Reasoning about data consistency
in distributed systems

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

J @ Amazon.co.uk: Low Prices in Ele... u + L bt
< & | | 8 www.amazon.co.uk) & | (2§~ Google Q) B~
KT
ama;on.co.uk Your Amazon.co.uk Today's Deals Gift Cards = Help January Deal ﬂs
Shop b Hello. Sign | 0 Wish
o mant < Search mi~ Bl i W Ln-
; N A, Visita e
¢Compras desde Espana? amazones e 3 »;
Shopping from Spain? U) Descubrelo January Deals -.

Amazon MP3 Cloud Player Kindle LOVEFILM Appstore for Android Audible .
Two-Hour Flying Lesson

ake to the skies!

Meet the £99 (was ©299)

| VA - |

® 00 : Google

I | > a [8 https @ www.google.com/7gws_rd=ss

[MARH Apple Yahoo! Google Maps YouTube Wiklpedia News v Popularf

»See the deal amazonlocal

SHAMBALLA
BRACELETS

Shop now

+You Gmail Images

Welcome to Facebook - Log In, Sign Up or Learn More

< L 4+ [hups @ www.facebook.com

[I] = Apple Yahoo! GoogleMaps YouTube Wikipedia News Y Popular ¥

GO gle facebook

Email or Phone

Signh Up

Connect with friends and the It’s free and alw:
] R world around you on Facebook. S
. Email

See photos and updates from friends in News Feed.

Re-enter ema

Share what’s new in your life on your Timeline. New passworc

Birthday

| @ Amazon.co.uk: Low Prices in Ele...

Ratial

— a www.amazon.co.uk

adMazZoN cow

Shop by
Department v

Your Amazon.co.uk

Search Al w

Shopping from Spain?

Amazon MP3

Cloud Player

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

Today’s Deals

¢ Compras desde Espana? =
-

LOVEFILM

& | (2§~ Google Q *
G Cards | Help January Deals swo:so
Hello. Sign in 0 Wish
Your Account v e Basket v List ~

Visita
amazones

» Descubrelo

January Deals o

Appstore for Android Audible

® O @G

Le)»
m

Google Search I'm Feeling Lucky

| Data is replicated and partitioned
across multiple nodes

me logged i

Sign Up

Connect with friends and the It’s free and alw:

world around you on Facebook.

~— See photos and updates from friends in News Feed.

Share what’s new in your life on your Timeline.

Birthday

ing latency

, minimis

)
@)
C
(4]
.
o
O
)
<
)
)
(V)
(qv]
R
A

ing latency

, minimis

)
@)
C
(4]
.
o
O
)
<
)
)
(V)
(qv]
R
A

ing latency

, minimis

)
@)
C
(4]
.
o
O
)
<
)
)
(V)
(qv]
R
A

ines inside

With thousands of mach

Y s e COETT
ﬂ. - et =
\

T ul‘ v:u_,

Load-balancing, fault-tolerance

ICES

icas on mobile deyv

Repl

SIS
‘ i w/,
EBhvee

o ®

(]
.u_

d
(2]l

Offline use

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

U

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

® Requires synchronisation: contact other
replicas when processing a request

U

® Expensive: communication increases latency

® |mpossible: either strong Consistency or

Availability in the presence of network Partitions
[CAP theorem]

U

® Expensive: communication increases latency

® |mpossible: either strong Consistency or

Availability in the presence of network Partitions
[CAP theorem]

U

® Expensive: communication increases latency

® |mpossible: either strenrg-ensisteney or

Availability in the presence of network Partitions
[CAP theorem]

Relaxing synchronisation

A 18

add(100) \®\

Process an update locally, propagate effects to
other replicas later

Relaxing synchronisation

LW E

add(100)

08

Process an update locally, propagate effects to
other replicas later

+ Better scalability & availability

- Weakens consistency: deposit seen with a delay

E Untitied document Google : %

&« C @ @ & https://docs.google.com/document/d/1Q9gD-Sk73CwfCGI_cgCsgcvBfzgmOpb6Sf5AN soe ¥ | | Q Ssearch vy I @O e =
Untitled document =| o
File Edit View Insert Format Tools Add-ons Help All changes saved in Drive
~ ~ = A P 100% ~ Normal text ~ Arial - 14 - B I U A # o n !' = === [(v~ E0E X Z~ A 33,
1 2 1 2 3 4 5 6 - 7

Reasoning about data consistency in distributed systems
Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

® Common application: collaborative
editing (Google Docs, Office Online)

® Would accept edits before
communicating with Google servers
or other clients

NoSQL data stores

New generation of data stores with high scalability and
low latency, but weak consistency

—l

Cassandra

amaZon
DynamoDB

a O

@]
Microsoft Azure : w r I q
DocumentDB ’

So what consistency guarantees do they provide?

Anomalies

-
X

post.write(photo)

Anomalies

a o 08

post.write(photo)

*‘

post.read() : photo
access.read() : all

Anomalies

facebook

| access.write(noboss) |\

| post.write(photo) |~

*‘

| post.read() : photo |
Causal dependency: one
operation is aware of another

| access.read() : all |

Anomalies

| access.write(noboss) i\

| post.write(photo) |~

*‘

| post.read() : photo |
Causal consistency model:
disallows this anomaly

| access.read() : all |

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakening
consistency too much, too little, just right?

Early days

Poor guidelines on how to use the weakly

consistent data stores: are w
consistency too much, too li

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state™

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a greatvariety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, I present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective
In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.®

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

Early days

Poor guidelines on how to use the weakly

consistent data stores: are w.
consistency too much, too li

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state™

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a greatvariety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, I present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective
In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.®

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

Early days

Poor guidelines on how to use the weakly

consistent data stores: are w.
consistency too much, too li

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state™

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a greatvariety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, I present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective
In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.®

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

2008
TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman, Gregory Chockler, Robbert van Renesse

This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct

2008
TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman, Gregory Chockler, Robbert van Renesse

This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct

F1: A Distributed SQL Database That Scales 20!3

Jeff Shute Radek Vingralek Bart Samwel Ben Handy
Chad Whipkey Eric Rollins Mircea Oancea Kyle Littlefield
David Menestrina Stephan Ellner John Cieslewicz lan Rae*
Traian Stancescu Himani Apte

Google, Inc.
*University of Wisconsin-Madison

ABSTRACT consistent and correct data.

F1 1s a distributed relational database system built at Designing applications to cope with concurrency

Google to support the AdWords business. F1 is a hybrid anomalies in their data is very error-prone, time-
database that combines high availability, the scalabilitv of consuming, and ultimately not worth the performance
NoSQL systems like Bigtable, and the consistency and us- gatfis.

Strong vs weak consistency

® Pay-off from weakening consistency often worth it:
higher scalability, lower latency in geo-distribution,
offline access

» Both strong and weak systems used in industry

® But programmers need help in using it:
» Programming abstractions for weak consistency

» Methods for reasoning about how weakening
consistency affects application correctness

Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

sAe Ay

y \Z =

Microsoft®

SQL Server

s,

Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

LR

N | ...since 1975

Granularity of Locks apnd Degreeg of Consistency
in a Shared Data Base

Je.N. Gray
R.A. Lorie
G.KR. Putzolu
I.L. Traiger

IBM Research Laboratory
San Jose, California

ABSTRACT: In the first part of the paper the problem of choosing
the granularity (size) of lockable objects is introduced and the
related tradeoff between concurrency and overhead is discussed. A
locking protocol which allows simultaneous 1locking at various
granularities by different transactions is presanted. It is based
on the introduction of addi+tional lock modes besides the

Also centralised SQL databases

Don't provide strong consistency either by default or
at all: to exploit single-node concurrency

S | ...since 1975

Granularity of Locks apnd Degreeg of Consistency
in a Shared Data Base

Je.N. Gray
R.A. Lorie
G.KR. Putzolu
I.L. Traiger

IBH Research Laboratory
San Jose, California

ABSTRACT: In the first part of th
the granularity (size) of lockabl = = - -

related tradeoff between concurren Are aPPhCat'OnS OK Wlth thlS?
locking protocol which allows s
granularities by different transac

on the introduction of addi+tional lock modes besides the

[SIGMOD'17]

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT

In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and
deployed on over 2M websites. We identify and verify 22 critical
ACIDRain attacks that allow attackers to corrupt store inventory,
over-spend gift cards, and steal inventory.

1 | def withdraw(amt, user_.id): (a)
2 bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal — amt, user_id)

1 | def withdraw(amt, user_.id): (b)
2 beginTxn()

3 bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal — amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 > $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SELECT FOR UPDATE is used. While this scenario closely re-
sembles textbook examples of improper transaction use, in this
paper, we show that widely-deployed eCommerce applications
are similarly vulnerable to such ACIDRain attacks, allowing
corruntion of annlication state and theft of assets.

[SIGMOD'17]

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT
In theory, database transactions protect application data from cor- 1| def withdraw(amt, user_ld).: (@)
.) R :) . 2 bal = readBalance(user_id)
ruption and integrity violations. In practice, database transactions 3 if (bal >= amt):
frequently execute under weak isolation that exposes programs to . N ' :
i i . . 4 writeBalance(bal — amt, user_id)
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun 1 | def withdraw(amt, user_.id): (b)
and profit. In this paper, we formalize a new kind of attack on 2 beginTxn()
database-backed applications called an ACIDRain attack, in which 3 bal = readBalance(user_id)
an adversary systematically exploits concurrency-related vulnerabil- - if (bal >= amt):
ities via programmatically accessible APIs. These attacks are not 5 writeBalance(bal — amt, user_id)
theoretical: ACIDRain attacks have already occurred in a handful 6 commit()

of applications in the wild, including one attack which bankrupted

a popular Bitcoin exchange. To proactively detect the po:l ——=
ACIDRain attacks, we extend the theory of weak isolation

latent potential for non-serializable behavior under concu ' . .
API calls. We introduce a language-agnostic method for N E_ P PI

potential isolation anomalies in web applications, called] O * CO m m e rc e a' I Catl O n S Can
Anomaly Detection (2AD), that uses dynamic traces of

accesses to efficiently reason about the space of possible ¢ be h aC I(e d by eXP I O iti ng Weal(
interleavings. We apply a prototype 2AD analysis tool to 1 .
consistency of back-end databases

self-hosted eCommerce applications written in four langy
deployed on over 2M websites. We identify and verify 2
ACIDRain attacks that allow attackers to corrupt store i
over-spend gift cards, and steal inventory.

corruntion of annlication state and theft of assets.

Weak shared-memory models

® Multicore processors: x86, ARM

Multiprocessor ~ distributed system

® Programming languages: C/C++, Java

Due to compiler optimisations

This course

Programming abstractions for weak consistency
Methods for specification

Methods and tools for reasoning about
application correctness and consistency needs

Implementing strong consistency

Strong consistency and
the CAP theorem

Data model

® Database system manages a set of objects:
Obj = {x,y,z...}

® Obijects associated with types Type = {T, ...}

® For each type T € Type:

» Set of operations Opr, including arguments

» Return values:Valt

Data model

® |nteger register
> Opintreg = {read, write(k) | k € Z}

4 Valintreg — Z U {Ok}

® Counter:

» Opcounter = {read, add(k) | k € N}

) Valcounter — N U {Ok}

Sequential semantics

® Semantics in an ordinary programming language

® For each type T € Type: set of states Stater,
initial state Op € Stater

) Stateintreg — Z

» Statecounter = N

® Semantics of an operation op:

4 [[OP]]vaI e Stater — Valuer

) [[OP]]state e Stater — Stater

Register semantics

State = Z

[write(k) Istate(O) = k
[write]va(O) = ok
[read]state(0) = O

[read]]val(o-) =0

Counter semantics

State = N
[add(k)Isute(0) = O+k
[add(k)vai(O) = ok
[read]state(0) = O

[read]]val(o-) =0

Counter semantics

State = N
[add(k)Istee(0) = O+k
[add(k)]vai(O) = ok
[read]state(0) = O

[read]va(0) = O

read-only operation:
H:OP]]state(O-) =0

Counter semantics

State = N
[add(k)Istee(0) = O+k
[add(k)]vai(O) = ok
[read]state(0) = O

[read]va(0) = O

update operation

read-only operation:
[[OP]]state(O-) =0

Consistency specification

— . A

request request| ‘ :
responsec| response|
request? request?
response; FresSponse;

Clients issue requests and get responses:
history records the interactions in a single execution

Consistency specification

— . A

request request| ‘ :
responsec| response|
request? request?
response; FresSponse;

Assume every request yields a response
No next request until the previous one responded

Consistency specification

— \A

request| request ‘)
response| response|
requesty request

9 } event e
responsez reSsponse?

Assume every request yields a response
No next request until the previous one responded

Consistency specification

obj(e) opge) rval(e)

B "< »,'
x.write(42) : ok

request) A ,5

request
response| response|
requesty request
g } event e
responsez reSsponse?

Assume every request yields a response
No next request until the previous one responded

Consistency specification

— \gl

request request; .V
response| response|
request; request;

L } event e
response; response;

&

Consistency specification

/
request; rec
response; res
requests rec
response; res

DONSE?

} event e

\ 4

session
(= process, thread)

Session order so: the order in which events are issued:
union of total per-client total orders

Consistency specification

/

request; rec
response; res
requests rec
response; res

DONSE?

Total order: transitive and irreflexive
relation ordering any pair of
elements one way or another

} event e

v

session
(= process, thread)

Session order so: the order in which events are issued:
union of total per-client total orders

Consistency specification

/

request;
response|
request;
response;

red
res
red
res

= History H = (E, so)

~A

uest t)
DONSE|
uest

DONSE?

Consistency specification

= History H = (E, so)

request request| ‘
responsec| response|
request? request?
response; FresSponse;

Consistency model - a set of histories
the set of allowed database behaviours

Visualising histories

x.read: 0

lso

y.write(l)

lso

z.write(2)

lso

c.add(1)

lso

c.add(1)

x.write(l)

lso

c.add(l)

lso

c.read: |

lso

Z.read: 2

Visualising histories

x.read: 0

lso

y.write(l)

lso

z.write(2)

lso

c.add(1)

lso

c.add(1)

x.write(l)

lso

c.add(l)

lso

c.read: |

lso

Z.read: 2

A

Using a consistency model

® Consistency model # behaviour of the database
under arbitrary clients

Using a consistency model

® Consistency model # behaviour of the database
under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

Using a consistency model

® Consistency model # behaviour of the database
under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P] = {)(c [P] \ history(X) S =7f}

Using a consistency model

® Consistency model # behaviour of the database
under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P] = {)(c [P] \ history(X) S =7f}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);

Using a consistency model

® Consistency model # behaviour of the database

under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P.#] = {X e [P] ‘ hiStOI”)’(X) S t7£}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);

[P1:

x.read(): 42; x.read(): 42;
x.read(): 42; x.read():43;
y.write(l); y.write(0);

Using a consistency model

® Consistency model # behaviour of the database

under arbitrary clients

® Program P => set of all executions [P] under
arbitrary behaviour of the database

® Semantics of P when using

[P.#] = {X e [P] ‘ hiStOI”)’(X) S t75}

P:
rl = x.read();
r2 = x.read();

y.write(rl==r2);

[P A]:

[P1:
x.read(): 42; x.read()742;
x.read(): 42; x.regd(): 43;
ywrite(l); yrite(0);

Defining a consistency model

® Operational specification: by an idealised
implementation

® Axiomatic specification: more declarative

Strong consistency operationally

X: O

5

X: C;'A= 0

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

x.write(42)

g

x:0=0

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

x.write(42)
x: 0 =0
x.write(42)
x:0 =42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

x.write(42)
/\
x: 0 =0
x.write(42)
X: 0 =42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

& x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

@ x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42
Xx.read : 42

® Server with a single copy of all objects
® C(Clients send request to the server and wait for a reply

® Server processes operation sequentually in the receipt
order

Strong consistency operationally

@ x.write(42) X: O
x.read
/\ — rea

x.write(42)
X: 0 =42
Xx.read : 42

Could write a formal operational semantics: maintain the state
of the database, clients and sets of messages between them

Strong consistency operationally

x.write(42)

/\ x.read

x.write(42)
X: 0 =42
Xx.read : 42

e Consistency model = {H | 3 execution with history H
produced by the abstract implementation}

® Sequential consistency: one form of strong consistency

® Weaker than linearizability: takes into acount the duration of
operations

Operational specifications

® | et one understand intuitions behind
implementations

® May become unwieldy for weaker consistency
models

® Sometimes overspecify behaviour

Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how
operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ri, .., ra. (H, 11, ..., 1n) E

<4

VS

Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how

operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ry, ..., rn. (H, 11, ...,)

= of)

Consistency model = {H | 3 execution with history H

produced by the abstract implementation}

VS

Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how

operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ry, ..., ro. (H, 11, ...,)

= of)

