.write(noboss)

post.write(photo)

Anomalies

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Anomalies

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causal dependency: one
operation is aware of another

Anomalies

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causal consistency model:
disallows this anomaly

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

2008

2008

2013

Strong vs weak consistency

• Pay-off from weakening consistency often worth it:
higher scalability, lower latency in geo-distribution,
offline access

‣ Both strong and weak systems used in industry

• But programmers need help in using it:

‣ Programming abstractions for weak consistency

‣ Methods for reasoning about how weakening
consistency affects application correctness

Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

Also centralised SQL databases

...since 1975

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

Also centralised SQL databases

...since 1975

Are applications OK with this?

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

[SIGMOD'17]

[SIGMOD'17]

No! E-commerce applications can
be hacked by exploiting weak
consistency of back-end databases

Weak shared-memory models

• Multicore processors: x86, ARM

• Programming languages: C/C++, Java

Due to compiler optimisations

Multiprocessor ~ distributed system

This course

• Programming abstractions for weak consistency

• Methods for specification

• Methods and tools for reasoning about
application correctness and consistency needs

• Implementing strong consistency

Strong consistency and
the CAP theorem

• Database system manages a set of objects:
Obj = {x, y, z...}

• Objects associated with types Type = {τ, ...}

• For each type τ ∈ Type:

‣ Set of operations Opτ, including arguments

‣ Return values: Valτ

Data model

• Integer register

‣ Opintreg = {read, write(k) | k ∈ ℤ}

‣ Valintreg = ℤ ∪ {ok}

• Counter:

‣ Opcounter = {read, add(k) | k ∈ ℕ}

‣ Valcounter = ℕ ∪ {ok}

Data model

• Semantics in an ordinary programming language

• For each type τ ∈ Type: set of states Stateτ,
initial state σ0 ∈ Stateτ

‣ Stateintreg = ℤ

‣ Statecounter = ℕ

• Semantics of an operation op:

‣ ⟦op⟧val ∈ Stateτ ➞ Valueτ

‣ ⟦op⟧state ∈ Stateτ ➞ Stateτ

Sequential semantics

Register semantics

• State = ℤ

• ⟦write(k)⟧state(σ) = k

• ⟦write⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ

Counter semantics

• State = ℕ

• ⟦add(k)⟧state(σ) = σ+k

• ⟦add(k)⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ

Counter semantics

• State = ℕ

• ⟦add(k)⟧state(σ) = σ+k

• ⟦add(k)⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ
read-only operation:
⟦op⟧state(σ) = σ

Counter semantics

• State = ℕ

• ⟦add(k)⟧state(σ) = σ+k

• ⟦add(k)⟧val(σ) = ok

• ⟦read⟧state(σ) = σ

• ⟦read⟧val(σ) = σ
read-only operation:
⟦op⟧state(σ) = σ

update operation

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

Clients issue requests and get responses:
history records the interactions in a single execution

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

Assume every request yields a response
No next request until the previous one responded

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

Assume every request yields a response
No next request until the previous one responded

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

obj(e) op(e) rval(e)

x.write(42) : ok

Assume every request yields a response
No next request until the previous one responded

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

Session order so: the order in which events are issued:
union of total per-client total orders

session
(= process, thread)

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

} event e

Session order so: the order in which events are issued:
union of total per-client total orders

session
(= process, thread)

Total order: transitive and irreflexive
relation ordering any pair of

elements one way or another

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

History H = (E, so)➡

request1

response1

request2

response2
...

Consistency specification

request1

response1

request2

response2
...

History H = (E, so)➡

Consistency model - a set of histories ℋ:
the set of allowed database behaviours

x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

Visualising histories

x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

Visualising histories

• Consistency model ℋ: behaviour of the database
under arbitrary clients

Using a consistency model

• Consistency model ℋ: behaviour of the database
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under
arbitrary behaviour of the database

Using a consistency model

• Consistency model ℋ: behaviour of the database
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under
arbitrary behaviour of the database

• Semantics of P when using ℋ:
⟦P, ℋ⟧ = {X ∈ ⟦P⟧ | history(X) ∈ ℋ}

Using a consistency model

• Consistency model ℋ: behaviour of the database
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under
arbitrary behaviour of the database

• Semantics of P when using ℋ:
⟦P, ℋ⟧ = {X ∈ ⟦P⟧ | history(X) ∈ ℋ}

Using a consistency model

P:
r1 = x.read();
r2 = x.read();
y.write(r1==r2);

• Consistency model ℋ: behaviour of the database
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under
arbitrary behaviour of the database

• Semantics of P when using ℋ:
⟦P, ℋ⟧ = {X ∈ ⟦P⟧ | history(X) ∈ ℋ}

Using a consistency model

⟦P⟧:
x.read(): 42;
x.read(): 42;
y.write(1);

x.read(): 42;
x.read(): 43;
y.write(0);

P:
r1 = x.read();
r2 = x.read();
y.write(r1==r2);

• Consistency model ℋ: behaviour of the database
under arbitrary clients

• Program P ➔ set of all executions ⟦P⟧ under
arbitrary behaviour of the database

• Semantics of P when using ℋ:
⟦P, ℋ⟧ = {X ∈ ⟦P⟧ | history(X) ∈ ℋ}

Using a consistency model

⟦P⟧:
x.read(): 42;
x.read(): 42;
y.write(1);

x.read(): 42;
x.read(): 43;
y.write(0);

P:
r1 = x.read();
r2 = x.read();
y.write(r1==r2);

⟦P, ℋ⟧:

Defining a consistency model

• Operational specification: by an idealised
implementation

• Axiomatic specification: more declarative

Strong consistency operationally

x: σ

x: σ = 0

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42) x: σ

x: σ = 0

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42)

x.write(42)

x: σ

x: σ = 0

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42)

ok

x.write(42)

x: σ

x: σ = 0

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42)

ok

x.write(42)

x: σ

x: σ = 0

x.read

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

• Server with a single copy of all objects

• Clients send request to the server and wait for a reply

• Server processes operation sequentually in the receipt
order

Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

Could write a formal operational semantics: maintain the state
of the database, clients and sets of messages between them

Strong consistency operationally
x.write(42)

ok

x.write(42)

x.read : 42

x: σ

x: σ = 0

x.read

42

x: σ = 42

• Consistency model = {H | ∃ execution with history H
produced by the abstract implementation}

• Sequential consistency: one form of strong consistency

• Weaker than linearizability: takes into acount the duration of
operations

• Let one understand intuitions behind
implementations

• May become unwieldy for weaker consistency
models

• Sometimes overspecify behaviour

Operational specifications

Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H
produced by the abstract implementation}

vs

Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H
produced by the abstract implementation}

vs

Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how
operations are processed inside the system

• Abstract execution (H, r1, ..., rn) = (E, so, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

Consistency model = {H | ∃ execution with history H
produced by the abstract implementation}

vs

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

Sequential consistency axiomatically

x.write(42)

ok

x.read

42

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

Sequential consistency axiomatically

x.write(42)

ok

x.read

42

Abstract execution: (H, to) = (E, so, to), where to ⊆ E×E

SC = {(E, so) | ∃ total order to. (E, so, to) ⊨ 𝒜SC}

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

(E, so, to) ⊨ 𝒜SC iff

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

(E, so, to) ⊨ 𝒜SC iff

∀e ∈ E. type(obj(e)) = (σ0, ⟦-⟧val, ⟦-⟧state)

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

(E, so, to) ⊨ 𝒜SC iff

rval(e) = ⟦op(e)⟧val(σ)

∀e ∈ E. type(obj(e)) = (σ0, ⟦-⟧val, ⟦-⟧state)

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

σ = ⟦op(en)⟧state(...⟦op(e1)⟧state(σ0))

(E, so, to) ⊨ 𝒜SC iff

rval(e) = ⟦op(e)⟧val(σ)

e1, ..., en = to-1(e).select(obj(e)).sort(to)

∀e ∈ E. type(obj(e)) = (σ0, ⟦-⟧val, ⟦-⟧state)

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Integer registers: a read returns the value written by
the last preceding event in to (or 0 if there are none)

σ = ⟦op(en)⟧state(...⟦op(e1)⟧state(σ0))

(E, so, to) ⊨ 𝒜SC iff

rval(e) = ⟦op(e)⟧val(σ)

e1, ..., en = to-1(e).select(obj(e)).sort(to)

x.write(0); x.write(42); x.read: 42

∀e ∈ E. type(obj(e)) = (σ0, ⟦-⟧val, ⟦-⟧state)

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Integer registers: a read returns the value written by
the last preceding event in to (or 0 if there are none)

σ = ⟦op(en)⟧state(...⟦op(e1)⟧state(σ0))

(E, so, to) ⊨ 𝒜SC iff

rval(e) = ⟦op(e)⟧val(σ)

e1, ..., en = to-1(e).select(obj(e)).sort(to)

x.write(0); x.write(42); x.read: 42

∀e ∈ E. type(obj(e)) = (σ0, ⟦-⟧val, ⟦-⟧state)

SC = {(E, so) | ∃to. (E, so, to) ⊨ 𝒜SC}

x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

SC example

SC = {(E, so) | ∃to. (E, so, to) ⊨ 𝒜SC}

x.read: 0

y.write(1)

so

z.write(2)

so

c.add(1)

so

c.add(1)

so

x.write(1)

c.add(1)

so

c.read: 1

so

z.read: 2

so

SC example

to

SC = {(E, so) | ∃to. (E, so, to) ⊨ 𝒜SC}

• Got rid of messages between clients and the
server, but didn't go far from the operational spec

• There's more difference for weaker models:
complex processing can be concisely specified by
axioms

Operational vs axiomatic

x.write(42)

ok

x.read

42

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Dekker example

Claim: under sequential consistency,
there can be at most one winner

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

so

Need to construct a total order to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

so ⊆ to

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Reads return the most recent write in to, but this
read doesn't see the write

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Reads return the most recent write in to, but this
read doesn't see the write

to

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Reads return the most recent write in to, but this
read doesn't see the write

to

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

Reads return the most recent write in to, but this
read doesn't see the write

toto

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write(1)

y.read(): 0

so, to

y.write(1)

x.read(): 0

so, to

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

But to must be acyclic, so no such total order
exists - QED.

toto

CAP theorem

No system with at least 2 processes can implement a
read-write register with strong consistency, availability,
and partition tolerance

• strong consistency = sequential consistency

• availability = all operations eventually complete

• partition tolerance = system continues to function
under permanent network partitions

(processes in different partitions can no longer
communicate in any way)

CAP proof

No system with at least 2 processes can implement a
read-write register with strong consistency, availability,
and partition tolerance

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A:

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B:

• By contradiction: assume the desired system exists

• Run some experiments with the Dekker program

• Network is partitioned between the two processes

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A Process B

• Process A runs its code, process B is idle

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A
execution XA

of process A

Process B

• Process A runs its code, process B is idle

• Availability ⟹ A must terminate and produce an
execution XA

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A
execution XA

of process A

✔

Process B

• Process A runs its code, process B is idle

• Availability ⟹ A must terminate and produce an
execution XA

• Sequential consistency ⟹ XA must print "A wins"

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A
execution XA

of process A

✔

Process B

• Process B runs its code, process A is idle

• Availability ⟹ B must terminate and produce an
execution XB

• Sequential consistency ⟹ XB must print "B wins"

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B

✔

Process A

execution XB

of process B

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A
execution XA

of process A

✔

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B

✔

execution XB

of process B

• Network is partitioned in both experiments:
processes didn't receive any messages

• XA; XB is an execution of A || B, i.e., Dekker

• XA; XB not SC ⟹ contradiction, QED

x.write(1)
if (y.read() == 0)
 print "A wins"

Process A
execution XA

of process A

✔

y.write(1)
if (x.read() == 0)
 print "B wins"

Process B

✔

execution XB

of process B

• Processes have to talk to each other (synchronise)
to guarantee strong consistency

Eventual consistency and
replicated data types,

operationally

System model

x, y x, y x, y

• Database system consisting of multiple replicas
(= data centre, machine, mobile device)

• Each replica stores a copy of all objects

System model

x, y x, y x, y

• Replicas can communicate via channels

• Asynchronous: no bound on how quickly a
message will be delivered

(in particular, because of network partitions)

• Reliable: every message is eventually delivered

(so every partition eventually heals)

• For now: replicas are reliable too

High availability

x, y x, y x, y

• Clients connect to a replica of their choice

High availability

x, y x, y x, y

• Clients connect to a replica of their choice

x.write(1) y.write(1)

High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately,
without communicating with others

x.write(1)

ok

y.write(1)

ok

High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately,
without communicating with others

• Propagate effects to other replicas later

x.write(1)

ok

y.write(1)

ok

High availability

x, y x, y x, y

• Clients connect to a replica of their choice

• Replica has to respond to operations immediately,
without communicating with others

• Propagate effects to other replicas later

• Always available, low latency, but may not be
strongly consistent

x.write(1)

ok

y.write(1)

ok

High availability

x, y x, y x, y

• Quiescent consistency: if no new updates are made
to the database, then replicas will eventually
converge to the same state

• Later more precise and stronger formulations of
eventual consistency

x.write(1)

ok

y.write(1)

ok

Replicated data types

• Need a new kind of replicated data type: object
state now lives at multiple replicas

• Aka CRDTs: commutative, convergent, conflict-free

Just one type: operation-based replicated data types

• Object ➔ Type ➔ Operation signature

For now fix a single object and type

• Set of states State

• Initial state σ0 ∈ State

• ⟦op⟧val ∈ State ➞ Value

• ⟦op⟧state ∈ State ➞ State

Sequential semantics recap

σ

Object state at a replica: σ ∈ State

Replicated data types

σ

⟦op⟧val

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types

σ

σʹ
⟦op⟧val

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types

The operation affects a different state σʹ!

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Replicated data types

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Effector

Replicated data types

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Object state at a replica: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Effector

Replicated data types

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦read()⟧eff(σ) = λσ. σ

State = ℕ

op

⟦read()⟧val(σ) = σ

Counter

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Counter

σ

50

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Counter

σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Counter

σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

op

⟦add(100)⟧eff(σ) = λσʹ. (σ + 100)

Counter

count = 0

add(100)

count = 0

add(200)

count = 0

add(100)

count = 0

count = 200count = 100

λσʹ. 100
add(200)

λσʹ. 200

count = 0

add(100)

count = 0

count = 200

count = 100

count = 100

λσʹ. 100

count = 200

add(200)
λσʹ. 200

Quiescent consistency violated: all updates have been
delivered, yet replicas will never converge

• Effectors have to commute:

• Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)

∀op1, op2, σ1, σ2. ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) =
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring quiescent consistency

• Effectors have to commute:

• Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)

• Quiescent consistency: if no new updates are made to
the database, then replicas will eventually converge to
the same state

(because update get eventually delivered)

∀op1, op2, σ1, σ2. ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) =
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring quiescent consistency

• Counter

• Last-writer-wins register

• Multi-valued register

• Add-wins set

• Remove-wins set

• List

• ...

Replicated data types

Read-write register

write(1) write(2)

Read-write register

write(1) write(2)

Read-write register

write(1) write(2)Conflict!

Read-write register

write(1) write(2)Conflict!

• No right or wrong solutions: depends on the
application requirements

• E.g., could report the conflict to the user:
multi-valued register

Last-writer-wins register

write(1) write(2)

• Shared memory: an arbitrary write will win

• Conflict arbitrated using timestamps: last write wins

• Link to shared-memory consistency models

Last-writer-wins register

write(1) write(2)

State = Value × Timestamp

⟦read()⟧val(v, t) = v

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2 read(): 2

Last-writer-wins register

write(1) write(2)

⟦write(vnew)⟧eff(v, t) =

 let tnew = newUniqueTS() in

 λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

t1 t2

t1 < t2

read(): 2 read(): 2

Last-writer-wins register

write(1) write(2)
t1 t2

t1 < t2

read(): 2 read(): 2

Effectors are commutative: the write with the highest
timestamp wins regardless of the order of application

• Can use wall-clock time at the machine

• But can lead to strange results when clocks
are out of sync

Generating timestamps

write(1)
t1

write(1)

write(2)

read: 1

t1

write(1)

write(2)

read: 1t1 > t2

t2

t1

write(1)

write(2)

read: 1t1 > t2

t2

t1

write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1

write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1

• Undesirable: 2 was meant to supersede 1

write(1)

write(2)

read: 1

read: 1

t1 > t2

t2

t1

• Undesirable: 2 was meant to supersede 1

• Use logical (Lamport) clocks instead

Lamport clock

time = 1

Replica maintains a counter, incremented on each operation:

Lamport clock

write(1) 1

time = 1

time = 2

Replica maintains a counter, incremented on each operation:

Lamport clock

write(1) 1

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

2

Lamport clock

write(1) 1

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

write(1) 1

time = 1

2

Lamport clock

write(1) 1

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

time = 1

time = 2

write(2)

Replica maintains a counter, incremented on each operation:

write(1) 1

time = 1

2

Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

Replica maintains a counter, incremented on each operation:

Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

(c1, r1) < (c2, r2) ⟺ c1 < c2 ∨ (c1 = c2 ∧ r1 < r2)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

Replica maintains a counter, incremented on each operation:

Lamport clock

write(1)

Timestamps need to be unique: ts = (CounterValue, ReplicaID)

(c1, r1) < (c2, r2) ⟺ c1 < c2 ∨ (c1 = c2 ∧ r1 < r2)

time = 1

time = 2

write(2)

write(1)

time = 1

(1, r1)

(2, r1)

(1, r2)

(1, r1) < (1, r2)

Replica maintains a counter, incremented on each operation:

write(1)

time = t1

write(1)
(t1, r1)

time = t1

time = t1+1

write(1)
(t1, r1) time = t2

time = t1

time = t1+1

write(1)
(t1, r1) time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its
timestamp

time = t1

time = t1+1

write(1)

write(2)

read: 1

(t1, r1) time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its
timestamp

time = t1

time = t1+1

write(1)

write(2)

read: 1

(t1, r1)

t1 > t2

time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its
timestamp

time = t1

(t1+1, r2)

time = t1+1

write(1)

write(2)

read: 1

(t1, r1)

read: 2

t1 > t2

time = t2

time = max{t1, t2}+1

When receiving an effector, bump up your clock above its
timestamp

time = t1

(t1+1, r2)

time = t1+1

cart.add(book)

cart = {book}

cart.remove(book)

Replicated set

cart.add(book)

cart = {book}

cart.remove(book)

Replicated set

Conflict!

cart.add(book)

Should the remove cancel the concurrent add?
Depends on application requirements

cart = {book}

cart.remove(book)

Replicated set

Conflict!

Remove wins: cart = ∅

Add wins: cart = {book}

Last writer wins: choose based on operation
time-stamps

cart = {book}

cart.add(book) cart.remove(book)

Replicated set

Conflict!

Add-wins set

cart = {book}

cart.add(book) cart.remove(book)

cart = {book}

Add-wins set

cart = {book}

cart.add(book) cart.remove(book)

• remove() acts differently wrt add() depending on
whether it's concurrent or not

• Each addition creates a new instance:
State = set of pairs (element, unique id)

cart = {book}

add(book)

{(book,1)}

⟦add(v)⟧eff(σ) = λσʹ. (σʹ ∪ {(v, uniqueid()})

Each add() creates a new element instance:

add(book)

{(book,1)}

{(book,1), (book,2)}

⟦add(v)⟧eff(σ) = λσʹ. (σʹ ∪ {(v, uniqueid()})

Each add() creates a new element instance:

λσʹ. σʹ ∪ {(book, 2)}

add(book)

{(book,1)}

{(book,1), (book,2)}

add(book)

{(book,1)}

{(book,1), (book,2)}

read() : {book}

⟦read()⟧val(σ) = {v | {∃ id. (v, id)} ∈ σ)

Instance ids ignored when reading the set:

add(book)

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}

add(book)

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ) = λσʹ. (σʹ \ {(v, id) ∈ σ})

add(book)

∅

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ) = λσʹ. (σʹ \ {(v, id) ∈ σ})

λσʹ. σʹ \ {(book, 1)}

add(book)

∅

{(book,1)}

remove(book)

remove(v) removes all currently present instances of x:

{(book,1)}

{(book,1), (book,2)}

⟦remove(v)⟧eff(σ) = λσʹ. (σʹ \ {(v, id) ∈ σ})

{(book,2)}

λσʹ. σʹ \ {(book, 1)}

add(book)

∅

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}

{(book,2)}

add(book)

∅

{(book,1)}

remove(book)

{(book,1)}

{(book,1), (book,2)}

{(book,2)} {(book,2)}

Effectors commutative ➔ replicas converge

λσʹ. σʹ ∪ {(book, 2)}

• Need to ensure commutativity to
guarantee quiescent consistency

• Need to make choices about how to
resolve conflicts

Take-aways

Replicated data type uses

• Provided by some data stores:

• Implemented by programmers on their own:

Collaborative editing: at the core -
list data type (of formatted characters)

• Given a database with a set of objects of replicated
data types

• Eventual consistency model = set of all histories
produced by arbitrary client interactions with the
data type implementations (with any allowed
message deliveries)

• Implies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state

Operational specification

Eventual consistency and
replicated data types,

axiomatically

c.add(1)

c.read(): ?