Consistency model = {H | 3 execution with history H

produced by the abstract implementation}

VS

Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how

operations are processed inside the system

Abstract execution (H, ri, ...,rn) = (E, so, ri, ..., n)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ry, ..., rn. (H, 11, ...,)

= of)

Consistency model = {H | 3 execution with history H

produced by the abstract implementation}

Sequential consistency axiomatically

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

& x.write(42)
X.read
__,/ W LD

Sequential consistency axiomatically

An SC history can be explained by a total order over all
events: the order in which the server processes client
operations

& x.write(42)
X.read
s Ty
_» W L P

Abstract execution: (H, to) = (E, so, to), where to € EXE

SC = {(E, so) | 3 total order to. (E, so, to) & ofsc}

(E, so, to) & I'sc iff

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)

(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)

(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)Istate(...[op(€e1)Istate(T0))

el, ..., en = to-l(e).select(obj(e)).sort(to)

(E, so, to) & I'sc iff
|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)lstate(...LOp(e1) Istate(O0))

el, ..., en = to-l(e).select(obj(e)).sort(to)

Integer registers: a read returns the value written by
the last preceding event in to (or O if there are none)

x.write(0); x.write(42); x.read: 42

(E, so, to) &= f'sc iff SC ={(E, so) | 3to. (E, so, to) = ofsc}

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Ve € E.type(obj(e)) = (To, [-Ivar, [-]state)
rval(e) = [op(e)Ival(O)
O = [op(en)lstate(...LOp(e1) Istate(O0))

el, ..., en = to-l(e).select(obj(e)).sort(to)

Integer registers: a read returns the value written by
the last preceding event in to (or O if there are none)

x.write(0); x.write(42); x.read: 42

SC example

SC = {(E, so) | 3to. (E, so, to) E Isc}

x.read: 0 x.write()
y.w}istoe() c.adl;c())
z.w&is':e(Z) c.relasc: a
c.adlcslz) z.refccl): 2

lso

c.add(1)

SC example

SC ={(E, so) | 3to. (E, so, to) = s}

x.read: 0 x.write()
y.write(l) c.add(l)
lso o lso
z.write(2) c.read: |
c.add(l) z.read: 2

lso

c.add(1)

Operational vs axiomatic

x.write(42)

Nk |

® Got rid of messages between clients and the
server, but didn't go far from the operational spec

® There's more difference for weaker models:
complex processing can be concisely specified by
axioms

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Dekker example

Process A: Process B:

x.write() y.write(l)

if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Claim: under sequential consistency,
there can be at most one winner

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO SO
\ 4 \
y.read(): 0 x.read(): O

Need to construct a total order to

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

\ 4 \
y.read(): 0 x.read(): 0

so C to

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

\ 4 \
y.read(): 0 x.read(): 0

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

v \
y.read(): 0 x.read(): 0

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
SO, to SO, to

v \
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() X y.write(l)
O
SO, tO / S0, tO
v \
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() X y.write(l)
O
S0, tO / S0, tO
\ 4 v
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
to to
SO, to SO, to
\ 4 v
y.read(): 0 x.read(): O

Reads return the most recent write in to, but this
read doesn't see the write

Process A: Process B:

x.write() y.write(l)
if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Assume there are two winners. Then there must
exist an abstract execution for the history:

x.write() y.write(l)
to to
SO, to SO, to
\ 4 \
y.read(): 0 x.read(): O

But to must be acyclic, so no such total order
exists - QED.

CAP theorem

No system with at least 2 processes can implement a

read-write register with strong consistency, availability,
and partition tolerance

® strong consistency = sequential consistency
® availability = all operations eventually complete

® partition tolerance = system continues to function
under permanent network partitions

(processes in different partitions can no longer
communicate in any way)

CAP proof

No system with at least 2 processes can implement a
read-write register with strong consistency, availability,
and partition tolerance

® By contradiction: assume the desired system exists
® Run some experiments with the Dekker program

® Network is partitioned between the two processes

Process A: Process B:

x.write(1) y.write(l)

if (y.read() == 0) if (x.read() == 0)
print "A wins" print "B wins"

Process A Process B

x.write(l)
if (y.read() == 0)
print "A wins"

® Process A runs its code, process B is idle

Process A Process B

execution Xa | x.write(l)

of process A | if (y.read() == 0)
print "A wins"

® Process A runs its code, process B is idle

e Availability = A must terminate and produce an
execution Xa

Process A Process B

execution Xa | x.write(l)
of process A | if (y.read() == 0)
print "A wins" ¢/

® Process A runs its code, process B is idle

e Availability = A must terminate and produce an
execution Xa

e Sequential consistency => Xa must print "A wins"

execution Xa
of process A

Process A Process B
x.write(l)
if (y. read() =
print "A wins' t/
Process B
y.write(l)

if (x.read() == 0)
print "B wins" ¢/

Process A I

® Process B runs its code, process A is idle

execution Xg
of process B

e Availability = B must terminate and produce an

execution Xg

e Sequential consistency => Xg must print "B wins"

Process A

execution Xa | x.write(l)
of process A | if (y.read() == 0)

print "A wins" ¢/
Process B
y.write(l) execution Xg
if (x.read() == 0) | of process B
print "B wins" ¢/

® Network is partitioned in both experiments:
processes didn't receive any messages

® Xa; Xg is an execution of A || B, i.e., Dekker

e Xa; Xg hot SC = contradiction, QED

Process A

execution Xa | x.write(l)
of process A | if (y.read() == 0)
print "A wins" ¢/

Process B

y.write(l) execution Xg
if (x.read() == 0) | of process B

print "B wins" ¢/

® Processes have to talk to each other (synchronise)
to guarantee strong consistency

Eventual consistency and
replicated data types,
operationally

System model

® Database system consisting of multiple replicas
(= data centre, machine, mobile device)

® FEach replica stores a copy of all objects

System model

* — by £

Replicas can communicate via channels

Asynchronous: no bound on how quickly a
message will be delivered

(in particular, because of network partitions)

Reliable: every message is eventually delivered

(so every partition eventually heals)

For now: replicas are reliable too

Righ availability

® Clients connect to a replica of their choice

@ wite() High availability =~ ywrie() &
@ 3 3

® Clients connect to a replica of their choice

@ gﬁ(l) Righ availability it Q\

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others

@ x.write(l) H|gh avallablllty ?ﬂmﬂﬂ
Lh] 5 @ ok

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others

® Propagate effects to other replicas later

@ wite() High availability =~ ywrie()

LT = gl o

® Clients connect to a replica of their choice

® Replica has to respond to operations immediately,
without communicating with others

® Propagate effects to other replicas later

® Always available, low latency, but may not be
strongly consistent

) High availability 0

® Quiescent consistency: if no new updates are made
to the database, then replicas will eventually
converge to the same state

® |ater more precise and stronger formulations of
eventual consistency

Replicated data types

® Need a new kind of replicated data type: object
state now lives at multiple replicas

® Aka CRDTs: commutative, convergent, conflict-free

Just one type: operation-based replicated data types

® Object => Type = Operation signature

For now fix a single object and type

Sequential semantics recap

Set of states State
Initial state Op € State
[opIval € State — Value

[oplstate € State — State

Replicated data types

§

O

Object state at a replica: 0 € State

Replicated data types

op |

[[OP]]vaI

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Replicated data types

| £ £

O E

| op |- i
O_I

[oplva -

Object state at a replica: 0 € State

Return value: [op]val € State = Value

The operation affects a different state g'!

Replicated data types

) 1}

O
_op |- [op].s(c |
[op]val E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)

Replicated data types

) 1}

O
&l " [OP Jes(o)
[op]val E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)

Replicated data types

) 1}

O
\il = [OP Jlesr(0) ,
[[OP]]vaI EffeCtOr’ E
[oples(T)(T7)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)

Replicated data types

) 1}

O
LIOP B [OPler(a) ,
[oplva EffeCtOl‘ E
[oples(T)(T)

Object state at a replica: 0 € State

Return value: [op]val € State = Value

Effector: [op]es € State — (State — State)

Counter

) 3

O
&' = [OP]]eff(0) ,
[[OP]]vaI E
[oples(T)(T7)
State = N

[read()Iva(O) = O
[read()]e(0) = AC.O

Counter

§ §

O
oP |- [OPler(a) ,
[[OP]]vaI E
[oples(T)(T7)

[add(100)]ef(0) = AC’. (0" + 100)

Counter

) 3

O
&' = [OP Jes(0) 50
[op]val —
[oples(T)(T7)

[add(100)]ef(0) = AC’. (0" + 100)

Counter

) 1}

O
&I = [OP Jes(0) 50
[op]val —
|50

[add(100)]ef(0) = AC’. (0" + 100)

Counter

§

¥

O
&' = [OP Jes(0) 50
[op]val —
|50

[add(100)]ex(0) = AC’. (0 + 100)

2 2

count =0 count =0

| add(100) | | add(200) |

2 2

count =0 count =0
AG’. 100 AG’. 200
| add(100) t :i add(200) |
-« —>

count = |00 count = 200

count=0 count=0

AG’. 100 AG’. 200
add(100) add(200)
e —>
count = |00 count = 200
count = 200 count = |00

Quiescent consistency violated: all updates have been
delivered, yet replicas will never converge

Ensuring quiescent consistency

® [Effectors have to commute:

Vopi,op2, T, 02. [opi]

[opa]

(1) ;
f(02) ;

[opa]

[opi]

eff(02) =
f(O1)

® Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)

Ensuring quiescent consistency

® [Effectors have to commute:

Vopi, op2, 01, 02. [opi]ef(T1) ; [op2llef(02) =
[op2]leff(O02) ; [opilef(O1)

® Convergence: replicas that received the same sets of
updates end up in the same state

(even when messages are received in different orders)

® Quiescent consistency: if no new updates are made to
the database, then replicas will eventually converge to
the same state

(because update get eventually delivered)

Replicated data types

Counter
Last-writer-wins register
Multi-valued register
Add-wins set
Remove-wins set

List

Read-write register

s o8

writle() wrilte(Z)

Read-write register

VEET
"

write(l)

Read-write register

s 08

write(1) Conflict! write(2)

Read-write register

s 08

writle(l) Conflict! wrilte(2)

® No right or wrong solutions: depends on the
application requirements

® E.g,could report the conflict to the user:
multi-valued register

Last-writer-wins register

80 08

writle() wrilte(2)

® Shared memory: an arbitrary write will win
® Conflict arbitrated using timestamps: last write wins

® |ink to shared-memory consistency models

Last-writer-wins register

an 0a

write(1) write(2)

State = Value X Timestamp

[read()Ivai(v, t) = v

Last-writer-wins register

A 18

writle() write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)

Last-writer-wins register

A = (g

write(l) 2 \write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueT$() in
AV, t). if thew > t’ then (Vnew, thew) else (v, t)

Last-writer-wins register

8 = 08

| 0

P

[write(Vnew) lef(V, t) =

write(1) write(2)

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)

Last-writer-wins register

8 = 08

| 0

P

[write(Vnew) lef(V, t) =

write(1) write(2)

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)

Last-writer-wins register

A == [g

Writle(I) ‘I///tz Write(Z)
readl(): 2
[write(Vnew) lef(V, t) =

let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, thew) else (v, t)

Last-writer-wins register

8 = 08

| 0

writle() ><

readl(): 2 readl(): 2

write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) €lse (V, t)

Last-writer-wins register

80 = na

| 0

writle() ><

readl(): 2 readl(): 2

write(2)

[[Write(Vnew)]]eff(V, t) —
let thew = newlUniqueTS() in
AV, t). if thew > t’ then (Vnew, tnew) else (v, t)

Last-writer-wins register

80 = na

writle() ><

readl(): 2 readl(): 2

write(2)

Effectors are commutative: the write with the highest
timestamp wins regardless of the order of application

Generating timestamps

® (Can use wall-clock time at the machine

® But can lead to strange results when clocks
are out of sync

-
=

A

]
write(l)

A 8o

]
write(l) —

read: |

wrilte(2)

ai

write(l) -

T

=18

t >t

read: |

wrilte(2)

an 8o

]
write(l) -

t >t reald: I

' t2
write(2) -

® Undesirable: 2 was meant to supersede |

® Undesirable: 2 was meant to supersede |

® Use logical (Lamport) clocks instead

Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |

Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |

write(l) |

time = 2

Lamport clock

Replica maintains a counter; incremented on each operation:

§

time = |
write(l) |
time = 2

write(2) 2

Lamport clock

Replica maintains a counter; incremented on each operation:

time = | time = |
write(l) | write(l) |
time = 2

write(2) 2

Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) | write(l) |
time = 2

write(2) 2

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

(cib,r)<(cpn)<=c<avc=caAar <nr)

Lamport clock

Replica maintains a counter; incremented on each operation:

E

time = | time = |
write(l) (1,r) write(l) (I, r)
time = 2

write(2) (2,r) (I,r1) < (1, r2)

Timestamps need to be unique: ts = (CounterValue, ReplicalD)

(cib,r)<(cpn)<=c<avc=caAar <nr)

A

time =

write(1)

At

time = t;

write(1)

time = t|+1

(tr, ri)

At

time = t;

write(l) —

(tr, ri)

ol

time = t

time = t|+1

A 8u

time = t| E
. ti, I 1 —
write(l) - (t. 1) time = ©
—>
time = t|+1 :

time = max{ty, t2}+1

When receiving an effector, bump up your clock above its
timestamp

At 8

time = t| E
. ti, I 1 —
write(l) - (t.) time = ©
—>
time = t|+| :

time = max{ty, t2}+1

read: |

write(2)

When receiving an effector, bump up your clock above its
timestamp

At 8i

time = t| E
. ti, I 1 —
write(l) - (t. 1) time = ©
—>
time = t|+1 :
time = max{ty, t2}+1
read: |
> !
write(2)

When receiving an effector, bump up your clock above its
timestamp

Aty 81 all

time = t E 5
. t|’ i I — E
write(l) = (€, 1) time = © :
= E
time = t|+| - :
time = max{ty, ta}+]1 g
read: | 5
> : :
€ L 9) .- (tl'l'l, r2) E
write(2) -
-

read: 2

When receiving an effector, bump up your clock above its
timestamp

Replicated set

gl\ G cart = {book} [j @

cart.add(book) cart.remove(book)

Replicated set

{ & D cart = {book} D @

cart.add(book) Conflict! cart.remove(book)

Replicated set

.*QT D cart = {book} D @

cart.add(book) Conflict! cart.remove(book)

Should the remove cancel the concurrent add?
Depends on application requirements

Replicated set

gl\ [j cart = {book} G @

cart.add(book) Conflict! cart.remove(book)

Last writer wins: choose based on operation
time-stamps

Remove wins: cart =

Add wins: cart = {book}

Add-wins set

' A D cart = {book} D g

cart.add(book) cart.remove(book)

™~ ~

cart = {book}

Add-wins set

Q D cart = {book} D @

cart.add(book) cart.remove(book)

™~ ~

cart = {book}

® remove() acts differently wrt add() depending on
whether it's concurrent or not

® FEach addition creates a new instance:
State = set of pairs (element, unique id)

{(book,)}

add(book)

Each add() creates a new element instance:

[add(v)]e(0) = AGC’.(C" u {(v, uniqueid()})

P ——
!

-
{(book,)}

add(book) Aa’. 0" u {(book, 2)}

o

{(book, |)I, (book,2)}

Each add() creates a new element instance:

[add(v)]e(0) = AGC’.(C" u {(v, uniqueid()})

-
£

{(book, 1)}
add(t:)ook)

{(book, |)I, (book,2)}

1(book, 1)}
add(ti)ook)
{(book, |) (book,2)}
read():: {book}

Instance ids ignored when reading the set:

[read()]va(0) = {v|{3id. (v,id)} € O)

2

{(book, 1)} {(boolk, 1)}
add(l:Dook) removle(book)

{(book, |)I, (book,2)}

< T < T
{(boolk, 1)} {(boolk, 1)}
add(t:)ook) removle(book)

{(book, |)I, (book,2)}

remove(v) removes all currently present instances of x:

[remove(V)]e(0) = AC. (TG \{(v,id) € G})

P ———
: 1 :
J l J
« W

{(boolk, 1)} {(boolk, 1)}

add(book) AO’. 0" \ {(book, |)} remove(book)

-

{(book, |)I, (book,2)} %

remove(v) removes all currently present instances of x:

[remove(V)]e(0) = AC. (TG \{(v,id) € G})

£

{(book, 1)}
add(t:)ook)
{(book, |)I, (book,2)}

{(bo:ok,2)}

remove(v) removes all currently present instances of x:

P —
l

| 1

< U

{(boolk, 1)}

AO’. 0" \ {(book, |)} remove(book)

D

[remove(V)]e(0) = AC. (TG \{(v,id) € G})

g

{(book, 1)}
add(l:)ook)
{(book, |)I, (book,2)}

{(bo;k,Z)}

g

{(boolk, 1)}
removle(book)

D

P ——
J i J
e »

{(book, 1)} {(book, 1)}

add(ti)ook) AT-0TUABook 2} remove(book)
{(book,) (book,2)} @

{(book.2)) {(boc;k,Z)}

Effectors commutative => replicas converge

Take-aways

® Need to ensure commutativity to
guarantee quiescent consistency

® Need to make choices about how to
resolve conflicts

Replicated data type uses

® Provided by some data stores:

® |mplemented by programmers on their own:

'Pavpa' \!rk?m il e

SOUNDCLOUD

_ E Untitied document - Google ° x

& C @® @ & https://docs.google.com/document/d/1Q9gD-Sk73CwfCGI_cgCsgcevBfzgmOpb6Sf5AN e & % | Q Ssearch vy I @O e =
Untitled document =| o
File Edit View Insert Format Tools Add-ons Help All changes saved in Drive
~ ~ m A, P 100% ~ Normaltext Arial - 14 ~- B I g A 8 o H !v = = = = 1= =S v iy == X Z~ A
1 = 1 2 3 4 5 6 v 7

Reasoning about data consistency in distributed systems
Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

: Collaborative editing: at the core -
list data type (of formatted characters)

Operational specification

® Given a database with a set of objects of replicated
data types

® Eventual consistency model = set of all histories
produced by arbitrary client interactions with the
data type implementations (with any allowed
message deliveries)

® |mplies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state

Eventual consistency and
replicated data types,
axiomatically

Anomalies

&

c.add(l)

c.read(): !