Anomalies

c.add(1)

Anomalies

c.read(): 0

Can be disallowed if the client sticks to the same replica:
Read Your Writes guarantee

c.add(1)

Anomalies

c.read(): 0

access.write(all)

access.write(noboss)

post.write(photo)

Anomalies

access.write(all)

access.write(noboss)

post.write(photo)

Anomalies

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Anomalies

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Anomalies

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causality violation: disallowed by causal consistency

Anomalies

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Causality violation: disallowed by causal consistency

Anomalies

• Lots of replicated data type implementations: e.g.,
can send snapshots of object states instead of
operations

• Lots of message delivery guarantees: different
implementations of causal consistency

• Want specifications that abstract from
implementation details: both replicated data types
and anomalies

Specification

Axiomatic specifications

• Choose a set of relations over events: r1, ..., rn

Abstractly specify essential information about how
operations are processed inside the system

• Abstract execution (H, r1, ..., rn)

• Choose a set of axioms 𝒜 constraining abstract
executions

• Consistency model = {H | ∃ r1, ..., rn. (H, r1, ..., rn) ⊨ 𝒜}

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders

Order inclusion
axioms: anomalies

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

Partial orders

Order inclusion
axioms: anomalies

Return value axiom:
replicated data types

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

Eventsaccess.write(all)

soar Object Op Return
value

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis
Session
order

access.write(all)

soar

The order of requests by the same session

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

access.write(all)

soar

post.read() : photo

access.read() : all

Declaratively specify ways in which the
database processes requests

access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so

access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so

Delivered?

access.write(noboss)

post.write(photo)

so so

access.write(all)

post.read() : photo

access.read() : all

so
Visible?

Delivered?

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility relationaccess.write(all)

soar

post.read() : photo

access.read() : all

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility relationaccess.write(all)

soar

post.read() : photo

access.read() : all

vis is irreflexive and acyclic

Execution: (E, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

Visibility relation

vis is irreflexive and acyclic

x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 2}

x.write(1)

t1 t2

t1 < t2

System includes a time-stamping mechanism
that can be used in conflict resolution

x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 2}

x.write(1)

Arbitrated before

t1 t2

t1 < t2

System includes a time-stamping mechanism
that can be used in conflict resolution

Execution: (E, so, vis, ar)

so so
vis

vis

soarArbitration
relation

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution

Execution: (E, so, vis, ar)

so so
vis

vis

soarArbitration
relation

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution

ar is total on E and vis ⊆ ar

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an event e?

• Only actions on the same object visible to e are important:
have been delivered to the replica performing e

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

Context of e - projection of the
execution onto such actions

• How do I compute the return value of an event e?

• Only actions on the same object visible to e are important:
have been delivered to the replica performing e

Data type specification

vis

access.write(all)

ar

vis

F: context of e → return value of e

access.write(noboss)

access.read() : noboss

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

Data type specification

vis

access.write(all)

ar

vis

F for Last-Writer-Wins registers:
sort all actions according to ar
and return the last value written

F: context of e → return value of e

access.write(noboss)

access.read() : noboss

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

F: context of e → return value of e

What gets taken into account
depends only on vis

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

Counter

c.read(): 6

F: context of e → return value of e

F: reads return the sum of all additions in the context

c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

Counter
F: context of e → return value of e

Relations between events in the context don't matter

vis

c.read(): 6

c.subtract(4)

vis

c.add(1)

vis

c.add(2)

vis

Counter with decrements

c.read(): -1

F: context of e → return value of e

vis

F: reads return additions minus subtractions

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): ?

F: context of e → return value of e

F: reads return the set of all conflicting writes

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {1, 3}

F: context of e → return value of e

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {1, 3}

F: context of e → return value of e

F: discard all writes seen by a write

x.write(3)

vis

x.write(1)

vis

x.write(2)

vis

vis

Multi-valued register

x.read(): {3}

F: context of e → return value of e

vis

F: discard all writes seen by a write

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

vis

Add-wins set

set.read() : ?

F: context of e → return value of e

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Add-wins set
F: context of e → return value of e

F: cancel all adds seen by a remove

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : {book}

vis

Add-wins set
F: context of e → return value of e

vis

set.remove(book)

vis

set.add(book)

vis

set.add(book)

vis

set.read() : ∅

vis

Add-wins set
F: context of e → return value of e

F: cancel all adds seen by a remove

Data type specification

F: context of e → return value of e

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

y.read(): 42

x.write(42)

"No causal cycles" axiom

x.read(): 42

y.write(42)

so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order

y.read(): 42

x.write(42)

"No causal cycles" axiom

x.read(): 42

y.write(42)

so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order

• Could result from speculative execution, uncommon in
distributed systems

y.read(): 42

x.write(42)

"No causal cycles" axiom

x.read(): 42

y.write(42)

so so

vis

vis

• so ∪ vis is acyclic: no causal cycles/out-of-thin-air values

• so and vis consistent with execution order

• Could result from speculative execution, uncommon in
distributed systems

• Some forms allowed by shared-memory models (ARM,
C++, Java): defining semantics is an open problem

Eventual visibility

so

x.write(42) x.read(): 0

so

x.read(): 0

so

x.read(): 0

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E
vis

x.read(): 0
...

Eventual visibility

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E
vis

so

x.write(42) x.read(): 0

so

x.read(): 0

so

x.read(): 42

x.read(): 42
...

vis

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same
state

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

c.read: 0

vis

c.add(1)

vis

c.add(2)

vis

c.read(): 3

vis

c.add(1) c.add(2)

vis

c.read(): 3

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

• Convergence': two operations with the same context
projection to updates return the same value

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

• Eventual visibility: each update is seen by all but finitely many ops

• Convergence': two operations with the same context
projection to updates return the same value

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

• Eventual visibility: each update is seen by all but finitely many ops

• Convergence': two operations with the same context
projection to updates return the same value

• Assuming finitely many updates, all but finitely many ops will
see all of these updates

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

• Convergence: events with the same context return the same
value: ∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

• Eventual visibility: each update is seen by all but finitely many ops

• Convergence': two operations with the same context
projection to updates return the same value

• Quiescent consistency: assuming finitely many updates, all but
finitely many operations on a given object return values
computed based on the same context: same op ⟹ same rval

• Assuming finitely many updates, all but finitely many ops will
see all of these updates

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

Why is this spec sound wrt implementations?

Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies
consistency axioms 𝒜

Specification soundness

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies
consistency axioms 𝒜

Specification soundness

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

⊇

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies
consistency axioms 𝒜

Specification soundness

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

⊇

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies
consistency axioms 𝒜

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

Specification soundness

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Proofs depend on replicated data types

• Example: replicated counters and last-writer-wins
registers

• There are also generic proof techniques that work
for whole classes of data types

Specification soundness

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Proofs depend on replicated data types

• Example: replicated counters and last-writer-wins
registers

• There are also generic proof techniques that work
for whole classes of data types

e

f

e ⟶ f ⟺ effector of e delivered to replica of f
before f is executed

Constructing vis

vis

e

f

e ⟶ f ⟺ effector of e delivered to replica of f
before f is executed

Constructing vis

vis

e

vis

f

e ⟶ f ⟺ effector of e delivered to replica of f
before f is executed

Constructing vis

vis

e

vis

f

e ⟶ f ⟺ effector of e delivered to replica of f
before f is executed

vis

so ∪ vis is acyclic?

e

vis

f

e ⟶ f ∨ e ⟶ f ⟹ e was issued before f in the

operational execution

vis

so ∪ vis is acyclic?

so

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

r1

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

r1 r2

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

• Channels are reliable (every partition eventually heals) ⟹
the effector of e is eventually delivered to r2

r1 r2

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

f1

• Channels are reliable (every partition eventually heals) ⟹
the effector of e is eventually delivered to r2

• From some point on, all events fi at the replica r2 see e

f2
vis

vis

r1 r2

∀e ∈ E. e ⟶ f for all but finitely many f ∈ Evis

e

f1

• Channels are reliable (every partition eventually heals) ⟹
the effector of e is eventually delivered to r2

• From some point on, all events fi at the replica r2 see e

• True for any replica ⟹ only finitely many events don't see e

f2
vis

vis

r1 r2

c.add(3)

vis

c.add(1)

vis

c.add(2)

vis

c.read(): 6

F: reads return the sum of all additions in the context

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

Correctness of counters

c.read: ?

Correctness of counters

c.read: σ

A read returns the value of the counter at the replica:

Correctness of counters

⟦read()⟧val(σ) = σ

c: σ

c.add(v)

c.read: σ

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

Correctness of counters

c: σ

c.add(v)

c.read: σ

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

Correctness of counters

⟦add(v)⟧eff(σ) = λσʹ. (σʹ + v)

c: σ

c.add(v)

vis

c.read: σ

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

Correctness of counters

⟦add(v)⟧eff(σ) = λσʹ. (σʹ + v)

c: σ

c.add(v)

vis

c.read: σ

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

Correctness of counters

= increments visible to the read, QED.

c: σ

Constructing ar

te

tf

e

f

e ⟶ f ⟺ te < tf
ar

Every event e gets assigned a timestamp te from
a logical Lamport clock

e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from
a logical Lamport clock

e

f

e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from
a logical Lamport clock

e

vis

f

e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from
a logical Lamport clock

e

vis

f

e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from
a logical Lamport clock

e

vis

f

When receiving
the effector of e,
bumps up the
clock above te

e ⟶ f ⟺ te < tf

vis ⊆ ar

ar

te

tf

Every event e gets assigned a timestamp te from
a logical Lamport clock

e

vis

f

When receiving
the effector of e,
bumps up the
clock above te

te < tf ⇒ e ⟶ far

x.write(1) x.write(2)

x.read(): 2

Correctness of registers

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

F: reads return the last value in ar

visvis

ar

x.read: ?