A
no
malies

/’_\
e —

\@

cadd(l)

c.read()* 0

Anomalies

c.read(): 0

Can be disallowed if the client sticks to the same replica:
Read Your Writes guarantee

Anomalies

-
-

access.write(all)

&

access.write(noboss)

post.write(photo)

-

=
\

Anomalies

(] §

&

access.write(noboss)/

access.write(all) >

post.write(photo)

Anomalies

-
-

&

access.write(all)

access.write(noboss)/

post.write(photo)

post.read() : photo

access.read() : all

Anomalies

R B
= =
& A

access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all

Anomalies

e — P ——
1 i
: :

R . R s

- S

access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all

Causality violation: disallowed by causal consistency

access.write(all) >

access.write(noboss)/ post.read() : photo

l l

post.write(photo) access.read() : all

Causality violation: disallowed by causal consistency

Specification

® | ots of replicated data type implementations: e.g.,
can send snapshots of object states instead of

operations

® | ots of message delivery guarantees: different
implementations of causal consistency

® Want specifications that abstract from
implementation details: both replicated data types
and anomalies

Axiomatic specifications

Choose a set of relations over events:ry, ..., 'n

Abstractly specify essential information about how
operations are processed inside the system

Abstract execution (H, ry, ..., rn)

Choose a set of axioms & constraining abstract
executions

Consistency model = {H | 3 ri, .., ra. (H, 11, ..., 1n) E

<4

Sequential consistency

(E,so) | 3 total order to. (E, so, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

Order inclusion
|. so C to axioms: anomalies

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Sequential consistency

Partial orders l

(E,so) | 3 total order to. (E, so, to) satisfies:

Order inclusion
|. so C to axioms: anomalies

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

Return value axiom:
replicated data types

Execution: (E, so, vis, ar)

access.write(all)

ar SO

e Y
access.write(noboss)

SO

post.write(pﬁoto)

Vis

post.read() : photo

VIS
SO

access.read () :all

Execution: (E, so, vis, ar)

‘ Events '

Return
_value

access.write(all)

ar SO

Object Op

access.write(noboss) pc;st.réad() : phcfto

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

Execution: (E, so, vis, ar)

access.write(all)

ar SO

access.write(noboss) post.read() : photo
Session o vis .

order vis

post.write(photo) access.read() :all

The order of requests by the same session

Execution: (E, so, vis, ar)

access.write(all)

ar

SO

access.write(noboss) post.read() : photo

SO

VIS
SO

Vis

post.write(pﬁoto) access.read () :all

Declaratively specify ways in which the
database processes requests

-

@ Lé'; ;/1 Q

access.write(all)

.

SO

access.write(noboss) post.réad () : photo

SO SO

post.write(pﬁoto) access.read () :all

g U U g

. Delivered? :
access.write(all) >
access.write(noboss) post.read() : photo

post.write(pﬁoto) access.read () :all

g U

Delivered?

doa

>

access.write(all)

SO

access.write(noboss)

SO

post.write(pﬁoto)

Visible!? :
post.read() : photo

SO

access.read () :all

Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

vis is irreflexive and acyclic

Execution: (E, so, vis, ar)

access.write(all) Visibility relation

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

vis is irreflexive and acyclic

- -

& A

x.write(1) x.write(2)
' t) >< 2
x.wrij:e(Z) C <o x.write()
{x - 2} {x - 2}

System includes a time-stamping mechanism
that can be used in conflict resolution

- -

g : Arbitrated before : A

x.write(1) > X.write(2)
' t) >< 2
x.wrij:e(Z) C <o x.write()
{x . 2} {x . 2}

System includes a time-stamping mechanism
that can be used in conflict resolution

Execution: (E, so, vis, ar)

access.write(all)

Arbltrgtlon . =
relation

access.write(noboss)

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution

Execution: (E, so, vis, ar)

access.write(all)

Arbltrgtlon . =
relation

access.write(noboss)

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

System includes a time-stamping mechanism
that can be used in conflict resolution

ar is total on E and vis C ar

Data type specification

® How do | compute the return value of an event e!

® Only actions on the same object visible to e are important:
have been delivered to the replica performing e

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pF\oto) access.read () : noboss

Data type specification

® How do | compute the return value of an event e!

® Only actions on the same object visible to e are important:
have been delivered to the replica performing e

access.write(all)

al"l SO

access.write(noboss)

Context of e - projection of the
execution onto such actions

post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

access.write(all)

access.write(noboss)

Vis

Vis

access.read() : noboss

Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

F for Last-Writer-Wins registers:
sort all actions according to ar
and return the last value written

access.write(all)

ar

access.write(noboss)

access.read() : noboss

Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

What gets taken into account
depends only on vis

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

Counter

F: context of e = return value of e

c.add(l) c.add(2) c.add(3)

Vis Vis Vis

c.read(): 6

F: reads return the sum of all additions in the context

Counter

F: context of e = return value of e

c.add(1) cadd? " cadd(3)
c.read(): 6

Relations between events in the context don't matter

Counter with decrements

F: context of e = return value of e

c.add(l) c.add(Z)/ * Nc.subtract(4)
c.read(): - |

F: reads return additions minus subtractions

Multi-valued register

F: context of e = return value of e

x.write(1) xwrite(2) xwrite(3)
x.read(): !

F: reads return the set of all conflicting writes

Multi-valued register

F: context of e = return value of e

xwrite(1) [xwrite?)] © [xwrite(3)]
x.read(): !

F: reads return the set of all conflicting writes

Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

v

x.read(): !

F: reads return the set of all conflicting writes

Multi-valued register

F: context of e = return value of e

" [xwrite(3) |

x.write(l) | xwrite(2)

Vis Vis Vis

v

x.read(): !

F: reads return the set of all conflicting writes

Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

x.reavd(): {1, 3}

Multi-valued register

F: context of e = return value of e

" xwrite(3)

x.write(l) sewritell)

Vis Vis Vis

x.reavd(): {1, 3}

F: discard all writes seen by a write

Multi-valued register

F: context of e = return value of e

— is — s —
x.write(l) sewritell) x.write(3)

Vis Vis Vis

x.reavd(): {3}

F: discard all writes seen by a write

Add-wins set

F: context of e = return value of e

/Vi;\
set.add(book) set.add(book) set.remove(book)

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context of e = return value of e

Vis

set.add(book) ' set.add(book) | | set.remove(book) |

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context of e = return value of e

~— . ™

' set.add(book) | setadd(book) ~ [set.remove(book)]

Vis Vis Vis

v

set.read() :?

Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}

Add-wins set

F: context of e = return value of e

~— .

set.add(book) setadd(beok)} = set.remove(book)

Vis Vis Vis

set.read() : {book}

F: cancel all adds seen by a remove

Add-wins set

F: context of e = return value of e

— is =
set.add{beosk) setadd{beolk)- set.remove(book)

Vis Vis Vis

v

set.read() : @

F: cancel all adds seen by a remove

Data type specification

F: context of e = return value of e

Ve € E. rval(e) = Feype(obje))(context(e))

" " .
No causal cycles™ axiom

x.read(): 42

SO

\ 4
y.write(42)

Vis

Vis

y.read(): 42

SO

v
X.write(42)

® so U vis is acyclic: no causal cycles/out-of-thin-air values

® so and vis consistent with execution order

"No causal cycles” axiom

x.read(): 42 «_ ;. y.read(): 42
v v
y.write(42) vis x.write(42)

so U vis is acyclic: no causal cycles/out-of-thin-air values

so and vis consistent with execution order

Could result from speculative execution, uncommon in
distributed systems

"No causal cycles” axiom

x.read(): 42 «_ ;. y.read(): 42
v v
y.write(42) vis x.write(42)

so U vis is acyclic: no causal cycles/out-of-thin-air values

so and vis consistent with execution order

Could result from speculative execution, uncommon in
distributed systems

Some forms allowed by shared-memory models (ARM,
C++, Java): defining semantics is an open problem

Eventual visibility

@ X.write(42) x.read(): 0

x.read(): 0

lso

x.read(): 0

lso

x.read(): 0

ve € E.e - ffor all but finitely many f € E

Eventual visibility

& x.write(42) x.readl(): 0 ' A

x.read(): 0

Vis
l SO

x.read(): 42

lso

x.read(): 42

ve € E.e - ffor all but finitely many f € E

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e 25 f for all but finitely many f € E

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e 25 f for all but finitely many f € E

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same
state

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

c.add(l) c.add(2) c.read: 0 c.add(I) c.add(2)

vis vis vis vis vis

v \

c.read(): 3 c.read(): 3

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value

® Eventual visibility: each update is seen by all but finitely many ops

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

® Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

® Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

® Convergence': two operations with the same context
projection to updates return the same value

® Eventual visibility: each update is seen by all but finitely many ops

® Assuming finitely many updates, all but finitely many ops will
see all of these updates

Quiescent consistency: if no new updates are made to the
database, then replicas will eventually converge to the same state

Convergence: events with the same context return the same
value: Ve € E. rval(e) = Fype(obje))(context(e))

Assumption: deleting read-only operations from the context
doesn't change the return value: F(X) = F(X-ReadOnlyEvents)

Convergence': two operations with the same context
projection to updates return the same value

Eventual visibility: each update is seen by all but finitely many ops

Assuming finitely many updates, all but finitely many ops will
see all of these updates

Quiescent consistency: assuming finitely many updates, all but
finitely many operations on a given object return values

computed based on the same context: same op =—> same rval

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

Why is this spec sound wrt implementations!’ immary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =55 f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

D,

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

Specification soundness

The set of all histories (E, so) such that for some vis, ar
the abstract execution (E, so, vis, ar) satisfies

consistency axioms &/

D,

The set of all histories (E, so) produced by arbitrary
client interactions with the data type implementations
with any allowed message deliveries

® YV concrete execution of the implementation with a
history (E, so)

® 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

Specification soundness

® Proofs depend on replicated data types

® Example: replicated counters and last-writer-wins
registers

® There are also generic proof techniques that work
for whole classes of data types

® YV concrete execution of the implementation with a
history (E, so)

® 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

Specification soundness

® Proofs depend on replicated data types

® Example: replicated counters and last-writer-wins
registers

® There are also generic proof techniques that work
for whole classes of data types

® YV concrete execution of the implementation with a
history (E, so)

® I vis,ar. (E, so, vis, ar) satisfies the axioms &f

Constructing vis

£

e 2=, f <= effector of e delivered to replica of f

before f is executed

Constructing vis

f

e 2=, f <= effector of e delivered to replica of f

before f is executed

Constructing vis

00

VIS 5
f

e 2=, f <= effector of e delivered to replica of f

before f is executed

so U vis is acyclic!?

00

VIS 5
f

e 5 f <= effector of e delivered to replica of f

before f is executed

so U vis is acyclic!?

00

Vis

f

e 225 fve-=-f—=— e was issued before fin the

operational execution

ve € E.e X5 ffor all but finitely many f € E

ve € E.e X5 ffor all but finitely many f € E

e

S

ve € E.e X5 ffor all but finitely many f € E

nU D "2

S

Ve € E.e — f for all but finitely many f € E

- D D r

® Channels are reliable (every partition eventually heals) —>
the effector of e is eventually delivered to

Ve € E.e — f for all but finitely many f € E

nU D "2

® Channels are reliable (every partition eventually heals) —>
the effector of e is eventually delivered to

® From some point on, all events f; at the replica r; see e

Ve € E.e — f for all but finitely many f € E

r.g Y -

® Channels are reliable (every partition eventually heals) —>
the effector of e is eventually delivered to

® From some point on, all events f; at the replica r; see e

® True for any replica = only finitely many events don't see e

Correctness of counters

Ve € E.rval(e) = Fype(obje))(context(e))

c.add(l)

Vis

c.add(2)

Vis

c.read(): 6

c.add(3)

Vis

F: reads return the sum of all additions in the context

Correctness of counters

§

c.read:?

Correctness of counters

5

c.read: O

A read returns the value of the counter at the replica:

[read()[va(0) = O

Correctness of counters

0 o

c.add(v; \®\>
‘ c:O '

c.read: O

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

Correctness of counters

0 o

c.add(v; \®\>
‘ c:O '

c.read: O

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

[add(V)]e(O) = AC’. (T + v)

Correctness of counters

R v U

Vis w

c.read: O

c.add(v;

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

[add(V)]e(O) = AC’. (T + v)

Correctness of counters

0 o

c.add(v; \®\>
vis ‘ c:O '

c.read: O

Invariant: the value of a counter at a replica is the sum
of all increments of the counter delivered to it

= increments visible to the read, QED.

Constructing ar

0o

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

M

vis C ar

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

VIS :
. tf
f

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

Vis

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

Y — When receiving
B the effector of e,
€ ' bumps up the

e \@\)/ CIOCI(above te

Vis

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

4 —~ When receiving
B the effector of e,
€ ' bumps up the

e W\)/ CIOCI(above te

Vis

Every event e gets assigned a timestamp te from
a logical Lamport clock

e L fea to <ty

Correctness of registers

Ve € E.rval(e) = Fype(obje))(context(e))

x.write(l) > X.write(2)

_/

x.read(): 2

F: reads return the last value in ar

Correctness of registers

¥

X.read:?

Correctness of registers

§

é‘x:(v,t)'

X.read: v

A read returns the value part of the register at the replica:
[read()Iva(v,t) = v

Correctness of registers

0 o

x.write(v':) \®\>
‘ X: (V, t) '

X.read: v

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

Correctness of registers
- -

- Lég

x.write(v':) \®\)
‘ X: (V, t) '

X.read: v

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)

Correctness of registers
- -

- Lég

x.write(v':) \®\)
‘ X: (V, t) '

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)

Correctness of registers

1 o

x.write(v':) \g\)
VIS
‘ X: (V, t) '

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)

Correctness of registers
- -

- Lég

x.write(v':) \®\)

Vis :
e 5 fem te < tf X (v 1) |

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

[write(Vnew)Jef(V, t) = let (thew = newlUniqueTS()) in
AV, t).if thew > t' then (Vnew, thew) else (V, t)

Correctness of registers

=
x.write(v'; \®\

VIS :
e 2 fems to <t [xwo]

X.read: v

tn ew

Invariant: the value of a register at a replica is the one
with the highest timestamp out of all delivered writes

= the last write in arbitration out of the ones visible to
the read, QED.

Proof technique summary

® YV concrete execution of the implementation with a
history (E, so)

e 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

Proof technique summary

® YV concrete execution of the implementation with a
history (E, so)

e 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

® Construct vis from message deliveries and ar from
timestamps

Proof technique summary

® YV concrete execution of the implementation with a
history (E, so)

e 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

® Construct vis from message deliveries and ar from
timestamps

® Prove invariants relating replica state with message
deliveries: the value of a counter at a replica is the
sum of all increments of the counter delivered to it

Proof technique summary

® YV concrete execution of the implementation with a
history (E, so)

e 3 vis,ar. (E, so, vis, ar) satisfies the axioms &f

® Construct vis from message deliveries and ar from
timestamps

® Prove invariants relating replica state with message
deliveries: the value of a counter at a replica is the
sum of all increments of the counter delivered to it

® Use the invariants to prove that return values of
operations correspond to data type specs

In-between eventual and
strong consistency

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =% f for all but finitely many f € E

Eventual consistency summary

The set of histories (E, so) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fyype(objie))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e =% f for all but finitely many f € E

Stronger than quiescent consistency, but still weak

Strengthen consistency by adding additional axioms
on vis and ar

Consistency zoo

Eventual consistency
Session guarantees
Causal consistency
Prefix consistency

Sequential consistency

Consistency zoo

Eventual consistency
Session guarantees
Causal consistency
Prefix consistency

Sequential consistency

Keep soundness justifications informal:
can be shown using previous techniques

Read Your VWVrites

c.add(100)

SO

c.read(): 0

w

Read Your VWVrites

&

c.add(100)

40:0 F
c.readl). |

=

Read Your VWVrites

c.add(100)

SO

c.read(): 0

Read Your VWVrites

c.add(100)

so C vis

SO Vis

c.read(): 00

® An operation sees all prior operations by the same
process

® Session guarantees: clients only accumulate information

Read Your VWVrites

S [

c.add(100)

so C vis

SO Vis

c.read(): 00

® An operation sees all prior operations by the same
process

® Session guarantees: clients only accumulate information

® |mplementation: client sticks to the same replica

Monotonic Reads

c.add(100)

c.add(100)

SO Vis

c.read(): 00

Monotonic Reads

c.add(100)

c.add(100) vis

Vis; so C VIS l

SO Vis

c.read(): 00

® An operation sees what prior operations by the same
session see

Monotonic Reads

& T c.add(100)

c.add(| OO) vis

Vis; so C vis l

SO Vis

c.read(): 00

® An operation sees what prior operations by the same
session see

® |mplementation: client sticks to the same replica

Causal consistency

access.write(all)

ar SO

access.write(noboss) post.read() : photo
post.write(pﬁoto) access.read () :all

Disallows causality violation anomaly

Causal consistency

access.write(all)

access.write(noboss) post.read() : photo
post.write(photo) “access.read () :all

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Mandate that all actions that happened before an action
be visible to it

Causal consistency

(so U vis)* C vis I

post.read() : photo

VIS
A S SO
.
.
.
.
.

‘access.read() : all

access.write(all)

ar SO

. Y
access.write(noboss)

.
.
.
.
SO .
VIS

post.write(photo)

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Mandate that all actions that happened before an action
be visible to it

Causal consistency

(so U vis)* C vis |

post.read() : photo

VIS
A S SO
.
.
.
.
.

‘access.read() : all X

access.write(all)

ar SO

. Y
access.write(noboss)

.
.
.
.
SO .
VIS

post.write(photo)

Unintuitive: chain of so and vis edges from write(noboss)
to the read: write happened before the read

Mandate that all actions that happened before an action
be visible to it

Causal consistency

(so U vis)* C vis I

post.read() : photo

VIS
A S SO
.
.
.
.
.

‘access.read() : all X

access.write(all)

ar SO

. Y
access.write(noboss)

.
.
.
.
SO .
VIS

post.write(photo)

Implies session guarantees: so C vis and vVis;so C vis

&

access.write(noboss)

access.write(all)

post.write(photo)

Clients stick to the same replica

&

access.write(noboss)/

access.write(all) >

post.write(photo)

Clients stick to the same replica

8 A

access.write(all) >

post.read() : photo

access.write(noboss)/

post.write(photo) access.read() : all

Clients stick to the same replica

8 A

access.write(all) >

access.write(noboss)/ post.read() : photo

post.write(photo) access.read() : all

Cannot deliver an operation before
delivering its causal dependencies

& A

access.write(all) >

access.write(noboss)/ post.read() : photo
l o :
post.write(photo) access.read() : all

Replica order ro: the order in which
operations are issued at a replica

e — P ——
1 i
: :

R . R s

8 A

access.write(all) >

access.write(noboss)/

lm

post.write(photo) access.read() : all

post.read() : photo

Delivery order del: one operation got
delivered before another was issued

E hb = (ro u del)* D
& A

access.write(all) >

access.write(noboss)

l ro, hb

post.write(photo) access.read() : all

post.read() : photo
del :

® (Causal dependencies of e: hb-!(e)
® An op can only be delivered after all its causal dependencies

® |mplementations summarise dependencies concisely

Dekker example

x.write(1) y.write(l)
VIS SO SO VIS

vy vy
y.read(): 0 x.read(): O

Dekker example

- -
! !
- -
x.write() y.wrife()
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0

Implementations: updates delivered later

Independent reads of independent writes (IRIVV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO

v

y. rgad: 0 x.read: 0

Independent reads of independent writes (IRIVV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written

before y before x

Independent reads of independent writes (IRIWV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written
before y before x

Implementations: no causal dependency between the two writes
=¥ can be delivered in different orders at different replicas

Independent reads of independent writes (IRIVV)

Vis Vis
/ /<\
x.write(l) =—> y.write(l) x.read: | y.read: |
SO SOl
\
y.read: 0 x.read: 0
X written Y written

before y before x

Independent reads of independent writes (IRIWV)

Vis Vis
/ /<\
x.write(l) =—> y.write(l) x.read: | y.read: |
SO SOl
\
y.read: 0 x.read: 0
X written Y written
before y before x

Not sequentially consistent

Independent reads of independent writes (IRIWV)

Vis Vis
/ /<_\
x.write(l) =—> y.write(l) x.read: | : ;
SO
\
y.read: 0
X written Y written
before y before x

Not sequentially consistent

Sequential consistency

so C vis and vis is total
vis C ar = can equivalently require so C vis = ar

Every operation sees the effect of all operations
preceding it in vis

Like the original definition with to = vis = ar

Dekker example

x.write(1) y.write(l)
VIS SO SO VIS

vy vy
y.read(): 0 x.read(): O

Dekker example

x.write(1) y.write(l)

vis| | so \ SO Vis
\A 4 \A 4

y.read(): 0 x.read(): O

ar, vis

Dekker example

x.write() ar, vis _ y.write(l)

VIS SO >< SO VIS
vy vy

y.read(): 0 x.read(): O

ar, vis

Dekker example

ar, vis

x.write() ar, vis _ y.write(l)

Vvis SO >< SO Vvis
vy vy

y.read(): 0 x.read(): O

No execution with such history

Consistency zoo

Eventual consistency

Session guarantees: Dekker, IRIVY, causality violation

sO C vVis, Vis; so C vis

Causal consistency: Dekker, IRIVW

(so U vis)* C vis

Prefix consistency: Dekker

ar; (vis \ so) C vis

Sequential consistency

VIS = ar

Shared-memory models

® Sequential consistency first proposed in the
context of shared memory (1979)

® Processors and languages don’t provide sequential
consistency: weak memory models, due to
processor and compiler optimisations

® Our specifications similar to weak memory model
definitions

® Consistency axioms for last-writer-wins registers
~ shared-memory models

Consistency zoo

Eventual consistency

Session guarantees: Dekker, IRIVY, causality violation

sO C vVis, Vis; so C vis

Causal consistency: Dekker, IRIVW

(so U vis)* C vis

Prefix consistency: Dekker

ar; (vis \ so) C vis

Sequential consistency

VIS = ar

for last-writer-wins =
C++ release/acquire

Theoretical results

Eventual consistenc
4 ® What's the best we can do while

. staying available under network
Session guarantees Lo

partitionings?
so C vis, Vvis;so C vis
® (Causal consistency is a strongest

such model [Attiya et al., 2015]

Causal consistency

(so U vis)* C vis

Prefix consistency

ar; (vis \ so) C vis

Sequential consistency

VIS = ar

Theoretical results

® Eventual consistenc
4 ® What's the best we can do while

. staying available under network
® Session guarantees B

partitionings!
so C Vis, Vis; so C vis
® (Causal consistency is a strongest

such model [Attiya et al., 2015]

® (Causal consistency

(so U vis)* C vis

® Prefix consistency

ar; (vis \ so) C vis

® Sequential consistency

VIS = ar

Theoretical results

® Eventual consistenc , ,
/ ® What's the best we can do while

. staying available under network
® Session guarantees B

partitionings!
so C vis, vis; so C vis . .
® Causal consistency is a strongest

such model [Attiya et al., 2015]

® (Causal consistency

(so U vis)* C vis .
Terms and conditions apply:

® Prefix consistency ® for a certain version of CC and a
ar; (vis \ so) C vis certain class of implementations

® a strongest model: cannot be
® Sequential consistency strengthened, but can be other
vis = ar alternative incomparable models

Theoretical results

Application of eventual consistency - collaborative
editing: Google Docs, Office Online

At the core: list data type (of formatted characters)
List data type has an inherently high metadata
overhead: can't discard a character when deleting it

from a Google Docs document! [Attiya et al., 2016]

Discarding may allow previously deleted elements
to reappear

Determining the right level of
consistency

Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database

Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database

Challenge

Vanilla weak consistency often too weak to
preserve correctness

Need to strengthen consistency in parts of
the application

Deposits

§ §

O
oP |- [OPler(a) ,
[[OP]]vaI E
[oples(T)(T7)

[add(100)]ef(0) = AC’. (0" + 100)

Withdrawals

3 3

O
&I = [OP Jes(0) ,
[op]val E
[oples(T)(T7)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". 0" - 100) else (AC". C7)

Withdrawals

) 1}

O
&I = [OP Jes(0) ,
[op]val E
[oples(T)(T7)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". ¢" - 100) else (AC". C7)

Withdrawals

) 1}

O
&I = [OP Jes(0) ,
[op]val E
[oples(T)(T7)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". ¢" - 100) else (AC". C7)

Withdrawals

) 1}

O
&I = [OP Jes(0) ,
[op]val E
[oples(T)(T7)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". ¢" - 100) else (AC". 07)

g g

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

[withdraw(100)]es(0) =
if 0 = 100 then (AG’. G" - 100) else (AC". C7)

§

balance = 100
withdraw/(100) : J AO'.O" -
balance —

[withdraw(100)]es(0) =

if 0 > 100 then (AC". 0" -

§

balance = 100

Lwithdraw(100) : v/

—
balance = 0

100) else (AC”. 0)

2 2

balance = 100 balance = 100

/ /

withdraw(100) : ¢/

Ao’.o’ - 100 Lwithdraw(IOO) 4

(7
balance = 0

—>

balance = 0

balance = -100

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". C7)

2 2

balance = 100 balance = 100

withdraw(100) : ¢/ ANG'.0 - 100 4 withdraw(100) : ¢/ |
-« —>
balance = 0 balance = 0
D balance = -100
balance = 100

| add(100) : v/ |

§

balance = 100

withdraw(100) : ¢/

(7
balance = 0

2

balance = 100

add(100) : v/

§

balance = 100

Ao’.o’ - 100 Lwithdraw(IOO) 4

—
balance = 0

balance = -100

Tune consistency:
® Withdrawals strongly consistent

® Deposits eventually consistent

Strengthening consistency

add(100)

Vis Vis

withdraw(100) : ¢/ withdraw(100) : ¢/

® Baseline model: causal consistency

® Problem: withdrawals are causally independent

Strengthening consistency

add(100)

withdraw(100) : ¢/ withdraw(100) : ¢/

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEople) Xop(fl=>e—fvf—e

Strengthening consistency

add(100)

vis

withdraw(100) : ¥/ —————————— withdraw(100) : X

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEople) Xop(fl=>e—fvf—e

Strengthening consistency

add(100) add(100) add(100)

vis

withdraw(100) : ¥/ —————————— withdraw(100) : X

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEople) Xop(fl=>e—fvf—e

® No constraints on additions: =(add X op)

Strengthening consistency

add(100) add(100) add(100)

vis

withdraw(100) : ¥/ —————————— withdraw(100) : X

® |mplementation requires replicas executing withdraw()
to synchronise

® add() doesn't need synchronisation

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

2

balance = 100 (ﬂ

- —

withdraw(100) : ¢/

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 (ﬂ balance = 100

withdraw(100) : ¢/ |

withdraw(100) : ?

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 balance = 100

ithd 100 :t/l s
withdraw(100) (ﬂ

- —

withdraw(100) : ?

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

§ §

balance = 100 balance = 100

balance = 0

withdraw(100) : ?

Acquiring the lock requires bringing all operations the
replica holding it knows about

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 balance = 100

withdraw(100) : ¢/

)

- —

balance = 0

withdraw(100) : X

withdraw X withdraw: as if withdraw grabs an exclusive lock
(mutex) on the account

£ £

balance = 100 balance = 100

withdraw(100) : ¢/ § ~
|

G balance = 0
| add(100) | | withdraw(IOO):Xl

—(add X op): no locks,

so no synchronisation

Consistency choices

® Databases with multiple consistency levels:

» Commercial: Amazon DynamoDB, Microsoft
DocumentDB

» Research: Lit OSDI’'12;Terry* SOSP’ I 3;
Balegas* EuroSys’|5; Li* USENIXATC’I8

® Stronger operations require synchronisation between
replicas

® Pay for stronger semantics with latency, possible
unavailability and money

Consistency choices

Hard to figure out the minimum consistency level
necessary to maintain correctness

Reason about all possible abstract executions!?

» Abstract from some of implementation details, but
still describe behaviour of the whole system

» Number of possible executions is exponential: e.g.,
choices of vis = order of message deliveries

Need verification techniques that limit the exponential
blow-up

Verification problem

Given

® a set of operations: withdraw(), deposit(), ...

® 3 conflict relation: withdraw X withdraw

Do the operations always preserve a given
integrity invariant?

| = (balance = 0)

Verification problem

Given

® a set of operations: withdraw(), deposit(), ...

® 3 conflict relation: withdraw X withdraw

Do the operations always preserve a given
integrity invariant?

| = (balance = 0)

Later: operations =¥ whole transactions

O el «<—— Assume invariant holds

“op |

«<—— Check it’s preserved after
executing op

Single check: no state-space explosion from
concurrency

m H-Op.ﬂeff(()')

[oples(O)(C7) € 12

Effect applied in a different state!

H-Opﬂeff(()')

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". ")

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

! i

o=

m [opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal :=bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople(O)(C) € | 2

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

/

0)

~>

[ople#(O)(O7) € | ¢/

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

! i

o=

m H-opﬂeff(()')

o |P(a)?

~>

[ople#(O)(O7) € | ¢/

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

o€l
| op | [op (o) é, oy

[oples(T) = if P(O) then f(O) else if...

|. Effector safety: f(O) preserves | when executed
in any state satisfying P: {l A P} f(O) {l}

2. Precondition stability: P will hold when f(0) is
applied at any replica

o |P(a)?

op’s causal

® o
\O/Iependencies

o=

oo }

H-Opﬂeff(()')

P(o”)?

® e/ op’s causal
® / dependencies

o=

op

[opﬂeff(()')

P(o”)?

® Causal consistency =% receive op’s causal

dependencies before receiving op

® e/ op’s causal
® / dependencies

o= ® o

op [opﬂeff(()')

® Causal consistency =% receive op’s causal
dependencies before receiving op

® But can have additional effectors of
operations concurrent with op:f, g, ...

® Effectors commute, so 0 = (f; g;...)(O)

® e/ op’s causal
® / dependencies

Ocl ® o .
Op [opﬂeff(()') y
P(O)v —>

® Causal consistency =% receive op’s causal
dependencies before receiving op

® But can have additional effectors of
operations concurrent with op:f, g, ...

® Effectors commute, so 0 = (f; g;...)(O)

® e/ op’s causal
® / dependencies

oecl ® o .f o8
[op F——_ [0ply(o S
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

® e/ op’s causal
® / dependencies

add
el ® o (o
[op F——_ [0ply(o S
P(O)v ~> :

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal = 100} bal := bal+100 {bal = 100}

® e/ op’s causal
® / dependencies

add
el ® o (o
[op F——_ [0ply(o S
P(O)v ~> :

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal > 100}

® e/ op’s causal
® / dependencies
add

Oel ® o (o
| op | [op (o) ;, (01
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal :=bal+100 {bal = 100} ¢

op’s causal

® o
\O/Iependencies

o=

oo }

H-Opﬂeff(()')

withdraw'

P(o”)?

P(O)v

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal := bal-100 {bal = 100}

op’s causal

® o
\O/Iependencies

o=

oo }

H-opﬂeff(()')

withdraw'

P(o”)?

P(O)v

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal := bal-100 {bal = 100}

op’s causal

® o
\O/Iependencies

o=

oo }

H-opﬂeff(()')

withdraw'

P(o”)?