Correctness of registers

x.read: v

A read returns the value part of the register at the replica:

⟦read()⟧val(v, t) = v

x: (v, t)

Correctness of registers

x.write(v')

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

x.write(v')

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t) = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

x.write(v')

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t) = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew

x.write(v')

vis

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t) = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew

x.write(v')

vis

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

⟦write(vnew)⟧eff(v, t) = let (tnew = newUniqueTS()) in
λ(vʹ, tʹ). if tnew > tʹ then (vnew, tnew) else (v, t)

tnew

e ⟶ f ⟺ te < tf
ar

x.write(v')

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers

x.read: v

x: (v, t)

tnew

= the last write in arbitration out of the ones visible to
the read, QED.

e ⟶ f ⟺ te < tf
ar

vis

Proof technique summary

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Construct vis from message deliveries and ar from
timestamps

Proof technique summary

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Construct vis from message deliveries and ar from
timestamps

• Prove invariants relating replica state with message
deliveries: the value of a counter at a replica is the
sum of all increments of the counter delivered to it

Proof technique summary

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

• Construct vis from message deliveries and ar from
timestamps

• Prove invariants relating replica state with message
deliveries: the value of a counter at a replica is the
sum of all increments of the counter delivered to it

• Use the invariants to prove that return values of
operations correspond to data type specs

Proof technique summary

• ∀ concrete execution of the implementation with a
history (E, so)

• ∃ vis, ar. (E, so, vis, ar) satisfies the axioms 𝒜

In-between eventual and
strong consistency

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

Eventual consistency summary

vis

The set of histories (E, so) such that for some vis, ar:

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Sequential consistency

Consistency zoo

Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Sequential consistency

Consistency zoo

Keep soundness justifications informal:
can be shown using previous techniques

Read Your Writes

c.add(100)

c.read(): 0

so

Read Your Writes

c.add(100)

c.read(): 0

so

Read Your Writes

c.add(100)

c.read(): 0

so

Read Your Writes

c.add(100)

c.read(): 100

so

so ⊆ vis
vis

• An operation sees all prior operations by the same
process

• Session guarantees: clients only accumulate information

Read Your Writes

c.add(100)

c.read(): 100

so

so ⊆ vis
vis

• An operation sees all prior operations by the same
process

• Session guarantees: clients only accumulate information

• Implementation: client sticks to the same replica

Monotonic Reads

c.add(100)

c.read(): 100

so vis

c.add(100)
vis

Monotonic Reads

c.add(100)

c.read(): 100

so

vis; so ⊆ vis
vis

• An operation sees what prior operations by the same
session see

c.add(100)
vis

vis

Monotonic Reads

c.add(100)

c.read(): 100

so

vis; so ⊆ vis
vis

• An operation sees what prior operations by the same
session see

• Implementation: client sticks to the same replica

c.add(100)
vis

vis

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

Disallows causality violation anomaly

Causal consistency

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

Mandate that all actions that happened before an action
be visible to it

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Causal consistency

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

(so ∪ vis)+ ⊆ vis

Mandate that all actions that happened before an action
be visible to it

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Causal consistency

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

✘

(so ∪ vis)+ ⊆ vis

Mandate that all actions that happened before an action
be visible to it

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Causal consistency

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

vis

✘

(so ∪ vis)+ ⊆ vis

Causal consistency

Implies session guarantees: so ⊆ vis and vis; so ⊆ vis

access.write(all)

access.write(noboss)

post.write(photo)

Clients stick to the same replica

access.write(all)

access.write(noboss)

post.write(photo)

Clients stick to the same replica

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Clients stick to the same replica

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

Cannot deliver an operation before
delivering its causal dependencies

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro

Replica order ro: the order in which
operations are issued at a replica

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro del

Delivery order del: one operation got
delivered before another was issued

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

ro del

• Causal dependencies of e: hb-1(e)

• An op can only be delivered after all its causal dependencies

• Implementations summarise dependencies concisely

hb = (ro ∪ del)+

, hb

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

Implementations: updates delivered later

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

x written
before y

y written
before x

visvis

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

Implementations: no causal dependency between the two writes
➜ can be delivered in different orders at different replicas

x written
before y

y written
before x

visvis

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written
before y

y written
before x

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written
before y

y written
before x

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

Not sequentially consistent

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

so so

x written
before y

y written
before x

✘

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

Not sequentially consistent

• so ⊆ vis and vis is total

• vis ⊆ ar ⟹ can equivalently require so ⊆ vis = ar

• Every operation sees the effect of all operations
preceding it in vis

• Like the original definition with to = vis = ar

Sequential consistency

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis

ar, vis

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

ar, vis

ar, vis

No execution with such history

• Eventual consistency

• Session guarantees: Dekker, IRIW, causality violation

so ⊆ vis, vis; so ⊆ vis

• Causal consistency: Dekker, IRIW

(so ∪ vis)+ ⊆ vis

• Prefix consistency: Dekker

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Consistency zoo

Shared-memory models

• Sequential consistency first proposed in the
context of shared memory (1979)

• Processors and languages don’t provide sequential
consistency: weak memory models, due to
processor and compiler optimisations

• Our specifications similar to weak memory model
definitions

• Consistency axioms for last-writer-wins registers
~ shared-memory models

• Eventual consistency

• Session guarantees: Dekker, IRIW, causality violation

so ⊆ vis, vis; so ⊆ vis

• Causal consistency: Dekker, IRIW

(so ∪ vis)+ ⊆ vis

• Prefix consistency: Dekker

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Consistency zoo

for last-writer-wins =
C++ release/acquire

• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

• What's the best we can do while
staying available under network
partitionings?

• Causal consistency is a strongest
such model [Attiya et al., 2015]

Theoretical results

• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

• What's the best we can do while
staying available under network
partitionings?

• Causal consistency is a strongest
such model [Attiya et al., 2015]

Theoretical results

• Eventual consistency

• Session guarantees

so ⊆ vis, vis; so ⊆ vis

• Causal consistency

(so ∪ vis)+ ⊆ vis

• Prefix consistency

ar; (vis \ so) ⊆ vis

• Sequential consistency

vis = ar

Terms and conditions apply:

• for a certain version of CC and a
certain class of implementations

• a strongest model: cannot be
strengthened, but can be other
alternative incomparable models

• What's the best we can do while
staying available under network
partitionings?

• Causal consistency is a strongest
such model [Attiya et al., 2015]

Theoretical results

• Application of eventual consistency - collaborative
editing: Google Docs, Office Online

• At the core: list data type (of formatted characters)

• List data type has an inherently high metadata
overhead: can't discard a character when deleting it
from a Google Docs document! [Attiya et al., 2016]

• Discarding may allow previously deleted elements
to reappear

Theoretical results

Determining the right level of
consistency

Application correctness

• Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Application correctness

• Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Challenge

Vanilla weak consistency often too weak to
preserve correctness

Need to strengthen consistency in parts of
the application

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦add(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Deposits

σ
⟦op⟧eff(σ)

⟦op⟧val

op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals

σ
⟦op⟧eff(σ)

⟦op⟧val

op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals

σ
⟦op⟧eff(σ)

⟦op⟧val

op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals

σ
⟦op⟧eff(σ)

⟦op⟧val

op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

Withdrawals

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

balance = 100

add(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

balance = 100

add(100) : ✔
• Withdrawals strongly consistent

• Deposits eventually consistent

Tune consistency:

add(100)

withdraw(100) : ✔ withdraw(100) : ✔

vis

Strengthening consistency

vis

• Baseline model: causal consistency

• Problem: withdrawals are causally independent

add(100)

withdraw(100) : ✔ withdraw(100) : ✔

vis

Strengthening consistency

vis

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis

Strengthening consistency

vis

vis

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

Strengthening consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ e

• No constraints on additions: ¬(add ⋈ op)

vis vis

add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis vis

vis

add(100)add(100)

add(100)

withdraw(100) : ✔ withdraw(100) : ✘

vis

Strengthening consistency

vis

vis

• Implementation requires replicas executing withdraw()
to synchronise

• add() doesn't need synchronisation

add(100)add(100)

balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

balance = 100

withdraw(100) : ✔

balance = 100

 withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

balance = 100

withdraw(100) : ✔

balance = 100

 withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

balance = 100 balance = 100

withdraw(100) : ✔

balance = 0

 withdraw(100) : ?

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

Acquiring the lock requires bringing all operations the
replica holding it knows about

balance = 100

 withdraw(100) : ✘

balance = 0

balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

balance = 100

 withdraw(100) : ✘

balance = 0

add(100)

balance = 100

withdraw(100) : ✔

withdraw ⋈ withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

¬(add ⋈ op): no locks,
so no synchronisation

Consistency choices

• Databases with multiple consistency levels:

‣ Commercial: Amazon DynamoDB, Microsoft
DocumentDB

‣ Research: Li+ OSDI’12; Terry+ SOSP’13;
Balegas+ EuroSys’15; Li+ USENIX ATC’18

• Stronger operations require synchronisation between
replicas

• Pay for stronger semantics with latency, possible
unavailability and money

• Hard to figure out the minimum consistency level
necessary to maintain correctness

• Reason about all possible abstract executions?

‣ Abstract from some of implementation details, but
still describe behaviour of the whole system

‣ Number of possible executions is exponential: e.g.,
choices of vis = order of message deliveries

• Need verification techniques that limit the exponential
blow-up

Consistency choices

Verification problem

• a set of operations: withdraw(), deposit(), ...

• a conflict relation: withdraw ⋈ withdraw

Do the operations always preserve a given
integrity invariant?