P(O)v

Precondition stability: P is preserved by any
effector f of any operation: {P} f {P}

{bal > 100} bal := bal+100 {bal = 100} ¢

{bal = 100} bal :=bal-100 {bal = 100} X

® e/ op’s causal
® / dependencies ___..o----seeeeeelll . .
~~~~~~~ withdraw

-
“
-
-
-
-
L
4
-
’4
L

e N>
s .
Op H-Opﬂeff(()')

P(O)v —>

withdraw' is a causal dependency of op

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw X withdraw; -(add X withdraw) ¢/




® e/ op’s causal
® / dependencies . ..------mmeeeeeilll b draw’
______________ withdraw
oel ..~ ° e/ e
[op f— I :
op Opﬂeff(()')

P(O)v —>

withdraw' delivered before op: causality violated

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw X withdraw; -(add X withdraw) ¢/




® e/ op’s causal
® /' dependencies | |
withdraw

O el ® o (o
[op F——_ [0ply(o S
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

withdraw X withdraw; -(add X withdraw) ¢/




® e/ op’s causal
® / dependencies | |
withdraw

Oel ® o (o
| op | [op (o) ;, (01
P(O)v —> :

Precondition stability: P is preserved by any
effector f of any non-conflicting operation: {P} f {P}

Only requires checking each pair of operations: no
exponential explosion!



® e/ op’s causal
® /' dependencies | |
withdraw

O el ® o (o
[op F——_ [0ply(o S
P(O)v —> :

Can infer the conflict relation X: op; X op2 if the
precondition of op| unstable under the effector of op»

Pre of withdraw under effector of add:

{bal = 100} bal := bal+100 {bal = 100} ¢/, no X



® e/ op’s causal
® /' dependencies | |
withdraw

O el ® o (o
[op F——_ [0ply(o S
P(O)v —> :

Can infer the conflict relation X: op; X op2 if the
precondition of op| unstable under the effector of op»

Pre of withdraw under effector of withdraw:

{bal > 100} bal := bal-100 {bal = 100} X, need X



Correct Eventual Consistency Tool

® Developed by Sreeja Nair (UPMC, Paris)

® Model application in a domain-specific language,
including replicated data type libraries

® Model compiled into a Boogie program encoding the
conditions of the proof rule

® Discharged using SMT

® Automatically infers a conflict relation

https://github.com/LightKone/correct-eventual-
consistency-tool



https://github.com/LightKone/correct-eventual-consistency-tool
https://github.com/LightKone/correct-eventual-consistency-tool

Demo



Transactions



Transactions

Fundamental abstraction in databases

Allow clients to group operations to be processed
indivisibly

Provided by virtually any single-node SQL database

NoSQL data stores: starting to reappear



\ J l :
: 1 : J

set.add(photo) set.read() > photo
reg.wrige(post) reg.reazl() %
N




\ J l :
: 1 : J

set.add(photo) > set.read() > photo
reg.wrige(post) > reg.reazl() .o X
N




i | l !
@ < U e« » A

l )

4 ) 4

set.add(photo) > set.read() > photo
reg.wrige(post) > reg.reazl() .o X

Causal consistency isn't enough



\ J l :
: 1 : J

set.add(photo) > set.read() > photo
reg.wrige(post) >reg.reazl() : post
e —




\ J l :
: 1 : J

set.add(photo) set.read() > photo
reg.wrige(post) reg.reazl() : post
e —




l )

E (’_\
& =

set.add(photo) set.read() > photo
reg.wrige(post) reg.reazl() : post

® Consistency model = set of histories (E, so, ~)



@ - ]

-

r

set.add(photo)

SO

reg.wri'ge(post)

] 3 A

l

)

set.read() > photo

SO

reg.reazl () : post

~N

® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive



g Hy 8 a

set.add(photo) set.read() > photo
reg.wrige(post) reg.reazl() : post

® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

® For simplicity, assume every transaction completes



s g gt a

set.add(photo) set.read() > photo
reg.wrige(post) reg.reazl() : post

® Consistency model = set of histories (E, so, ~)

® ~:equivalence relation that groups events from the
same transaction: transitive, symmetric, reflexive

® For simplicity, assume every transaction completes

® Transaction T: equivalence class of events of ~



: J
& U3

-

\_

~N

set.add(photo)

SO

reg.wrige(post)

< U A

l )

-

SO

-

set.add(photoZ)

\_

set.read() > photo

SO

reg.reazl () : post




L
g < U

-

set.add(photo)

SO

reg.wrige(post)

\—;J

SO

-

set.add(photoZ)

-

set.read() > photo

SO

reg.reazl () : post

A session is a sequence of
transactions: events from the same
transaction contiguous in so

SO> f SO

ve,f,ge E. e >gAe~g

—e~f~g



Strongly consistent transactions

Sequential consistency ~ serializability



Serializability operationally

set, reg

§

® Server with a single copy of all objects
® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)

@ /\ set, reg
£

® Server with a single copy of all objects
® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)

* set,reg

@©U

(ok, ok)

® Server with a single copy of all objects
® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)

@CL

(ok, ok)

set, reg

set.read()

reg.read()

A

® Server with a single copy of all objects

® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg.write(post)

@CL

(ok, ok)

set, reg

tx2

set.read()

reg.read()

RN

\/ t

({photo}, post)

® Server with a single copy of all objects

A

® C(Clients send txs to the server and wait for a reply

® Server processes txs atomically in the receipt order



Serializability operationally

set.add(photo)

reg write(post) set.read()

@ /\ set, reg regread()
(ok, ok) \/ .

({photo}, post)

tx2

Serializability = {H | 3 execution with history H produced
by the abstract implementation}



Sequential consistency

(E,so) | 3 total order to. (E, so, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to



Serializability

(E,so, ~) | 3 total order to. (E, so, ~, to) satisfies:

|. so C to

2. The return value of each operation in E is
computed from a state obtained by executing all
operations on the same object preceding it in to

3. Operations from the same transaction are
contiguous in to



& 3

/——_\

-

set.add(photo)

SO

reg.wrige(post)

—

SO

\4

-

set.add(photo2)

-

set.read() > photo

SO

reg.reazl () : post

Operations from the same
transaction are contiguous in to



g B

[

set.add(photo)

SO

reg.wrige(post)

SO

\4

[

set.add(photo2)

A

set.read() > photo

to SO

reg.reazl () : post

Operations from the same
transaction are contiguous in to



& 3

/——_\

-

set.add(photo)

SO

reg.wrige(post)

—

SO

\4

-

set.add(photo2)

-

set.read() > photo

to/~
_— 50

‘y

Operations from the same
transaction are contiguous in to

reg.reazl () : post

Induces a total to/~ on whole tx



Weakening consistency

® Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...



Weakening consistency

® Even single-node databases don't provide
serializability either by default or at all: read
committed, snapshot isolation, ...

® To better exploit single-node parallelism

set.add(photo)

reg.write(post)

set, reg
@ -~ N

,

(ok, ok)

tx |

tx2

TN
/\/

set.read()

reg.read()

A
4 )

({photo}, post)



Eventually consistent transactions

® Single-node consistency models also applicable in
distributed setting

® But many still require some synchronisation
between replicas: unavailability, high latency

® Want eventually consistent transactions: always
available, low latency

® Preserve some aspects of the invisibility
abstraction



System model recap

Database system consisting of multiple reliable
replicas

Each replica stores a copy of all objects of
replicated data types

Replicas can communicate via asynchronous
reliable channels



U ® A client connects to a replica and
¥ Issues transactions

( ™

X.write(post) ® High availability: the transaction

y.write(comment) commits immediately, without

x.read : post communication with other replicas,
N / no aborts!




§

-

\_

X.write(post)
y.write(comment)
x.read : post

r

L

x.read : post
y.read : comment

Y

® A client connects to a replica and
Issues transactions

® High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

® Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation



§

-

\_

X.write(post)
y.write(comment)
x.read : post

r

L

x.read : post
y.read : comment

A client connects to a replica and
Issues transactions

High availability: the transaction
commits immediately, without
communication with other replicas,
no aborts!

Replica processes transactions
sequentially: anomalies arising from
single-node concurrency covered by
the absence of inter-node
synchronisation

Reads are indivisible: access a fixed
snapshot of the database (plus own
writes)



§

4 N

X.write(post)
y.write(comment)
x.read : post

\_

Upon commit: send the
effectors of all tx operations
to other replicas together



L £ £

4 N
X.write(post) [ ]
y.write(comment) 3
x.read :post |
\_ ! .
i X.write(post)
. y.write(comment)
. "
é )
x.read : post
y.read : comment
\. Y,
Upon commit: send the Receive in between txs:
effectors of all tx operations incorporate all the

to other replicas together updates together



£ £

4 )
X.write(post) [ ]
y.write(comment) 3
x.read :post |
\. ! .
i X.write(post)
. y.write(comment)
® Writes are indivisible ) ’
® Reads are indivisible . .
. x.read :
® Readst+writes: no! post
y.read : comment
\. Y,
Upon commit: send the Receive in between txs:
effectors of all tx operations incorporate all the

to other replicas together updates together



Reads/writes indivisibility

- -
S 3 2 A
( set.add(photo) \ :

SO

reg.wrige(post) / §

set.read() > photo

SO

reg.reazl () : post

. Y




No reads+writes indivisibility

reg: last-writer-wins register, initially O

-

~N

v =reg.read() // 0

\_

SO

reg.write(v+ 1) /]|

-

~N

v =reg.read() // 0

)

\_

SO

reg.write(v+1) // |

)




No reads+writes indivisibility

reg: last-writer-wins register, initially O

-

v =reg.read() // 0

\_

SO

reg.write(v+ 1) /]|

~N

)

\

-

~N

v =reg.read() // 0

\_

reg.write(v+1) // |

SO

)

[

\_

reg.read() : |

\

/

W,




No reads+writes indivisibility

reg: last-writer-wins register, initially O

-

v =reg.read() // 0

\_

SO

reg.write(v+ 1) /]|

~N

J

\

-

~N

v =reg.read() // 0

\_

reg.write(v+1) // |

SO

)

[

\_

reg.read() : |

\

/

W,

Lost update anomaly



Use appropriate data type

counter: replicated counter, accumulates increments

initially O
counter.add(|) counter.add(|)

counter.read() : 2

\. S




Operational specification

® Eventual consistency with transactions = the set
of all histories produced by arbitrary client
interactions with the data type implementations
(with any allowed message deliveries)

® |mplies quiescent consistency: if no new updates
are made to the database, then replicas will
eventually converge to the same state



Axiomatic specification

® Serializability: operations from the same
transaction are contiguous in the total order to

® Approach: require the same of vis and ar



Serializability: (E, so, ~, to)

r

set.add(photo)

SO

reg.wri'ge(post)

-

Operations from the same transaction are contiguous in to:

.

set.read() > photo

SO

reg.reazl ():2

~N

¢ tO

Ve,f,e',f'.eoof/\e'~et—°>f~f'=>e —



Serializability: (E, so, ~, to)

r

set.add(photo)

SO

reg.wri'ge(post)

e

to

f

> set.read() > photo

Operations from the same transaction are contiguous in to:

SO

reg.reazl ():2

.

~N

¢ tO

Ve,f,e',f'.eoof/\e'~et—°>f~f'=>e —



Serializability: (E, so, ~, to)

r

set.add(photo)

SO

reg.wri'ge(post)

e

to

f

> set.read() > photo

to

SO

> reg.reazl ():o

Operations from the same transaction are contiguous in to:

f i

~N

¢ tO

Ve,f,e',f'.eoof/\e'~et—°>f~f'=>e —



Serializability: (E, so, ~, to)

r

set.add(photo)

SO

reg.wri'ge(post)

o

to

f

> set.read() > photo

to

SO

> reg.reazl() % X

Operations from the same transaction are contiguous in to:

f i

~N

¢ tO

Ve,f,e',f'.eoof/\e'~et—°>f~f'=>e —



Serializability: (E, so, ~, to)

-

set.add(photo)

SO

reg.wrige(post)

o

to

f

> set.read() > photo

to

SO

> reg.reazl() % X

Operations from the same transaction are contiguous in to:

f i

~N

Ve’f’e"f'- e'~et_o>f~f':>e'ti>



Serializability: (E, so, ~, to)

-

set.add(photo)

SO

reg.wrige(post)

o

to

f

> set.read() > photo

to

SO

Operations from the same transaction are contiguous in to:

> reg.reazl() % X

f i

~N

Ve’f’e"f'- e'~et_o>f~f':>e'ti>

to treats events in a transaction uniformly



Execution: (E, so, ~, vis, ar)

r

set.add(photo)

SO

reg.wri'ge(post)

-

.

set.read() > photo

SO

reg.reazl ():2

~N

vis, ar treat events in a transaction uniformly:

VIS

y VIS

ve,fe f.e~fre~e—>f~f=¢e —

vVe,fe' f.e~fre~e—-Sf~f=—= e <5

v ar



Execution: (E, so, ~, vis, ar)

r

set.add(photo)

SO

reg.wri'ge(post)

o

Vis

f

> set.read() > photo

SO

reg.reazl ():2

.

~N

vis, ar treat events in a transaction uniformly:

VIS

y VIS

ve,fe f.e~fAre~e —>Sf~f=¢e —

vVe,fe' f.e~fre~e—-Sf~f=—= e <5

v ar



Execution: (E, so, ~, vis, ar)

r

set.add(photo)

SO

reg.wri'ge(post)

o

Vis

f

> set.read() > photo

Vis

SO

> reg.reazl ():o

f i

~N

vis, ar treat events in a transaction uniformly:

VIS

y VIS

ve,fe f.e~fAre~e —>Sf~f=¢e —

vVe,fe' f.e~fre~e—-Sf~f=—= e <5

v ar



Execution: (E, so, ~, vis, ar)

r

set.add(photo)

SO

reg.wri'ge(post)

Vis

f

Vis

> set.read() > photo

SO

> reg.reazl() % X

f i

~N

vis, ar treat events in a transaction uniformly:

VIS

y VIS

ve,fe f.e~fAre~e —>Sf~f=¢e —

vVe,fe' f.e~fre~e—-Sf~f=—= e <5

v ar



Execution: (E, so, ~, vis, ar)

r

set.add(photo)

SO

reg.wri'ge(post)

o

Vis

f

Vis

> set.read() > photo

SO

> reg.reazl () : post

f i

~N

vis, ar treat events in a transaction uniformly:

VIS

y VIS

ve,fe f.e~fAre~e —>Sf~f=¢e —

vVe,fe' f.e~fre~e—-Sf~f=—= e <5

v ar



Execution: (E, so, ~, vis, ar)

-

set.add(photo)

SO

reg.wrige(post)

Vis

-

vis/~

Vis

vis, ar induce acyclic vis/~, ar/~ on whole txs:

vis/~

ar/~

TEISSe JeecTfeS. e - f

Vis

T —S<« 3JeclfeS.e—f

\_

> set.read() > photo

SO

> reg.reazl () : post

~N




Eventually consistent transactions

The set of histories (E, so, ~) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fype(obje))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

VIS

ve € E.e — f for all but finitely many f € E

® Transaction indivisibility:

VIS

ve,f,e . f.e - fA e ~e S, e f = e VS,

ve,f e f.e~fre~eH f~f—=¢ef



Define transactional variants
of other consistency models
by just adding prior axioms

Istent transactions

Serializability: vis = ar , SO, ~) such that for some vis, ar:

® Return values consistent with data type specs:

Ve € E.rval(e) = Fype(obje))(context(e))
® No causal cycles: so u vis is acyclic

e Eventual visibility:

ve € E.e X f for all but finitely many f € E

® Transaction indivisibility:

VIS

ve,fe fe~fre ~e S f~f—=—¢ Vs, ¢

ve,f e f.e~fre~eH f~f—=¢ef



Session guarantees

g E
! A so C vis '
set.add(photo)

SO

v
reg.write(post)
. y Transactions in the same
session only accumulate
So information
v
4 )

reg.read():?

. W




: |
& 3

Session guarantees

-

set.add(photo)

SO

reg.wrige(post)

SO vis

v

~N

\%_J

-

reg.read(): post

~N

—_—

so C vis l

Transactions in the same
session only accumulate
information



Causal consistency

(so U vis)* C vis I



Causal consistency

set.add(photo)

lso

reg.write(post)

\L Y

(so U vis)* C vis I



Causal consistency

set.add(photo)

lso

reg.write(post) _| Vs

\L Y

4 )

reg.read(): post

lso

reg2.write(comment)

. Y

(so U vis)* C vis I




Causal consistency

\_

lso

reg.write(post) _

set.add(photo)

Vis

-

Y,

\_

reg.read(): post

lso

reg2.write(comment)

W

(so U vis)* C vis I

Vis

-

\_

set.read():?

lso

reg2.read(): comment

)




Causal consistency

\_

lso

reg.write(post) _

set.add(photo)

Vis

-

Y,

\_

reg.read(): post

lso

reg2.write(comment)

W

(so U vis)* C vis I

Vis

Vis

.
vset.read(): ?

lso

reg2.read(): comment

)




Causal consistency

set.add(photo)

reg.write(post) _| Vs ( reg.read(): post \

lso

reg2.write(comment)

. Y

/

Vis oK’ ™
vset.read(): ?

(so U vis)* C vis I reg2.read(): comment

\_ .




Causal consistency

—

\_

set.add(photo)

lso

reg.write(post) _

Vis

Vis

-

Y,

\_

reg.read(): post

lso

reg2.write(comment)

W

(so U vis)* C vis I

Vis

Vis

/

(¥

\_

“set.read()  photo

lso

reg2.read(): comment

~N

J




Concurrent withdrawals

c: counter with decrements, initially 100

r A 4

v = c.read() v = c.read()
if (v=100) |=° if (v=100) |
c.subtract(100) c.subtract(100)

. Y, \.




Concurrent withdrawals

c: counter with decrements, initially 100

-

\_

v = c.read()

if (v=100)

SO

// 100

c.subtract(100) // 0

-

)

\_

v=c.read() // 100

if (v=100)

SO

c.subtract(100) // 0

)




Concurrent withdrawals

c: counter with decrements, initially 100

-

\_

v = c.read()

if (v=100)

SO

-

// 100

v=c.read() // 100

if (v=100) |s
C. subtract( 100) // O

C. subtract(IOO) /] OQ 9

Both transactions decremented successfully -
synchronisation needed!




Recap: strengthening consistency

withdraw(100) : ¢/ withdraw(100) : ¢/

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Recap: strengthening consistency

withdraw(100) : ¢/ ——————5 withdraw(100) : X

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., withdraw X withdraw

® Conflicting operations cannot be causally independent:

Vis

Ve, feEop(e) Xop(fl = e 25fvise



Strengthening transactions

(

\_

v = c.read()

if (v=100) l
c.subtract(100) // O

// 100

W

(

\_

v = c.read()

// 100
if (v=100) l s
c.subtract(100) // 0

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

v = c.read()

if (v=100) l