I = (balance ≥ 0)

Given

Verification problem

• a set of operations: withdraw(), deposit(), ...

• a conflict relation: withdraw ⋈ withdraw

Do the operations always preserve a given
integrity invariant?

I = (balance ≥ 0)

Given

Later: operations ➜ whole transactions

Check it’s preserved after
executing op

σ ∈ I
op

Assume invariant holds

Single check: no state-space explosion from
concurrency

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

Effect applied in a different state!

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

P(σʹ)?

1. Effector safety: f(σ) preserves I when executed
in any state satisfying P: {I ∧ P} f(σ) {I}

2. Precondition stability: P will hold when f(σ) is
applied at any replica

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

• Causal consistency ➜ receive op’s causal
dependencies before receiving op

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

f g

• But can have additional effectors of
operations concurrent with op: f, g, ...

• Effectors commute, so σʹ = (f; g; ...)(σ)

• Causal consistency ➜ receive op’s causal
dependencies before receiving op

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

f g

• But can have additional effectors of
operations concurrent with op: f, g, ...

• Effectors commute, so σʹ = (f; g; ...)(σ)

• Causal consistency ➜ receive op’s causal
dependencies before receiving op

P(σ) ✔

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

f g

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

P(σ) ✔

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

add

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

add

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

{bal ≥ 100} bal := bal+100 {bal ≥ 100} ✔

add

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

{bal ≥ 100} bal := bal-100 {bal ≥ 100}

withdraw'

{bal ≥ 100} bal := bal+100 {bal ≥ 100} ✔

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

{bal ≥ 100} bal := bal-100 {bal ≥ 100}

{bal ≥ 100} bal := bal+100 {bal ≥ 100} ✔

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

{bal ≥ 100} bal := bal-100 {bal ≥ 100}

{bal ≥ 100} bal := bal+100 {bal ≥ 100} ✔

✘

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

withdraw' is a causal dependency of op

withdraw ⋈ withdraw; ¬(add ⋈ withdraw) ✔

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

withdraw' delivered before op: causality violated

withdraw ⋈ withdraw; ¬(add ⋈ withdraw) ✔

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

withdraw ⋈ withdraw; ¬(add ⋈ withdraw)

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

✔

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

Only requires checking each pair of operations: no
exponential explosion!

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

Can infer the conflict relation ⋈: op1 ⋈ op2 if the
precondition of op1 unstable under the effector of op2

{bal ≥ 100} bal := bal+100 {bal ≥ 100} ✔, no ⋈

Pre of withdraw under effector of add:

withdraw'

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

P(σʹ)?

op’s causal
dependencies

P(σ) ✔

{bal ≥ 100} bal := bal-100 {bal ≥ 100}

Can infer the conflict relation ⋈: op1 ⋈ op2 if the
precondition of op1 unstable under the effector of op2

Pre of withdraw under effector of withdraw:

✘, need ⋈

withdraw'

• Developed by Sreeja Nair (UPMC, Paris)

• Model application in a domain-specific language,
including replicated data type libraries

• Model compiled into a Boogie program encoding the
conditions of the proof rule

• Discharged using SMT

• Automatically infers a conflict relation

https://github.com/LightKone/correct-eventual-
consistency-tool

Correct Eventual Consistency Tool

https://github.com/LightKone/correct-eventual-consistency-tool
https://github.com/LightKone/correct-eventual-consistency-tool

Demo

Transactions

• Fundamental abstraction in databases

• Allow clients to group operations to be processed
indivisibly

• Provided by virtually any single-node SQL database

• NoSQL data stores: starting to reappear

Transactions

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

✘

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

✘

Causal consistency isn't enough

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

• Consistency model = set of histories (E, so, ~)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

• For simplicity, assume every transaction completes

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

~ ~

• Consistency model = set of histories (E, so, ~)

• ~: equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

• For simplicity, assume every transaction completes

• Transaction T: equivalence class of events of ~

set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

A session is a sequence of
transactions: events from the same
transaction contiguous in so

∀e, f, g ∈ E. e ⟶ f ⟶ g ∧ e ~ g

⟹ e ~ f ~ g

so so

Strongly consistent transactions

Sequential consistency ~ serializability

Serializability operationally

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

Serializability operationally

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post)

Serializability operationally

(ok, ok)

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post)

tx1

Serializability operationally

(ok, ok)

set, reg

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1

Serializability operationally

(ok, ok)

set, reg

({photo}, post)

• Server with a single copy of all objects

• Clients send txs to the server and wait for a reply

• Server processes txs atomically in the receipt order

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2

Serializability operationally

(ok, ok)

set, reg

({photo}, post)

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2

Serializability = {H | ∃ execution with history H produced
by the abstract implementation}

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

(E,so) | ∃ total order to. (E, so, to) satisfies:

1. so ⊆ to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

3. Operations from the same transaction are
contiguous in to

Serializability

(E,so, ~) | ∃ total order to. (E, so, ~, to) satisfies:

set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same
transaction are contiguous in to

set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same
transaction are contiguous in to

to

set.add(photo)

reg.write(post)

so so

so

set.add(photo2)

...

set.read() ∋ photo

reg.read() : post

Operations from the same
transaction are contiguous in to

to/~

Induces a total to/~ on whole tx

to/~

• Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...

Weakening consistency

• Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...

• To better exploit single-node parallelism

Weakening consistency

(ok, ok)

set, reg

({photo}, post)

set.add(photo)

reg.write(post) set.read()

reg.read()

tx1
tx2

• Single-node consistency models also applicable in
distributed setting

• But many still require some synchronisation
between replicas: unavailability, high latency

• Want eventually consistent transactions: always
available, low latency

• Preserve some aspects of the invisibility
abstraction

Eventually consistent transactions

• Database system consisting of multiple reliable
replicas

• Each replica stores a copy of all objects of
replicated data types

• Replicas can communicate via asynchronous
reliable channels

System model recap

x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and
issues transactions

• High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and
issues transactions

• High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

• Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation

x.read : post
y.read : comment

x.write(post)
y.write(comment)
x.read : post

• A client connects to a replica and
issues transactions

• High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

• Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation

• Reads are indivisible: access a fixed
snapshot of the database (plus own
writes)

x.read : post
y.read : comment

Upon commit: send the
effectors of all tx operations
to other replicas together

x.write(post)
y.write(comment)
x.read : post

Upon commit: send the
effectors of all tx operations
to other replicas together

Receive in between txs:
incorporate all the
updates together

x.write(post)
y.write(comment)

x.read : post
y.read : comment

x.write(post)
y.write(comment)
x.read : post

Upon commit: send the
effectors of all tx operations
to other replicas together

Receive in between txs:
incorporate all the
updates together

x.write(post)
y.write(comment)

x.read : post
y.read : comment

x.write(post)
y.write(comment)
x.read : post

• Writes are indivisible

• Reads are indivisible

• Reads+writes: no!

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so

so

Reads/writes indivisibility

v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

No reads+writes indivisibility

so so

v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

reg.read() : 1

No reads+writes indivisibility

so so

v = reg.read()

reg.write(v+1)

// 0

// 1

v = reg.read()

reg.write(v+1)

// 0

// 1

reg: last-writer-wins register, initially 0

reg.read() : 1

No reads+writes indivisibility

so so

Lost update anomaly

counter.add(1) counter.add(1)

counter.read() : 2

counter: replicated counter, accumulates increments
initially 0

Use appropriate data type

• Eventual consistency with transactions = the set
of all histories produced by arbitrary client
interactions with the data type implementations
(with any allowed message deliveries)

• Implies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state

Operational specification

• Serializability: operations from the same
transaction are contiguous in the total order to

• Approach: require the same of vis and ar

Axiomatic specification

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to
e f

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

Serializability: (E, so, ~, to)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

to

to
e f

e' f'

✘

Operations from the same transaction are contiguous in to:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'to to

to treats events in a transaction uniformly

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis
e f

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis

vis
e f

e' f'

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : ∅

so so

vis

vis
e f

e' f'

✘

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

vis

vis
e f

e' f'

vis, ar treat events in a transaction uniformly:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'vis vis

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'ar ar

Execution: (E, so, ~, vis, ar)

set.add(photo)

reg.write(post)

set.read() ∋ photo

reg.read() : post

so so

vis

vis

 T ⟶ S ⟺ ∃e ∈ T, f ∈ S. e ⟶ f

vis, ar induce acyclic vis/~, ar/~ on whole txs:

vis/~ vis

 T ⟶ S ⟺ ∃e ∈ T, f ∈ S. e ⟶ far/~ ar

vis/~

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

vis

The set of histories (E, so, ~) such that for some vis, ar:

vis vis

ar ar

Eventually consistent transactions

• Return values consistent with data type specs:

∀e ∈ E. rval(e) = Ftype(obj(e))(context(e))

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility:

∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

vis

The set of histories (E, so, ~) such that for some vis, ar:

vis vis

ar ar

Eventually consistent transactionsDefine transactional variants
of other consistency models
by just adding prior axioms

Serializability: vis = ar

set.add(photo)

reg.write(post)

so

so

reg.read(): ?

Session guarantees

so ⊆ vis

Transactions in the same
session only accumulate
information

set.add(photo)

reg.write(post)

so

so

reg.read(): post

Session guarantees

vis

so ⊆ vis

Transactions in the same
session only accumulate
information

Causal consistency

(so ∪ vis)+ ⊆ vis

Causal consistency

set.add(photo)

reg.write(post)

so

(so ∪ vis)+ ⊆ vis

Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment

so
vis

Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment

so
vis

vis

Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read(): ?

reg2.read(): comment

so

vis

vis

vis

Causal consistency

set.add(photo)

reg.write(post)

so

reg.read(): post

reg2.write(comment)

so

vis

(so ∪ vis)+ ⊆ vis

set.read() ∋ photo

reg2.read(): comment

so

vis

vis

vis

if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

v = c.read()

 c.subtract(100)

c: counter with decrements, initially 100

so so

Concurrent withdrawals

if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

v = c.read()

 c.subtract(100)

// 100

// 0

c: counter with decrements, initially 100

so so

Concurrent withdrawals

if (v≥100) if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

v = c.read()

 c.subtract(100)

// 100

// 0

c: counter with decrements, initially 100

Both transactions decremented successfully -
synchronisation needed!

so so

Concurrent withdrawals

vis vis

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ e

Recap: strengthening consistency

withdraw(100) : ✔ withdraw(100) : ✔

withdraw(100) : ✔ withdraw(100) : ✘
vis

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., withdraw ⋈ withdraw

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

Recap: strengthening consistency

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis

vis

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

Strengthening transactions

✘

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

vis

vis

Strengthening transactions

• Baseline model: causal consistency

• Symmetric conflict relation on operations:
⋈ ⊆ Op × Op, e.g., subtract ⋈ subtract

• Conflicting operations cannot be causally independent:

∀ e, f ∈ E. op(e) ⋈ op(f) ⟹ e ⟶ f ∨ f ⟶ evis vis

c.add(100) ¬(add ⋈ op)c.add(100)

Recap: implementation

• withdraw ⋈ withdraw: as if withdraw grabs an
exclusive lock on the account

• Acquiring the lock requires bringing all operations
the replica holding it knows about

c.withdraw(100) : ?c.withdraw(100) : ✔

Recap: implementation

• withdraw ⋈ withdraw: as if withdraw grabs an
exclusive lock on the account

• Acquiring the lock requires bringing all operations
the replica holding it knows about

c.withdraw(100) : ?c.withdraw(100) : ✔

Recap: implementation

c.withdraw(100) : ✘c.withdraw(100) : ✔

• withdraw ⋈ withdraw: as if withdraw grabs an
exclusive lock on the account

• Acquiring the lock requires bringing all operations
the replica holding it knows about

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0 ✔

subtract ⋈ subtract

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0 ✔

subtract ⋈ subtract

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

v = c.read() // 100

✔

subtract ⋈ subtract

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read() // 100

✔

subtract ⋈ subtract

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

✔

subtract ⋈ subtract

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

✘✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100) ✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it

// 100

// 0

Implementation for transactions

if (v≥100)

v = c.read()

 c.subtract(100)

v = c.read() // 0

✔

subtract ⋈ subtract

• Need to incorporate the effector of the previous transaction

• Recall: transactions execute on a fixed snapshot

• Too late: effectors from other replicas only get applied in-
between transactions

• Have to abort the transaction and re-execute it

// 100

// 0

• Want to choose ⋈ to preserve application invariants

• Previous proof rule for checking invariants applies

• Instead of an effector of a single operation, consider
a sequential composition of effectors of all
operations in a transaction

• Can also fix ⋈ so that it's easier to program: new
consistency models, disallowing some classes of
anomalies

Chosing ⋈

Write-conflict detection

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

Write-conflict detection

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

• No overdrafts:

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

Write-conflict detection

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

vis

• No overdrafts:

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

Write-conflict detection

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

vis

vis

• No overdrafts:

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

Write-conflict detection

if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so if (v≥100)

v = c.read()

 c.subtract(100)

// 100

// 0

so

✘

vis

vis

• No overdrafts:

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg.read()

reg.write(v+1)

// 0

// 1

so

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• No lost updates:

Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg.read()

reg.write(v+1)

// 0

// 1

so

vis

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• No lost updates:

Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg.read()

reg.write(v+1)

// 0

// 1

so

vis

vis

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• No lost updates:

Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg.read()

reg.write(v+1)

// 0

// 1

so

✘

vis

vis

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• No lost updates:

Write-conflict detection

v = reg.read()

reg.write(v+1)

// 0

// 1

so

v = reg'.read()

reg'.write(v+1)

// 0

// 1

so

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• Updates on different accounts can go in parallel:

Write-conflict detection

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• Visibility totally orders transactions updating the same
object ⟹ don't need replicated data types, don't need ar

set.add(2)

vis

set.add(1)

vis

set.remove(1)

vis

set.read(): {2}

vis vis

Write-conflict detection

• Operations updating the same object conflict, so cannot
be causally independent:

∀e, f ∈ E. obj(e) = obj(f) ∧ update(op(e)) ∧ update(op(f))
⟹ e ⟶ f ∨ f ⟶ evis vis

• Visibility totally orders transactions updating the same
object ⟹ don't need replicated data types, don't need ar

• Can use sequential data types: from now on just
sequential read-write registers

Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Serializability

Transactional consistency zoo

Parallel Snapshot Isolation

Snapshot Isolation

Eventual consistency

Session guarantees

Causal consistency

Prefix consistency

Serializability

Transactional consistency zoo

Parallel Snapshot Isolation

Snapshot Isolation

Causal consistency +
write-conflict detection

Robustness

• Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Application correctness

• Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

• Is an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Application correctness

• Database with only sequential read-write registers

• Assume there is an implicit transaction writing initial
values to all registers

Parallel shapshot isolation

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility: ∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

• Causality preservation: (so ∪ vis)+ ⊆ vis

• Write-conflict detection:

∀e, f ∈ E. obj(e) = obj(f) ∧ op(e) = write(-) ∧op(f) = write(-)
⟹ e ⟶ f ∨ f ⟶ e

• A read event returns the value written by the last preceding
write in vis

vis

PSI = the set of histories (E, so, ~) such that for some vis:

vis

vis

vis vis

• No causal cycles: so ∪ vis is acyclic

• Eventual visibility: ∀e ∈ E. e ⟶ f for all but finitely many f ∈ E

• Transaction indivisibility:

∀e, f, e', f'. e ≁ f ∧ e' ~ e ⟶ f ~ f' ⟹ e' ⟶ f'

• Causality preservation: (so ∪ vis)+ ⊆ vis

• Write-conflict detection:

∀e, f ∈ E. obj(e) = obj(f) ∧ op(e) = write(-) ∧op(f) = write(-)
⟹ e ⟶ f ∨ f ⟶ e

• A read event returns the value written by the last preceding
write in vis

vis

PSI = the set of histories (E, so, ~) such that for some vis:

vis

vis

vis vis

Well-formed because of
write-conflict detection

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Dekker example

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Transactional Dekker = write skew

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Transactional Dekker = write skew

Not serializable, allowed by transactional causal consistency
and parallel snapshot isolation

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Transactional Dekker = write skew

x.write(1)

y.read(): 0

so

y.write(1)

x.read(): 0

sovis vis

Transactional Dekker = write skew

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

x written
before y

y written
before x

visvis

x.write(1) y.write(1)

Independent reads of independent writes (IRIW)

x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

Implementations: no causal dependency between the two writes
➜ can be delivered in different orders at different replicas

x written
before y

y written
before x

visvis

Transactional IRIW = long fork

x.write(1) y.write(1)

so so

visvis

x.read: 1

y.read: 0

y.read: 1

x.read: 0

Transactional IRIW = long fork

x.write(1) y.write(1) x.read: 1

y.read: 0

so

y.read: 1

x.read: 0

so

visvis

Not serializable, allowed by transactional causal consistency
and parallel snapshot isolation

• Is an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Application behaves the same whether using a PSI or
a serializable database: ⟦A⟧PSI = ⟦A⟧SER

Robustness

Robustness

‣ Every program can generate multiple transactions
at run time

‣ Simplification: every program is in its own session

• Application: set of transactional programs {P1, ..., Pn}

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

Robustness

‣ Every program can generate multiple transactions
at run time

‣ Simplification: every program is in its own session

• Application: set of transactional programs {P1, ..., Pn}

• Checking robustness via static analysis:
over-approximate the set of program behaviours

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

P1 P2 Pn...Application

P1 P2 Pn...

T1

T2

T3

T4

T4

Application

∀ PSI execution

⬇

P1 P2 Pn...

...T1 T2 T3

T1

T2

T3

T4

T4

Application

∀ PSI execution

∃ serial execution

⬇

⬇

P1 P2 Pn...

...T1 T2 T3

T1

T2

T3

T4

T4

Application

∀ PSI execution

∃ serial execution

⬇

⬇

Each read returns the value written by the last write

P1 P2 Pn...

...T1 T2 T3

T1

T2

T3

T4

T4

Application

∀ PSI execution

∃ serial execution

⬇

⬇

Each read returns the value written by the last write

vis/~

to/~

E/~

...T1 T2 T3

T1

T2

T3

T4

T4

∀ PSI execution

∃ serial execution

⬇

First determine if a given PSI execution is serializable

vis/~

to/~

E/~

Each read returns the value written by the last write

...T1 T2 T3

Each read returns the value written by the last write

T1

T2

T3

T4

T4

∀ PSI execution

∃ serial execution

⬇

Build constraints on the serial order: relations on E/~ that
should be included into to/~ - transactional dependencies

vis/~

to/~

E/~

Write-read dependency (wr)

T ⟶ S ⟺ S reads a value written by T

wr
x.write(val)T Sx.read : val

wr

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

Write-read dependency (wr)

T ⟶ S ⟺ S reads a value written by T

wr
x.write(val)T Sx.read : val

wr

to/~

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

Write-read dependency (wr)

T ⟶ S ⟺ S reads a value written by T

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of

an object x visible to a read from x in S according to vis

wr

wr

to/~

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

Write-write dependency (wr)

T ⟶ S ⟺ S overwrites a value written by T

ww
x.write(old)T Sx.write(new)

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

ww

Write-write dependency (wr)

T ⟶ S ⟺ S overwrites a value written by T

ww
x.write(old)T Sx.write(new)

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

ww

to/~

Write-write dependency (wr)

T ⟶ S ⟺ S overwrites a value written by T

ww
x.write(old)T Sx.write(new)

ww

Given a PSI execution (E, ~, vis) and T, S ∈ E/~

ww

to/~

T ⟶ S ⟺ T and S contain writes to the same

object x and T ⟶ S
vis/~

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S
wr ww

Read-write dependency (rw)

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S
wr ww

wr

ww

x.write(old)

Read-write dependency (rw)

Q

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

Q

wr wwrw

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

to/~

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

Q

wr wwrw

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

to/~

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

Q

to/~

wr wwrw

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

x.read : oldT Sx.write(new)

rw

to/~

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

✘
new

Q

to/~

wr wwrw

T ⟶ S ⟺ T ≠ S ∧ S overwrites a value read by T

rw
x.read : oldT Sx.write(new)

rw

T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr

ww

x.write(old)

Read-write dependency (rw)

to/~

wr wwrw

• PSI execution (E, ~, vis) ➜
dependency graph (E/~, wr, ww, rw)

• Theorem: If the dependency graph is
acyclic, then the execution is serializable

Dependency graphs

If (wr ∪ ww ∪ wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] ➜
the desired order to

...T1 T2 T3

T1

T2

T3

T4

T4

⬇

wr ∪ ww ∪ wr

to/~ ➜ to

If (wr ∪ ww ∪ wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] ➜
the desired order to

...T1 T2 T3

T1

T2

T3

T4

T4

⬇

wr ∪ ww ∪ wr

to/~ ➜ to

Each read returns the value written by the last write in to?