\_

c.subtract(100) // O

// 100

v = c.read()

if (v=100) l s

W

Vis

\_

>c.subtract(100) // 0

/1 100

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

v = c.read()

if (v=100) l

\_

c.subtract(100) // O

// 100

rd

Vis

v = c.read()

if (v=100) l s

W

Vis

\_

>c.subtract(100) // 0

/1 100

W

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

(

\_

v = c.read()

if (v=100) l
c.subtract(100) // O

// 100

rd

Vis

. X
v =c.read() // 100

if (v=100) l s

W

Vis

>c.subtract(100) // 0

. Y

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis

Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Strengthening transactions

(- ) (- )

c.add(100) c.add(100) ~(add X op)

® Baseline model: causal consistency

® Symmetric conflict relation on operations:
X € Op x Op, e.g., subtract X subtract

® Conflicting operations cannot be causally independent:

Vis Vis

Ve feEop(e) Xop(fl=>e—Ffvf—e



Recap: implementation

t] £

c.withdraw(100) : ¢/ c.withdraw(100) :?

® withdraw X withdraw: as if withdraw grabs an
exclusive lock on the account

® Acquiring the lock requires bringing all operations
the replica holding it knows about



Recap: implementation

2 H

c.withdraw(100) : ¢/ > c.withdraw(100) :?

® withdraw X withdraw: as if withdraw grabs an
exclusive lock on the account

® Acquiring the lock requires bringing all operations
the replica holding it knows about



Recap: implementation

2 H

c.withdraw(100) : ¢/ > c.withdraw(100) : X

® withdraw X withdraw: as if withdraw grabs an
exclusive lock on the account

® Acquiring the lock requires bringing all operations
the replica holding it knows about



Implementation for transactions

D subtract X subtract

(

v=cread() // 100
if (v=100)
‘' | c.subtract(100) // 0 V4

. .




Implementation for transactions

D subtract X subtract D

(

v=cread() // 100
if (v=100)
‘' | c.subtract(100) // 0 V4

. . . .

(" )




Implementation for transactions

D subtract X subtract U

(" ("

v=c.read() // 100 v=c.read() // 100
if (v=100)
‘s | c.subtract(100) // Of oz

. . . .




Implementation for transactions

D subtract X subtract D

(" ("

v=c.read() // 100 v =c.read() // 100
if (v=100) if (v=100)
‘s | c.subtract(100) // Of oz

. . . .




Implementation for transactions

D subtract X subtract D

v=c.read() // 100 v =c.read() // 100
if (v=100) if (v=100)
Q c.subtract(100) // O v c.subtract(100)




Implementation for transactions

U subtract X subtract U

v=c.read() // 100 v =c.read() // 100
if (v=100) i (v 100)
Q c.subtract(100) // O"‘/ c.subtract(100)

® Need to incorporate the effector of the previous transaction



(

)

Implementation for transactions

U subtract X subtract U

v=c.read() // 100 v=c.read() // 100
if (v=100) i (v 100)
c.subtract(100) // O"‘/ c.subtract(100) X

Need to incorporate the effector of t

ne previous transaction

Recall: transactions execute on a fixec

snapshot

Too late: effectors from other replicas only get applied in-

between transactions

Have to abort the transaction and re-execute it



Implementation for transactions

D subtract X subtract U A~

v=c.read() // 100
if (v=100)
c.subtract(100) // O v

® Need to incorporate the effector of the previous transaction

® Recall: transactions execute on a fixed snapshot

® TJoo late: effectors from other replicas only get applied in-
between transactions

® Have to abort the transaction and re-execute it



Implementation for transactions

D subtract X subtract U A~

(

\_

if (v=

c.subtract(100) // O v

L ———

(

v=c.read() // 100 v = c.read() /10

100)

. .

Need to incorporate the effector of t

Reca

ne previous transaction

|: transactions execute on a fixec

snapshot

Too late: effectors from other replicas only get applied in-
between transactions

Have to abort the transaction and re-execute it



Chosing X

Want to choose X to preserve application invariants

Previous proof rule for checking invariants applies

Instead of an effector of a single operation, consider
a sequential composition of effectors of all
operations in a transaction

Can also fix X so that it's easier to program: new

consistency models, disallowing some classes of
anomalies



Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:
Ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e



Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

v=c.read() // 100 v=c.read() // 100
if (v=100) l if (v=100) l
c.subtract(100) // 0 c.subtract(100) // 0




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

v=c.read() // 100 v=c.read() // 100
if (v=100) l if (v=100) l
c.subtract(100) // 0 . > c.subtract(100) // O




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

4 4

v=c.read() // 100 " v=c.read() // 100
if (v=100) l P if (v=100) l
c.subtract(100) // 0 > c.subtract(100) // O

Vis
\_ Y. \_ Y.




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No overdrafts:

4 ) 4 x
v=c.read() // 100 v=c.read() // 100

if (v=100) l P if (v=100) l
c.subtract(100) // 0 > c.subtract(100) // O

Vis
\_ Y. \_ Y.




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis Vis

— e —>fvf—e

® No lost updates:

-

lso

reg.write(v+l) // |

.

v=regread() //0

\

-

W,

.

v=reg.read() // 0

lso

reg.write(v+l) // |

W,




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

eVIS fvaIS e

® No lost updates:

-

lso

reg.write(v+l) // |

.

v=regread() //0

\

-

v=reg.read() // 0

lso

W,

Vis

>reg.write(v+1) // |

. Y




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® No lost updates:

v = reg.read()

lso

.

reg.write(v+l) // |

\

/10

~

Vis

-

v=reg.read() // 0

lso

W,

Vis

>reg.write(v+1) // |

. Y




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))

Vis

— e —>fvf—e

® No lost updates:

Vis

v = reg.read()

lso

\_

reg.write(v+l) // |

\

/10

~

Vis

v=reg.read() // 0

lso

W,

Vis

>reg.write(v+1) // |

\_

. X

W,




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Updates on different accounts can go in parallel:

v = reg.read()

lso

.

reg.write(v+l) // |

\

/10

W,

-

.

v=reg.read() //0

lso

reg.write(v+1) // |

W,




Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Visibility totally orders transactions updating the same
object = don't need replicated data types, don't need ar

set.add(l) - set.remove(l) —=> set.add(2)

Vis Vis Vis

set.read 0: {2}



Write-conflict detection

® Operations updating the same object conflict, so cannot
be causally independent:

ve, f € E. obj(e) = obj(f) A update(op(e)) A update(op(f))
— e X, fvfXs e

® Visibility totally orders transactions updating the same
object = don't need replicated data types, don't need ar

® Can use sequential data types: from now on just
sequential read-write registers



Transactional consistency zoo

Eventual consistency

!

Session guarantees

Causal consistency \
l Parallel Snapshot Isolation

Prefix consistency l

Serializability (/

Snapshot Isolation



Transactional consistency zoo

Eventual consistency

!

Session guarantees .
Causal consistency +
l write-conflict detection
Causal consistency \
l Parallel Snapshot Isolation

Prefix consistency \
Serializability N

Snapshot Isolation



Robustness



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database



Application correctness

® Does an application satisfy a particular correctness
property?

Integrity invariants: account balance is non-negative

® |s an application robust against a particular
consistency model?

Application behaves the same as when using a strongly
consistent database




Parallel shapshot isolation

® Database with only sequential read-write registers

® Assume there is an implicit transaction writing initial
values to all registers



PS| = the set of histories (E, so, ~) such that for some vis:

® No causal cycles: so u vis is acyclic

® Eventual visibility: ve € E. e Y5, ffor all but finitely many f € E

® Transaction indivisibility:

Ve,f,e','f'.eoof/\e'~ev_ls>f~f' ; el VIS

® C(Causality preservation: (so U vis)* C vis

® Write-conflict detection:

Ve, f € E. obj(e) = obj(f) A op(e) = write(-) rop(f) = write(-)
—e—fvf—e

® A read event returns the value written by the last preceding
write In vis



PS| = the set of histories (E, so, ~) such that for some vis:

® No causal cycles: so u vis is acyclic

® Eventual visibility: ve € E. e Y5, ffor all but finitely many f € E

® Transaction indivisibility:

Ve,f,e','f'.eoof/\e'~ev_ls>f~f' ; el VIS

® C(Causality preservation: (so U vis)* C vis

® Write-conflict detection:

Ve, f € E. obj(e) = obj(f) A op(e) = write(-) rop(f) = write(-)
—e—fvf—e

® A read event returns the value written by the last preceding
write In vis

Well-formed because of
write-conflict detection




Dekker example

x.write(1) y.write(l)

VIS SO SO VIS

vy vy
y.read(): 0 x.read(): O



Dekker example

U U

x.write( ) y.wrfte( )

SO VIS

vy
x.read(): 0

VIS SO

vy
y.read(): 0



Dekker example

x.write(1) y.write(l)

VIS SO SO VIS

vy vy
y.read(): 0 x.read(): O



Transactional Dekker = write skew

i x.write(1) \ ( y.write(l) )
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0




Transactional Dekker = write skew

( x.write( ) \ ( y.write(l) \
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0

Not serializable, allowed by transactional causal consistency
and parallel snapshot isolation



Transactional Dekker = write skew

i x.write(1) \ ( y.write(l) )
vis| | so SO Vis
\A 4 \A 4
y.read(): 0 x.read(): 0




Transactional Dekker = write skew

U

(- N 4 )

x.write(1) y.write(l)

vis| | so SO Vis
\A 4 \A 4

y.read(): 0 x.read(): 0




Independent reads of independent writes (IRIVV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO

v

y. rgad: 0 x.read: 0



Independent reads of independent writes (IRIVV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written

before y before x



Independent reads of independent writes (IRIWV)

Vis Vis
x.write() y.write(l) x.read: | y.read: |
SO SO
\ \
y.read: 0 x.read: 0
X written Y written
before y before x

Implementations: no causal dependency between the two writes
=¥ can be delivered in different orders at different replicas



Transactional IRIW = long fork

——

[x.write( I )J

ViS

|

VIS

y.write(l) " xread: |

\.

SO

\/
y.read: 0

y,

= \

\.

y.read: |

SO

\ 4
x.read: 0

y,




Transactional IRIW = long fork

VIS

VIS
/ e \ \
[prite(l)H y.write(l) x.read: | y.read: |

\.

SO

\/
y.read: 0

y,

\.

SO

\ 4
x.read: 0

y,

Not serializable, allowed by transactional causal consistency

and parallel snapshot isolation



Robustnhess

® |[s an application robust against a particular
consistency model?

Apbplication behaves the same as when using a strongly
consistent database

Application behaves the same whether using a PS| or
a serializable database: [Alprsi = [Alser




Robustnhess

® Application: set of transactional programs {Pi, ..., Pn}

tx lookup() { tx deposit(n) {
return acct.bal acct.bal += n

} }

» Every program can generate multiple transactions
at run time

» Simplification: every program is in its own session



Robustnhess

® Application: set of transactional programs {Pi, ..., Pn}

tx lookup() { tx deposit(n) {
return acct.bal acct.bal += n

} }

» Every program can generate multiple transactions
at run time

» Simplification: every program is in its own session

® Checking robustness via static analysis:
over-approximate the set of program behaviours



Application



Application

Vv PSI| execution




Application

Vv PSI| execution

3 serial execution



Application

Vv PSI| execution

3 serial execution

Each read returns the value written by the last write



Application
\ 4
s

E/~ |

Vv PSI| execution

to/~ I \ 4

3 serial execution [l]—»@—>

Each read returns the value written by the last write




First determine if a given PS| execution is serializable

Vv PSI| execution

to/~ l \ 4

.
3 serial execution T —{E]—>

Each read returns the value written by the last write




Build constraints on the serial order: relations on E/~ that
should be included into to/~ - transactional dependencies

E/~ |

Vv PSI| execution

to/~ | \ 4

.
3 serial execution T —>[E]—>

Each read returns the value written by the last write




Write-read dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

Wr

T L x.write(val) ] > [ x.read : val ] S

T 25 S <= S reads a value written by T



Write-read dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

Wr

T L x.write(val) J > [ x.read : val J S

to/~ I

T 25 S <= S reads a value written by T



Write-read dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

Wr

T L x.write(val) J > [ x.read : val J S

to/~ I

T 25 S <= S reads a value written by T

WwWr
T —S<T =+ S AT contains the most recent write of

an object x visible to a read from x in S according to vis



Write-write dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

T Lx.write(old) ] - [x.write(new)] S

WW
T — S < S overwrites a value written by T



Write-write dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

T Lx.write(old) J - [x.write(new)J S
to/~

WW
T — S < S overwrites a value written by T



Write-write dependency (wr)

Given a PSI execution (E, ~, vis) and T, S € E/~

WW

T L x.write(old) J > [x.write(new)J S

to/~

WW
T — S < S overwrites a value written by T

WW

T — S < T and S contain writes to the same
, vis/~

object xand T — S



Read-write dependency (rw)

T L x.read : old J AAREEEN [x.write(new)J S

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

/ [ x.write(old) ] Q
[

T L x.read : old J AAREEEN [x.write(new)] S

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

/ [ x.write(old) ] Q
[

T L x.read : old J < [x.write(new)] S

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

/ [ x.write(old) J Q
[

T L x.read : old ] < [x.write(new)J S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

wr [ x.write(old) J Q
/ |ww  |eol~]

T L x.read : old J < [x.write(new)J S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

wr [ x.write(old) ] Q
new ww to/ ~|
T L x.read : old f< [x.write(new)] S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Read-write dependency (rw)

/ [ x.write(old) J
[

T L x.read : old ] AN [x.write(new)J S
to/~

T ST # S A S overwrites a value read by T

rw wr WW
T—S<=T+FS5SA3Q0.Q—T AQ —S



Dependency graphs

® PS| execution (E, ~, vis) =¥
dependency graph (E/~, wr, ww, rw)

® Theorem: If the dependency graph is
acyclic, then the execution is serializable



If (wr U ww U wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] =»
the desired order to

wr U ww U Wr

l T ’l T, ’l T3 > oo to/~ =¥ to




If (wr U ww U wr) is acyclic, then there is a total order
on E/~ containing it [order-extension principle] =»
the desired order to

wr U ww U Wr

Each read returns the value written by the last write in to!?



T[ x.write(val) ] ™ >[ x.read :val ] S

wr . . .
T — S < T # S AT contains the most recent write of an object x

visible to a read from x in S according to vis

WWwW

T [ x.write(old) ] > [ x.write(new) J S

wWW , , , vis/~
T —> S < T and S contain writes to the same object xand T — S

/[ x.write(old) ]Q
lWW

T [ x.read : old ] AN [ x.write(new) ] S

T 5SeaT#5A3QQ 5TAQ S s



If the dependency graph (E/~, wr, ww, rw) of a PS| execution
(E, ~, vis) is acyclic, then the execution is serializable




If the dependency graph (E/~, wr, ww, rw) of a PS| execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs Py, P, ..., Pn

4

Set of all their PSI| executions (E, ~, vis)




If the dependency graph (E/~, wr, ww, rw) of a PS| execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs Py, P, ..., Pn

4

Set of all their PSI| executions (E, ~, vis)

4

Set of corresponding dependency graphs (E/~, wr, ww, rw)




If the dependency graph (E/~, wr, ww, rw) of a PS| execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs Py, P, ..., Pn

4

Set of all their PSI| executions (E, ~, vis)

4

Set of corresponding dependency graphs (E/~, wr, ww, rw)

4

Check wr u ww U wr is acyclic in each graph




If the dependency graph (E/~, wr, ww, rw) of a PSI execution
(E, ~, vis) is acyclic, then the execution is serializable

Transactional programs Py, P, ..., Pn

4

Set of all their PSI| executions (E, ~, vis)

4

Set of corresponding dependency graphs (E/~, wr, ww, rw)

4

Check wr u ww U wr is acyclic in each graph

Over-approximate the set of possible dependency
graphs from the program text




Static dependency graphs

tx lookup() {
return acct.bal

}

® Nodes: transactional programs

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

® Edges: over-approximations of dependencies wr#, ww#, rw#




Static dependency graphs

_ WWH rwH wr#

A
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr# }

® Nodes: transactional programs

® Edges: over-approximations of dependencies wr#, ww#, rw#

o T » S <> 3Ix. writes(T, x) A reads(T, x): over-approximated

by static analyses (or even by hand)



Static dependency graphs

_ WWH rwH wr#

A
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr# }

Nodes: transactional programs

Edges: over-approximations of dependencies wr#, ww#, rw#

T W—r#> S <> 3Ix. writes(T, x) A reads(T, x): over-approximated

by static analyses (or even by hand)

Represents an over-approximation of all dynamic dependency
graphs that can be produced by the programs



Dynamic dependency graph =¥ a subgraph of the static
dependency graph

_ wWwH rw#, wr#

’ .

"%
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal acct.bal += n

} wr# }




Dynamic dependency graph =¥ a subgraph of the static
dependency graph

_ wWwH rw#, wr#

"4
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal acct.bal += n

} wr# }




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

_ WWH rwH wr#

.
I )

tx deposit(n) {
acct.bal += n

Transactions arising from the same program map to the

same node




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

dependency graph
tx lookup() { | . ?ﬂ%"m.
return acct.bal €
} wr# }
Wwr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

tx lookup() { | . ?ﬂ%"m.
return acct.bal €
} wr# }
reads(x)
Wr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

reads(x) / writes(x)

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

Wwr

Edge in the dynamic graph =% corresponding edge in

the static graph




Dynamic dependency graph =¥ a subgraph of the static

dependency graph

tx lookup() {
return acct.bal

reads(x) / writes(x)

_ WWH rwH wr#
"y

tx deposit(n) {
acct.bal += n

}

Wwr

Cycle in the dynamic graph =¥ cycle in the static graph
If the static graph is acyclic, so is the dynamic one




We're considering PSI executions: jubgraph of the static
some cycles can't occur

_ WWH rwH wr#

’ .

"4
tx lookup() { | W' ., |tx deposit(n) {
return acct.bal | .. acct.bal += n
} wr }
reads(x) writes(x)
wr

Cycle in the dynamic graph =¥ cycle in the static graph
If the static graph is acyclic, so is the dynamic one



Wwr

T { x.write(val) J > { x.read : val J S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

WWwW

T | x.write(old) > | x.write(new) | S
| | | ]

T 25 S« T and S contain writes to the same object x

andT\ﬂ; S




Wwr

T { x.write(val) J > { x.read : val J S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

WWwW

T { x.write(old) J > {x.write(new)J S

T 25 S« T and S contain writes to the same object x

andT\ﬂ; S

wr U ww C vis/~ - acyclic



Wwr
>

T | x.write(val) x.read :val | S

WwWr . .
T—S<T # S AT contains the most recent write of an

object x visible to a read from x in S according to vis

ww
> | X

T | x.write(old) write(new) | S

T 25 S <= T and S contain writes to the same object x

andT\ﬂ; S

wr U ww C vis/~ - acyclic

PSI allows only cycles in (wr U ww U rw) with at
least one rw edge



_ WwWH rwH# wr#

a4
tx lookup() { | . rw#} tx deposit(n) {
return acct.bal | ___ . ______ acct.bal += n
} wr# }

wr U ww U Wr

Dynamic dependency graph =% a subgraph of the static
dependency graph



~WwWH rwH, wr#

.’ IN
4 LN

i A
tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | ___ . ______ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations



~WwWH rwH, wr#

. IN
4 LN

i A
tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | _____________ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations

® Enough to check no cycles in (wr u ww U rw) with =1 rw



~WwWH rwH, wr#

. IN
4 LN

i A
tx lookup() { | . rw#} tx deposit(n) {

return acct.bal | _____________ acct.bal += n
} wr# }

wr U ww U Wr

® Dynamic cycles with no rw edges aren't PS| =
don't represent robustness violations

® Enough to check no cycles in (wr u ww U rw) with =1 rw

® Enough to check no cycles in (wr# u ww# u rw#) with > | rw#



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

'w

[ x.read : old ] >£x.write(new)J
\/

(wr U ww)* C vis/~




Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

Wi C vis/~ [ x.write(old) J
lww C vis/~
[ x.read : old J — {x.write(new)}
\/

(wr U ww)* C vis/~



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

Wi C vis/~ [ x.write(old) J
lww C vis/~
[ x.read : old J — {x.write(new)}
\/

(wr U ww)* C vis/~



Tightening up the criterion

PS| allows only cycles in (wr u ww U wr) with
at least two distinct rw edges

4

If (wr U ww U wr) for a PSI execution contains a
cycle, then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects



Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

x.write( ) y.write(l)

y.read(): 0 x.read(): 0




Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
D

x.write( ) y.write(l)

y.read(): 0 x.read(): 0




Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write( ) y.write(l)

y.read(): 0 x.read(): 0




Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write(l) e rw(x) y.write(l)

y.read(): 0 x.read(): 0




Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

x.write(l) e rw(x) y.write(l)

y.read(): 0 »| x.read(): 0
\ y I"W()’) \ y




Transactional Dekker = write skew

(- )

x.write(0)

y.write(0)

vis/~ vis/~
wr(y) wr(x)
ww(X) ww(y)

4 ) 4 )

x.write(l) e rw(x) y.write(l)

y.read(): 0 »| x.read(): 0
\ y I"W()’) \ y

Cycle with 2 rw on different objects: allowed by PSI



Transactional IRIW = long fork

4 )
i | ) x.read : |
x.write()
N y y.read : 0
. /
4 )
i h y.read : |
y.write(l)
. y x.read : 0
. W,




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

N y y.read : 0

i te(l) h y.read : |
y.write , >

. ) Vvisl=wr(y) | x.read:0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

N J% Y°read ‘0

i te(l) h y.read : |
y.write . >

. ) Vvisl=wr(y) | x.read:0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

. J}(X)<\ y.read : 0 J

i o) h ) y.read : |

. pwrice(]) ) Vis/~ wr(y) ] x.read : 0




Transactional IRIW = long fork

i . 1 vis/~, wr(x) x.read : |
x.write() >

. J}(X)<\ y.read : 0 ,

i o) h ) y.read : |

. pwrice(]) ) Vis/~ wr(y) ] x.read : 0

Cycle with 2 rw on different objects: allowed by PSI



Lost update anomaly

x.write(0)
vis/~ vis/~

x.read: 0 x.read: 0

x.write(1) x.write()

vis& A/ ~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
x.read: 0 x.read: 0
x.write( ) x.write( )
vis& ‘A/ ~
{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read: 0 x.read: 0
x.write( ) x.write( )

Vi X‘ ‘A/"'

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read:0 |« "w) x.read: 0
x.write( ) x.write( )

Vi X‘ ‘A/"'

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)

x.read:0 |« "w) x.read: 0
x.write( ) w0 > x.write(l)

vi x vis/~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection



Lost update anomaly

x.write(0)
vis/~ vis/~
wr(X) wr(X)
ww(X) ww(X)
x.read:0 |« rwix) x.read: 0

x.write( ) w0 > x.write(l)

vis& vis/~

{ x.write(0) J

Not a valid PSI| execution: violates write-conflict detection

The 2 rw edges are due to the same object



Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

L WwwH rwH wr(acct)

"y
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}




Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

-

L WwwH rwH wr(acct)

s L2

"N
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}

No cycles in wr# u ww# u rw# with all rw# on different objects



Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

-

L WwwH rwH wr(acct)

s L2

"N
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}

No cycles in wr# u ww# u rw# with all rw# on different objects

—> no such cycles in wr U ww U rw



Static robustness criterion

If a dependency graph of a PSI| execution contains a cycle,
then it also contains one:

» with at least two rw edges, and

» where all rw edges are due to distinct objects

-

L WwwH rwH wr(acct)

s L2

"N
tx lookup() { _rwiacet) | ltx deposit(n) {
return acct.bal e acct.bal += n
} wr#(acct) |}

No cycles in wr# u ww# u rw# with all rw# on different objects

—> no such cycles in wr U ww U rw

—> application is serializable



Non-robustness

tx lookupAll() {
return acct[*].bal

}

{ deposit(l, €100)

[ deposit(2, €100)

_ WWH rwH wr (%)
"4

tx deposit(i, n) {
acct[i].bal += n

}

4 )

lookupAll :

/€100, 2/€0

\_ Y

4 )

lookupAll :
/€0, 2/€100

\_ Y




Automatic robustness checking

® Methods for other consistency models are similar

® Basis for practical tools [Warszawski et al.,
SIGMOD'17, Brutschy et al., PLDI' 8; Nagar et al,,
CONCUR'I 8]

® Static criterion on graphs sometimes used to
prune the search space before a more expensive
analysis with more semantic information

® Can be used for bug-finding in the absence of
specifications



Automatic robustness checking

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT

In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce annlications written in four lancuaces and

1 | def withdraw(amt, user_.id): (a)
2 bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal — amt, user_id)

1 | def withdraw(amt, user_.id): (b)
2 beginTxn()

3 bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal — amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 > $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation

levels at or below Read Committed, unless explicit locking such
ac SFI1 ECT EFOR I1IPDATE 1ic neced While thic ceenarin clocelv reo




Implementing strong consistency



Designing consistency protocols

® So far implementations have been lightweight:
"an operation can only be delivered after all its causal
dependencies”

® |n reality, designing consistency protocols and
proving them correct is very difficult!

® Even more so for strong consistency protocols



Strong consistency

@

c.withdraw(100) :? c.withdraw(100) :?

i



Strong consistency

(o %

c.withdraw(100) : ¢/ c.withdraw(100) :?

i

Sombody has to order commands



Strong consistency

Single server, clients send commands to the server



Strong consistency

1, "2, I3

Server totally orders commands and computes the
sequence of results



Strong consistency

cil, C2, C3

r"—_\
| |
W

1, "2, I3

Servers can crash! Need a fault-tolerant solution



State machine replication

‘ B
C2 7 G

y 4

C3, C2, C| ci, C2, C3 Cc2, Cl, C3
\ 1 ‘ ;
-« =

Clients send commands to all replicas
Replicas may receive commands in different orders




State machine replication

c2,Cl, C3 c2, Cl, C3 c2, Cl, C3

A distributed protocol totally order commands:
needs synchronisation



State machine replication

c2,Cl, C3 c2, Cl, C3 c2, Cl, C3

ry, I, I3 r, I, I3 r, I, I3

Operations are deterministic —
replicas compute the same sequence of results



State machine replication

Implements sequential consistency (in fact, linearizability)



State machine replication

c2,Cl, C3 c2, Cl, C3

r2, 't, I'3 2, ', I'3

SMR requires solving a sequence of consensus instances:
agree on the next command to execute



Consensus

Ci C2

£ . &

® Several nodes, which can crash

® Fach proposes a value



Consensus

> [X

® Several nodes, which can crash
® Fach proposes a value

® All non-crashed nodes agree on a single value



Consensus

C| C2 C3
l 1 \ l \ l
R ) el § 5 P X
B ¥ e »
C2 C2

® Challenge: asynchronous channels =
can't tell a crashed node from a slow one!

® Assume only a minority of nodes can crash:
a majority reach an agreement



The zoo of consensus protocols

® Viewstamped replication
(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)

® Fast Paxos (2006)

® Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The zoo of consensus protocols

® Viewstamped replication
(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)

® Fast Paxos (2006)

® Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The zoo of cg Complex protocols: constant
fight for better performance

® Viewstamped replication °

(1988)

® Paxos (1998)

® Disk Paxos (2003)

® Cheap Paxos (2004)

® Generalized Paxos (2004)
® Paxos Commit (2004)
Fast Paxos (2006)
Stoppable Paxos (2008)

Mencius (2008)

Vertical Paxos (2009)
ZAB (2009)

Ring Paxos (2010)
Egalitarian Paxos (201 3)
Raft (2014)

M2Paxos (2016)
Flexible Paxos (2016)
Caesar (2017)



The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [Computer-Communications Networks]: Distributed
Systems—Network operating systems; D4.5 [Operating Systems]: Reliability—Fault-tolerance;
J.1 [Administrative Data Processing]: Government

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.




The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Leslie Lamport

Abstract

The Paxos algorithm, when presented in plain English, is very simple.




The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Paxos Made Moderately Complex

ROBBERT VAN RENESSE and DENIZ ALTINBUKEN, Cornell University

This article explains the full reconfigurable multidecree Paxos (or multi-Paxos) protocol. Paxos is by no
means a simple protocol, even though it is based on relatively simple invariants. We provide pseudocode
and explain it guided by invariants. We initially avoid optimizations that complicate comprehension. Next
we discuss liveness, list various optimizations that make the protocol practical, and present variants of the
protocol.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Syst-
ems—Network operating systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms: Design, Reliability

Additional Key Words and Phrases: Replicated state machines, consensus, voting

ACM Reference Format:
Robbert van Renesse and Deniz Altinbuken. 2015. Paxos made moderately complex. ACM Comput. Surv. 47,

j‘ 3, Article 42 (February 2015), 36 pages.
DOI: http://dx.doi.org/10.1145/2673577




The Part- Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Paxos Made Moderately Complex

In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it 1s as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than

Paxos. Raft also includes a new mechanism for changing
the cliicter memberchin which neece overlannino maior -

to understand than Paxos: after learning both algorithms,

33 of these students were able to answer questions about

Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [27, 20]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leadership
than other consensus algorithms. For example, log en-
tries only flow from the leader to other servers. This
simplifies the management of the replicated log and
makes Raft easier to understand.

e Leader election: Raft uses randomized timers to elect
leaders. This adds only a small amount of mechanism

to the heartheate alreadv reanired for anv concanciic al



The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Paxos Made Simple

Paxos Made Moderately Complex

Abstract

Raft is a consensus algorithm for n
log. It produces a result equivalent t
it 1s as efficient as Paxos, but its ¢
from Paxos; this makes Raft more
Paxos and also provides a better fi
ing practical systems. In order to enh
ity, Raft separates the key elements ¢
leader election, log replication, and s
a stronger degree of coherency to re
states that must be considered. Resu
"|‘ demonstrate that Raft is easier for sl

Paxos. Raft also includes a new mec
= the cliicter memberchin which ncec

In Search of an Understandable Consensus Algorithm

Untortunately, Paxos has two significant drawbacks.
The first drawback is that Paxos is exceptionally diffi-
cult to understand. The full explanation [15] is notori-
ously opaque; few people succeed in understanding it, and
only with great effort. As a result, there have been several
attempts to explain Paxos in simpler terms [16, 20, 21].
These explanations focus on the single-decree subset, yet
they are still challenging. In an informal survey of atten-
dees at NSDI 2012, we found few people who were com-
fortable with Paxos, even among seasoned researchers.
We struggled with Paxos ourselves; we were not able to
understand the complete protocol until after reading sev-
eral simplified explanations and designing our own alter-

ns,
out

al-
red

hip




Paxos Made Live - An Engineering Perspective
(2006 Invited Talk)

Tushar Chandra, Robert Griesemer, and Joshua Redstone

Google Inc.

ABSTRACT

We describe our experience in building a fault-tolerant data-
base using the Paxos consensus algorithm. Despite the ex-
isting literature in the field, building such a database proved
to be non-trivial. We describe selected algorithmic and en-
gineering problems encountered, and the solutions we found
for them. Our measurements indicate that we have built a
competitive system.

Categories and Subject Descriptors

D.4.5 [Operating systems|: Reliability—Fault-tolerance;
B.4.5 [Input /output and data communications|: Reli-
ability, Testing, and Fault-Tolerance— Redundant design

General Terms

Experimentation, Performance, Reliability

Keywords

Experiences, Fault-tolerance, Implementation, Paxos

database is just an example. As a result, the consensus prob-
lem has been studied extensively over the past two decades.
There are several well-known consensus algorithms that op-
erate within a multitude of settings and which tolerate a
variety of failures. The Paxos consensus algorithm (8] has
been discussed in the theoretical [16] and applied commu-
nity [10, 11, 12] for over a decade.

We used the Paxos algorithm (“Paxos”) as the base for
a framework that implements a fault-tolerant log. We then
relied on that framework to build a fault-tolerant database.
Despite the existing literature on the subject, building a
production system turned out to be a non-trivial task for a
variety of reasons:

e While Paxos can be described with a page of pseudo-
code, our complete implementation contains several
thousand lines of C++ code. The blow-up is not due
simply to the fact that we used C++ instead of pseudo
notation, nor because our code style may have been
verbose. Converting the algorithm into a practical,
production-ready system involved implementing many

features and optimizations — some published in the lit-




Paxos Made Live - An Engineering Perspective