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an object x
visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x and T ⟶ S

vis/~

wr

ww

rw
x.read : oldT Sx.write(new)

x.write(old)

rw
T ⟶ S ⟺ T ≠ S ∧ ∃Q. Q ⟶ T ∧ Q ⟶ S

wr ww

Q

If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

⬇

If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

Set of corresponding dependency graphs (E/~, wr, ww, rw)

⬇

⬇

If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

Set of corresponding dependency graphs (E/~, wr, ww, rw)

Check wr ∪ ww ∪ wr is acyclic in each graph

⬇

⬇

⬇

If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs P1, P2, ..., Pn

Set of all their PSI executions (E, ~, vis)

Set of corresponding dependency graphs (E/~, wr, ww, rw)

Check wr ∪ ww ∪ wr is acyclic in each graph

⬇

⬇

⬇

Over-approximate the set of possible dependency
graphs from the program text

Static dependency graphs

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

• Nodes: transactional programs

• Edges: over-approximations of dependencies wr#, ww#, rw#

ww#, rw#, wr#

Static dependency graphs

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

• Nodes: transactional programs

• Edges: over-approximations of dependencies wr#, ww#, rw#

• T ⟶ S ⟺ ∃x. writes(T, x) ∧ reads(T, x): over-approximated
by static analyses (or even by hand)

ww#, rw#, wr#

wr#

Static dependency graphs

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

• Nodes: transactional programs

• Edges: over-approximations of dependencies wr#, ww#, rw#

• T ⟶ S ⟺ ∃x. writes(T, x) ∧ reads(T, x): over-approximated
by static analyses (or even by hand)

• Represents an over-approximation of all dynamic dependency
graphs that can be produced by the programs

ww#, rw#, wr#

wr#

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

Transactions arising from the same program map to the
same node

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

Edge in the dynamic graph ➜ corresponding edge in
the static graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

Edge in the dynamic graph ➜ corresponding edge in
the static graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

reads(x) writes(x)

Edge in the dynamic graph ➜ corresponding edge in
the static graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

reads(x) writes(x)

Edge in the dynamic graph ➜ corresponding edge in
the static graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

reads(x) writes(x)

Cycle in the dynamic graph ➜ cycle in the static graph
If the static graph is acyclic, so is the dynamic one

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2

T3

T4

T5

T6

wr

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

reads(x) writes(x)

Cycle in the dynamic graph ➜ cycle in the static graph
If the static graph is acyclic, so is the dynamic one

We're considering PSI executions:
some cycles can't occur

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x

and T ⟶ Svis/~

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x

and T ⟶ Svis/~

wr ∪ ww ⊆ vis/~ - acyclic

wr
x.write(val)T Sx.read : val

T ⟶ S ⟺ T ≠ S ∧ T contains the most recent write of an
object x visible to a read from x in S according to vis

wr

ww
x.write(old)T Sx.write(new)

ww
T ⟶ S ⟺ T and S contain writes to the same object x

and T ⟶ Svis/~

wr ∪ ww ⊆ vis/~ - acyclic

PSI allows only cycles in (wr ∪ ww ∪ rw) with at
least one rw edge

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

⬆

T3

Dynamic dependency graph ➜ a subgraph of the static
dependency graph

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜
don't represent robustness violations

⬆

T3

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜
don't represent robustness violations

• Enough to check no cycles in (wr ∪ ww ∪ rw) with ≥1 rw

⬆

T3

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#

wr#

ww#, rw#, wr#

T1

T2
T4

T4

wr ∪ ww ∪ wr

• Dynamic cycles with no rw edges aren't PSI ➜
don't represent robustness violations

• Enough to check no cycles in (wr ∪ ww ∪ rw) with ≥1 rw

• Enough to check no cycles in (wr# ∪ ww# ∪ rw#) with ≥1 rw#

⬆

T3

PSI allows only cycles in (wr ∪ ww ∪ wr) with
at least two distinct rw edges

Tightening up the criterion

rw

(wr ∪ ww)+ ⊆ vis/~

x.read : old x.write(new)

PSI allows only cycles in (wr ∪ ww ∪ wr) with
at least two distinct rw edges

Tightening up the criterion

wr ⊆ vis/~

ww ⊆ vis/~
rw

(wr ∪ ww)+ ⊆ vis/~

x.read : old x.write(new)

x.write(old)

PSI allows only cycles in (wr ∪ ww ∪ wr) with
at least two distinct rw edges

Tightening up the criterion

wr ⊆ vis/~

ww ⊆ vis/~
rw

(wr ∪ ww)+ ⊆ vis/~

✘

x.read : old x.write(new)

x.write(old)

PSI allows only cycles in (wr ∪ ww ∪ wr) with
at least two distinct rw edges

Tightening up the criterion

PSI allows only cycles in (wr ∪ ww ∪ wr) with
at least two distinct rw edges

Tightening up the criterion

If (wr ∪ ww ∪ wr) for a PSI execution contains a
cycle, then it also contains one:

‣ with at least two rw edges, and

‣ where all rw edges are due to distinct objects

⬆

x.write(1)

y.read(): 0

Transactional Dekker = write skew

x.write(0)

y.write(0)
vis/~

y.write(1)

x.read(): 0

vis/~

x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

y.write(1)

x.read(): 0

vis/~

x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

y.write(1)

x.read(): 0

vis/~

x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~

x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

rw(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~

x.write(1)

y.read(): 0

Transactional Dekker = write skew

wr(y)

rw(y)

x.write(0)

y.write(0)
vis/~

wr(x)

ww(x) ww(y)

rw(x) y.write(1)

x.read(): 0

vis/~

Cycle with 2 rw on different objects: allowed by PSI

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork

vis/~, wr(y)

vis/~, wr(x)
x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork

vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

Transactional IRIW = long fork

vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

rw(y)

Transactional IRIW = long fork

vis/~, wr(y)

vis/~, wr(x)

rw(x)

x.write(1)

y.write(1)

x.read : 1

y.read : 0

y.read : 1

x.read : 0

rw(y)

Cycle with 2 rw on different objects: allowed by PSI

Transactional IRIW = long fork

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

vis/~

x.read: 0

x.write(1)

vis/~ vis/~

vis/~

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)
rw(x)

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)

rw(x)

rw(x)

x.write(0)

Lost update anomaly

x.write(0)

Not a valid PSI execution: violates write-conflict detection

x.read: 0

x.write(1)

wr(x)
vis/~

ww(x)

x.read: 0

x.write(1)

vis/~ vis/~

wr(x)
vis/~

ww(x)

rw(x)

rw(x)

The 2 rw edges are due to the same object

Static robustness criterion

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

If a dependency graph of a PSI execution contains a cycle,
then it also contains one:

‣ with at least two rw edges, and

‣ where all rw edges are due to distinct objects

Static robustness criterion

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects

If a dependency graph of a PSI execution contains a cycle,
then it also contains one:

‣ with at least two rw edges, and

‣ where all rw edges are due to distinct objects

Static robustness criterion

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects

⟹ no such cycles in wr ∪ ww ∪ rw

If a dependency graph of a PSI execution contains a cycle,
then it also contains one:

‣ with at least two rw edges, and

‣ where all rw edges are due to distinct objects

Static robustness criterion

tx lookup() {
 return acct.bal
}

tx deposit(n) {
 acct.bal += n
}

rw#(acct)

wr#(acct)

ww#, rw#, wr#(acct)

No cycles in wr# ∪ ww# ∪ rw# with all rw# on different objects

⟹ no such cycles in wr ∪ ww ∪ rw

⟹ application is serializable

If a dependency graph of a PSI execution contains a cycle,
then it also contains one:

‣ with at least two rw edges, and

‣ where all rw edges are due to distinct objects

deposit(1, €100)
lookupAll :

1/€100, 2/€0

vis/~

deposit(2, €100)
lookupAll :

1/€0, 2/€100

Non-robustness

tx lookupAll() {
 return acct[*].bal
}

tx deposit(i, n) {
 acct[i].bal += n
}

rw#(*)

wr#(*)

ww#, rw#, wr#(*)

vis/~

• Methods for other consistency models are similar

• Basis for practical tools [Warszawski et al.,
SIGMOD'17, Brutschy et al., PLDI'18; Nagar et al.,
CONCUR'18]

• Static criterion on graphs sometimes used to
prune the search space before a more expensive
analysis with more semantic information

• Can be used for bug-finding in the absence of
specifications

Automatic robustness checking

Automatic robustness checking

Implementing strong consistency

• So far implementations have been lightweight:
"an operation can only be delivered after all its causal
dependencies"

• In reality, designing consistency protocols and
proving them correct is very difficult!

• Even more so for strong consistency protocols

Designing consistency protocols

Strong consistency

c.withdraw(100) : ?c.withdraw(100) : ?

Strong consistency

c.withdraw(100) : ?c.withdraw(100) : ✔

Sombody has to order commands

c1 c2 c3

Single server, clients send commands to the server

Strong consistency

c1 c2 c3

Server totally orders commands and computes the
sequence of results

r1, r2, r3

c1, c2, c3

Strong consistency

c1 c2 c3

Servers can crash! Need a fault-tolerant solution

r1, r2, r3

✘

c1, c2, c3

Strong consistency

c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

Clients send commands to all replicas
Replicas may receive commands in different orders

State machine replication

c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

A distributed protocol totally order commands:
needs synchronisation

State machine replication

c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

r2, r1, r3

c2, c1, c3 c2, c1, c3 c2, c1, c3

Operations are deterministic ⟹
replicas compute the same sequence of results

State machine replication

c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

c2, c1, c3 c2, c1, c3

Implements sequential consistency (in fact, linearizability)

State machine replication

✘

c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

c2, c1, c3 c2, c1, c3

SMR requires solving a sequence of consensus instances:
agree on the next command to execute

State machine replication

✘

Consensus

c1

• Several nodes, which can crash

• Each proposes a value

c2 c3

Consensus

c1

c2

• Several nodes, which can crash

• Each proposes a value

• All non-crashed nodes agree on a single value

c2 c3

c2

✘

Consensus

c1

c2

• Challenge: asynchronous channels ⟹
can't tell a crashed node from a slow one!

• Assume only a minority of nodes can crash:
a majority reach an agreement

c2 c3

c2

✘

The zoo of consensus protocols

• Viewstamped replication
(1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008)

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)

The zoo of consensus protocols

• Viewstamped replication
(1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008)

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)

The zoo of consensus protocols

• Viewstamped replication
(1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008)

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)

Complex protocols: constant
fight for better performance

Broken [Michael et al., DISC'16]

Another application: blockchain

• Blockchain = using consensus to agree
on a sequence of blocks in a ledger

• Tolerates malicious behaviour: some
nodes may deviate from the protocol

• Many protocols descended from
Paxos

c1
c2
c3
c4
....

[PODC'19]

[PODC'19]

v1 v2 v3

• 2f+1 nodes, at most f can crash

• Each node proposes a value

• All non-crashed nodes agree on a single value

1 2 3

v1 v2 v3

1 2 3

v1 v2 v3

• Acceptors = members of parliament:
can vote to accept a value, majority (quorum) wins

1 2 3

Acceptor Acceptor Acceptor

v1 v2 v3

• Acceptors = members of parliament:
can vote to accept a value, majority (quorum) wins

1 2 3

Acceptor Acceptor Acceptor

Leader

• Leader = parliament speaker:
proposes its value to vote on

• Good for state-machine replication: can elect the leader
once and get it to process multiple commands

1 2 3

Leader ?

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

1 2 3

Leader#: 2

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

Leader#: 2

ok1 2 3

Leader#: 2

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

✘

Leader#: 2

1 2 3

Leader#: 2 ✔

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

✘

Leader#: 2

1 2 3

Leader#: 2 ✔

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

✘

Leader#: 2

1 2 3

Leader#: 2 ✔

v2

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

✘

Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔

✘ok

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔

✘ok ✘

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

✘✘

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

Leader#: 2
Accepted: v2

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Phase 2: the leader gets a quorum of acceptors to
accept its value and replies to the client

• Phase 1: a prospective leader convinces a quorum
of acceptors to accept its authority

Leader#: 3
Accepted: v3

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Problem: node 3 may wake up, form a quorum of
1 and 3, and accept value v3

Leader#: 3 ✔
Accepted: v3 ✔
Reply v3 to client

Leader#: 3
Accepted: v3

1 2 3

Leader#: 2 ✔
Accepted: v2 ✔
Reply v2 to client

• Problem: node 3 may wake up, form a quorum of
1 and 3, and accept value v3

Leader#: 3 ✔
Accepted: v3 ✔
Reply v3 to client

• Need to ensure once a value is chosen by a quorum,
it can’t be changed

• Use ballot numbers to distinguish different votes:
unique for each potential leader

1 2 3

Leader#: ?
Ballot#: 0
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

• Phase 1: a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller

1 2 3

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

b

Leader#: ?
Ballot#: 0
Accepted: ?

• Phase 1: a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: ?

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 1: a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

• Acceptor switches only if it’s current ballot is smaller

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b

Leader#: 2
Ballot#: b
Accepted: ?

Leader#: ?
Ballot#: 0
Accepted: ?

b, v2

• Phase 2: the leader sends its value tagged with its
ballot number

• Acceptor only accepts a value tagged with the
ballot it is in

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 2: the leader sends its value tagged with its
ballot number

• Acceptor only accepts a value tagged with the
ballot it is in

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

ok

• Phase 2: the leader sends its value tagged with its
ballot number

• Acceptor only accepts a value tagged with the
ballot it is in

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: ?
Ballot#: 0
Accepted: ?

• Need to ensure once a value is chosen by a quorum,
it can’t be changed

• Need do change Phase 1 to restrict which values
can be proposed

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 2
Ballot#: b
Accepted: v2@b

Leader#: 3
Ballot#: bʹ > b
Accepted: ?

bʹ

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ > b
Accepted: ?

ok, v2@b

• Phase 1: acceptor sends to the prospective leader
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

ok, v2@b

• Phase 1: acceptor sends to the prospective leader
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

• Ensures the value chosen will not be changed ⟹
nodes don't disagree about the chosen value

• Phase 1: acceptor sends to the prospective leader
its value and the ballot it was accepted at

• If some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number

ok, v2@b

1 2 3

Leader#: 2 ✔
Ballot#: b
Accepted: v2@b ✔
Reply v2 to client

Leader#: 3
Ballot#: bʹ
Accepted: v2@b

Leader#: 3
Ballot#: bʹ
Accepted: v2@bʹ

Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot bʹ > b will also propose v

ok, v2@b

• Ensures the value chosen will not be changed ⟹
nodes don't disagree about the chosen value

• Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot bʹ > b may only propose v

Proof of the key invariant

• Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot bʹ > b may only propose v

• Fix an execution of a protocol and assume that in this execution Q
accepted v@b.

Proof of the key invariant

• Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot bʹ > b may only propose v

• Fix an execution of a protocol and assume that in this execution Q
accepted v@b.

• We prove by induction on bʹ that: for any bʹ > b, leader(bʹ) may only
propose v.

Proof of the key invariant

• Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot bʹ > b may only propose v

• Fix an execution of a protocol and assume that in this execution Q
accepted v@b.

• We prove by induction on bʹ that: for any bʹ > b, leader(bʹ) may only
propose v.

• Consider bʹ > b and assume leader(bʹʹ) may only propose v if
b < bʹʹ < bʹ. We prove that leader(bʹ) may only propose v.

Proof of the key invariant

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q ⋂ Qʹ ≠ ∅ ⟹ ∃ process p ∈ Q ⋂ Qʹ which both voted for leader(bʹ)
and accepted v@b

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q ⋂ Qʹ ≠ ∅ ⟹ ∃ process p ∈ Q ⋂ Qʹ which both voted for leader(bʹ)
and accepted v@b

• p couldn't accept v@b after voting for leader(bʹ): after voting, p joins bʹ
and rejects all messages with ballot b < bʹ

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q ⋂ Qʹ ≠ ∅ ⟹ ∃ process p ∈ Q ⋂ Qʹ which both voted for leader(bʹ)
and accepted v@b

• p couldn't accept v@b after voting for leader(bʹ): after voting, p joins bʹ
and rejects all messages with ballot b < bʹ

• p accepted v@b before voting for leader(bʹ)

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q ⋂ Qʹ ≠ ∅ ⟹ ∃ process p ∈ Q ⋂ Qʹ which both voted for leader(bʹ)
and accepted v@b

• p couldn't accept v@b after voting for leader(bʹ): after voting, p joins bʹ
and rejects all messages with ballot b < bʹ

• p accepted v@b before voting for leader(bʹ)

• p's ballot when voting for leader(bʹ) is bp ≥ b > 0, and it will reply with
vʹ@bp for some value vʹ

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• leader(bʹ) gets support from a quorum Qʹ before proposing

• Q ⋂ Qʹ ≠ ∅ ⟹ ∃ process p ∈ Q ⋂ Qʹ which both voted for leader(bʹ)
and accepted v@b

• p couldn't accept v@b after voting for leader(bʹ): after voting, p joins bʹ
and rejects all messages with ballot b < bʹ

• p accepted v@b before voting for leader(bʹ)

• p's ballot when voting for leader(bʹ) is bp ≥ b > 0, and it will reply with
vʹ@bp for some value vʹ

• leader(bʹ) can't propose its own value, has to pick one accepted at the
highest ballot bmax ≥ b in the votes it got

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

bmax = b:

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax = b:

• A leader makes a single proposal per ballot, and Q accepted v@b ⟹
any vote vʹ@bmax for leader(bʹ) must have vʹ = v

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax = b:

• A leader makes a single proposal per ballot, and Q accepted v@b ⟹
any vote vʹ@bmax for leader(bʹ) must have vʹ = v

• leader(bʹ) has to choose v, QED.

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• bmax < bʹ, since processes only vote for leaders of higher ballots

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• bmax < bʹ, since processes only vote for leaders of higher ballots

• By induction hypothesis leader(bmax) could only propose v

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• bmax < bʹ, since processes only vote for leaders of higher ballots

• By induction hypothesis leader(bmax) could only propose v

• Processes that accepted a value at bmax could only accept v

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• bmax < bʹ, since processes only vote for leaders of higher ballots

• By induction hypothesis leader(bmax) could only propose v

• Processes that accepted a value at bmax could only accept v

• Any vote vʹ@bmax for leader(bʹ) must have vʹ = v

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

bmax > b:

• bmax < bʹ, since processes only vote for leaders of higher ballots

• By induction hypothesis leader(bmax) could only propose v

• Processes that accepted a value at bmax could only accept v

• Any vote vʹ@bmax for leader(bʹ) must have vʹ = v

• leader(bʹ) has to choose v, QED.

• Q accepted v@b

• bʹ > b

• leader(bʹʹ) may only propose v if b < bʹʹ < bʹ

• bmax ≥ b

Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot bʹ > b will also propose v

Ensures nodes don't disagree about the chosen value

Multi-Paxos

c3, c2, c1 c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

State machine replication requires solving a sequence
of consensus instances

Multi-Paxos

c3, c2, c1 c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

State machine replication requires solving a sequence
of consensus instances

• Naive solution: execute a separate Paxos instance
for each sequence element

• Multi-Paxos: execute Phase 1 once for multiple
sequence elements

Paxos verification

• Lots of work on formally verifying Paxos-like
protocols in theorem provers or semi-automatic
systems

• Fully automatic verification is an open problem

The end

• Spectrum of data consistency models in distributed
systems

• Downsides of weakening consistency can be
mitigated by verification techniques and
programming abstractions: replicated data types,
transactions

• Proving correctness of consistency protocols is a
verification challenge