(2006 Invited Talk)

Tushar Chandra, Robert Griesemer, and Joshua Redstone

Google Inc.

e There are significant gaps between the description of /
the Paxos algorithm and the needs of a real-world sys-

: _ tem. In order to build a real-world system, an expert

base using the Paxos consensus algorithm. D . . . ‘

isting literature in the field, building such a day needs to use numerous ideas scattered in the literature

to be non-trivial. We describe selected algorit and make several relatively small protocol extensions.

gineering problems encountered, and the solut The cumulative effort will be substantial and the final

for them. Our measurements indicate that we system will be based on an unproven protocol.
competitive system. e -

ABSTRACT

We describe our experience in building a fault-

relied on that framework to build a fault-tolerant database.
Despite the existing literature on the subject, building a

D.4.5 [Operating systems|: Reliability—Fault-tolerance; production system turned out to be a non-trivial task for a
B.4.5 [Input /output and data communications|: Reli- variety of reasons:

ability, Testing, and Fault-Tolerance— Redundant design

Categories and Subject Descriptors

e While Paxos can be described with a page of pseudo-
code, our complete implementation contains several
thousand lines of C++ code. The blow-up is not due

General Terms

Experimentation, Performance, Reliability simply to the fact that we used C++ instead of pseudo
notation, nor because our code style may have been
Keywords verbose. Converting the algorithm into a practical,

production-ready system involved implementing many
features and optimizations — some published in the lit-

Experiences, Fault-tolerance, Implementation, Paxos




Paxos Made Live -
(20(

Tushar Chandra, Rot

ABSTRACT

We describe our experience in building a fault-tolera
base using the Paxos consensus algorithm. Despite
isting literature in the field, building such a databas
to be non-trivial. We describe selected algorithmic
gineering problems encountered, and the solutions v
for them. Our measurements indicate that we hav
competitive system.

Categories and Subject Descriptors

D.4.5 [Operating systems|: Reliability— Fault-tc
B.4.5 [Input /output and data communication
ability, Testing, and Fault-Tolerance— Redundant d

General Terms

Experimentation, Performance, Reliability

Keywords

Experiences, Fault-tolerance, Implementation, Paxos

5.1 Handling disk corruption

Replicas witness disk corruption from time to time. A
disk may be corrupted due to a media failure or due to an
operator error (an operator may accidentally erase critical
data). When a replica’s disk is corrupted and it loses its
persistent state, it may renege on promises it has made to
other replicas in the past. This violates a key assumption
in the Paxos algorithm. We use the following mechanism to
address this problem [14].

Disk corruptions manifest themselves in two ways. Either
file(s) contents may change or file(s) may become inacces-
sible. To detect the former, we store the checksum of the
contents of each file in the file?. The latter may be indis-
tinguishable from a new replica with an empty disk — we
detect this case by having a new replica leave a marker in
GFS after start-up. If this replica ever starts again with an
empty disk, it will discover the GFS marker and indicate
that it has a corrupted disk.

A replica with a corrupted disk rebuilds its state as fol-
lows. It participates in Paxos as a non-voting member;
meaning that it uses the catch-up mechanism to catch up
but does not respond with promise or acknowledgment mes-
sages. It remains in this state until it observes one complete
instance of Paxos that was started after the replica started
rebuilding its state. By waiting for the extra instance of
Paxos, we ensure that this replica could not have reneged
on an earlier nromise.

production-ready system involved implementing many
features and optimizations — some published in the lit-




Paxos Made Live -
(20(

Tushar Chandra, Rot

ABSTRACT

We describe our experience in building a fault-tolera
base using the Paxos consensus algorithm. Despite
isting literature in the field, building such a databas
to be non-trivial. We describe selected algorithmic
gineering problems encountered, and the solutions v
for them. Our measurements indicate that we hav
competitive system.

Categories and Subject Descriptors

D.4.5 [Operating systems|: Reliability— Fault-tc
B.4.5 [Input /output and data communication
ability, Testing, and Fault-Tolerance— Redundant d

General Terms

Experimentation, Performance, Reliability

Keywords

Experiences, Fault-tolerance, Implementation, Paxos

5.1 Handling disk corruption

Replicas witness disk corruption from time to time. A
disk may be corrupted due to a media failure or due to an
operator error (an operator may accidentally erase critical
data). When a replica’s disk is corrupted and it loses its
persistent state, it may renege on promises it has made to
other replicas in the past. This violates a key assumption
in the Paxos algorithm. We use the following mechanism to
address this problem [14].

Disk corruptions manifest themselves in two ways. Either
file(s) contents may change or file(s) may become inacces-
sible. To detect the former, we store the checksum of the
contents of each file in the file’. The latter may be indis-
tinguishable from a new replica with an empty disk — we
detect this case by having a new replica leave a marker in

GFS

empty| Broken [Michael et al., DISC'| 6]

that 1

A replica with a corrupted disk rebuilds its state as fol-
lows. It participates in Paxos as a non-voting member;
meaning that it uses the catch-up mechanism to catch up
but does not respond with promise or acknowledgment mes-
sages. It remains in this state until it observes one complete
instance of Paxos that was started after the replica started
rebuilding its state. By waiting for the extra instance of
Paxos, we ensure that this replica could not have reneged
on an earlier nromise.

production-ready system involved implementing many
features and optimizations — some published in the lit-




Another application: blockchain

c ® Blockchain = using consensus to agree

co on a sequence of blocks in a ledger

c3

) ® Tolerates malicious behaviour: some
nodes may deviate from the protocol

® Many protocols descended from
Paxos



EE @ Your account News  Sport  Weather Shop | Reel Travel Mor

NEWS

Home Video World UK Business Tech Science Stories Entertainment & Arts |

Technology

Facebook’s Libra pitches to be the future
of money

Rory Cellan-Jones
Technology correspondent

@BBCRoryCJ

)

© 18 June 2019

It is a hugely ambitious - some might say megalomaniacal - project to create
a new global currency. Facebook's David Marcus tells me it is about giving
billions of people more freedom with money and "righting the many wrongs
of the present system”.

The message is this is not some little side project a small team at the Facebook's



B|B|C

NEWS

Home Video World

@ Your account News Sport

Weather Shop Reel Travel Mor:

UK Business Tech Science Stories Entertainment & Arts |

Technology

Facebook’s Libra pitches to be the future

of mone

Rory G
L' Techng
Yy @BBC

© 18 June 2019

Itis a hugely ar1
a new global cu
billions of peop
of the present s

The message is |

[PODC'19]

HotStuff: BFT Consensus with Linearity and Responsiveness

Dahlia Malkhi

VMware Research

Maofan Yin

Cornell University
VMware Research

ABSTRACT

We present HotStuff, a leader-based Byzantine fault-tolerant repli-
cation protocol for the partially synchronous model. Once network
communication becomes synchronous, HotStuff enables a correct
leader to drive the protocol to consensus at the pace of actual (vs.
maximum) network delay—a property called responsiveness—and
with communication complexity that is linear in the number of
replicas. To our knowledge, HotStuff is the first partially synchro-
nous BFT replication protocol exhibiting these combined properties.
Its simplicity enables it to be further pipelined and simplified into
a practical, concise protocol for building large-scale replication
services.

CCS CONCEPTS

 Software and its engineering — Software fault tolerance; «
Security and privacy — Distributed systems security.

KEYWORDS

Byzantine fault tolerance; consensus; responsiveness; scalability;
blockchain

Michael K. Reiter
UNC-Chapel Hill
VMware Research

[ttai Abraham

VMware Research

Guy Golan Gueta

VMware Research

stabilization time (GST). In this model, n > 3f + 1 is required for
non-faulty replicas to agree on the same commands in the same
order (e.g., [12]) and progress can be ensured deterministically only
after GST [27].

When BFT SMR protocols were originally conceived, a typical
target system size was n = 4 or n = 7, deployed on a local-area net-
work. However, the renewed interest in Byzantine fault-tolerance
brought about by its application to blockchains now demands solu-
tions that can scale to much larger n. In contrast to permissionless
blockchains such as the one that supports Bitcoin, for example,
so-called permissioned blockchains involve a fixed set of replicas
that collectively maintain an ordered ledger of commands or, in
other words, that support SMR. Despite their permissioned nature,
numbers of replicas in the hundreds or even thousands are envi-
sioned (e.g., [30, 42]). Additionally, their deployment to wide-area
networks requires setting A to accommodate higher variability in
communication delays.

The scaling challenge. Since the introduction of PBFT [20], the
first practical BFT replication solution in the partial synchrony
model, numerous BFT solutions were built around its core two-



B|B|C

NEWS

Home Video World

@ Your account News Sport

Weather Shop Reel Travel Mor:

UK Business Tech Science Stories Entertainment & Arts |

Technology

Facebook’s Libra pitches to be the future

of mone

Rory G
L' Techng
Yy @BBC

© 18 June 2019

Itis a hugely ar1
a new global cu
billions of peop
of the present s

The message is |

[PODC'19]

HotStuff: BFT Consensus with Linearity and Responsiveness

Maofan Yin

Cornell University
VMware Research

Dahlia Malkhi

VMware Research

ABSTRACT

We present HotStuff, a leader-based Byzantine fault-tolerant repli-
cation protocol for the partially synchronous model. Once network
communication becomes synchronous, HotStuff enables a correct
leader to drive the protocol to consensus at the pace of actual (vs.
maximum) network delay—a property called responsiveness—and
with communication complexity that is linear in the number of
replicas. To our knowledge, HotStuff is the first partially synchro-
nous BFT replication protocol exhibiting - ‘
Its simplicity enables it to be further pi

a practical, concise protocol for build:
services.

CCS CONCEPTS

» Software and its engineering — Sc
Security and privacy — Distributed

KEYWORDS

Michael K. Reiter
UNC-Chapel Hill
VMware Research

[ttai Abraham

VMware Research

Guy Golan Gueta

VMware Research

stabilization time (GST). In this model, n > 3f + 1 is required for
non-faulty replicas to agree on the same commands in the same
order (e.g., [12]) and progress can be ensured deterministically only
after GST [27].

When BFT SMR protocols were originally conceived, a typical
target system size was n = 4 or n = 7, deployed on a local-area net-
work. However, the renewed interest in Byzantine fault-tolerance
brought about by its application to blockchains now demands solu-

| Lyipyiny |\ Npiy Ryiyipiigpiysy iy WgEp, i VSV iy T [ D _pa—" I,,ss

le,

ACKNOWLEDGMENTS as

We are thankful to Mathieu Baudet, Avery Ching, George Danezis,
Francois Garillot, Zekun Li, Ben Maurer, Kartik Nayak, Dmitri (-
Perelman, and Ling Ren, for many deep discussions of HotStuff,
and to Mathieu Baudet for exposing a subtle error in a previous
version posted to the ArXiv of this manuscript.

€

Byzantine fault tolerance; consensus; resMess; slcﬁia.blulty; first practical BFI replication solution n the p s ny

blockchain

model, numerous BFT solutions were built around its core two-



® 2f+| nodes,at most f can crash
® Fach node proposes a value

® All non-crashed nodes agree on a single value






Vi \"f) V3

l l l

l I 1 : 2 : : 3 :
-« = -« =

Acceptor ‘Acceptor' ‘Acceptor'

® Acceptors = members of parliament:
can vote to accept a value, majority (quorum) wins



Vi \"f) V3
R o

a5 2 3

 S— —

 S— —

‘Acceptor' ‘Acceptor' ‘Acceptor'
‘ Leader '

® Acceptors = members of parliament:
can vote to accept a value, majority (quorum) wins

® | eader = parliament speaker:
proposes its value to vote on

® Good for state-machine replication: can elect the leader
once and get it to process multiple commands



- - -
Leader ?

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority



= A - "5
Leader#: 2

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority



R ok R ™
I J J J
Leader#: 2 Leader#: 2

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority



R R B
- 2y
.« »

Leader#: 2 Leadert: 2 v/

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority



R o R o
LI » LZ 4

B B _
Leader#: 2 Leader#:2 v/

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



R Vo R
= A 5

Leader#: 2 Leader#:2 v/

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



R ok R
- %

Leader#: 2 Leader#:2 v/
Accepted: v;

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



@ ok )@ @

Leader#: 2 Leader#: 2 v/
Accepted: v, Accepted: v, vV

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



i
_» = =
Leader#: 2 Leader#: 2 v/

Accepted: v, Accepted: v, v/

Reply v to client

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



Leader#: 2 Leader#: 2 v/
Accepted: v, Accepted: v, v/
Reply v to client

® Phase |:a prospective leader convinces a quorum
of acceptors to accept its authority

® Phase 2:the leader gets a quorum of acceptors to
accept its value and replies to the client



Leader#: 3 Leader#: 2 v/ Leader#: 3 v/

Accepted: v3 Accepted: v, v/ Accepted: vz v/
Reply v2 to client  Reply v3 to client

® Problem: node 3 may wake up, form a quorum of
| and 3, and accept value v3



E:j -2 -3
< U < U

Leader#: 3 Leader#:2 ¢/ Leader#: 3 v/
Accepted: v3 Accepted: v, v/ Accepted: vz v/
Reply v2 to client  Reply v3 to client

® Problem: node 3 may wake up, form a quorum of
| and 3, and accept value v3

® Need to ensure once a value is chosen by a quorum,
it can’t be changed

® Use ballot numbers to distinguish different votes:
unique for each potential leader



: ; J
Leader#:? Leader#:? Leader#:?
Ballot#: 0 Ballot#: 0 Ballot#: 0
Accepted: ! Accepted: ! Accepted: !

® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller



| < : :
Leader#:? Leader#: 2 Leader#:?
Ballot#: 0 Ballot#: b Ballot#: 0
Accepted: ! Accepted: ! Accepted: !

® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller



LI | ok N Lz | L3 |
B _ B _ B
Leader#: 2 Leader#: 2 v/ Leader#: ?
Ballot#: b Ballot#: b Ballot#: 0
Accepted: ! Accepted: ! Accepted: !

® Phase |:a prospective leader choses a ballot b and
convinces a quorum of acceptors to switch to b

® Acceptor switches only if it’s current ballot is smaller



R o b. v R R o

UQ —2 9 -3

< U < U

Leader#: 2 Leader#: 2 v/ Leader#: ?

Ballot#: b Ballot#: b Ballot#: 0
Accepted: ! Accepted: v2(@b Accepted: !

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in



; OI( ! ; ! ;
E > | 2 : l 3 4
. » . »

Leader#: 2 Leader#: 2 v/ Leader#: ?
Ballot#: b Ballot#: b Ballot#: 0
Accepted: v2(@b Accepted: vo@b Accepted: !

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in



| ok | | | |
« W « W

Leader#: 2 Leader#: 2 v/ Leader#: !

Ballot#: b Ballot#: b Ballot#: 0

Accepted: v2(@b Accepted: vo@bv' Accepted:?
Reply v2 to client

® Phase 2: the leader sends its value tagged with its
ballot number

® Acceptor only accepts a value tagged with the
ballot it is in



I

Leader#: 2
Ballot#: b
Accepted: vo@b

E
R R
Leader#: 2 v/ Leader#:?
Ballot#: b Ballot#: 0

Accepted: vo@bv' Accepted:?
Reply v2 to client



- 25 5

_ _
Leader#: 2 Leader#: 2 v/ Leader#:?
Ballot#: b Ballot#: b Ballot#: 0

Accepted: vo(@b Accepted: vo@bv' Accepted:?
Reply v to client

® Need to ensure once a value is chosen by a quorum,
it can’t be changed

® Need do change Phase | to restrict which values
can be proposed



Leader#: 2 Leader#: 2 ¢/ Leader#: 3

Ballot#: b Ballot#: b Ballot#: b’ > b

Accepted: vo@b Accepted: v2@bv' Accepted:?
Reply v2 to client



ok, v2@b

_ . >

1 i -3

< U < U < U
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#:b" > b

Accepted: vo(@b Accepted: v2@bv' Accepted:?
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number



ok, v2@b

= - >
1 2 3
-« » -« » -« »
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number



ok, v2@b

— T
E R 2 xi
e e
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

® Phase |:acceptor sends to the prospective leader
its value and the ballot it was accepted at

® |f some acceptor has accepted a value, the leader
proposes the value accepted at the highest ballot
number

e Ensures the value chosen will not be changed —
nodes don't disagree about the chosen value



ok, v2@b

— I
P 25 -
Leader#: 3 Leader#: 2 v/ Leader#: 3
Ballot#: b’ Ballot#: b Ballot#: b’

Accepted: v2@b Accepted: v2@bVv'  Accepted: vo@b’
Reply v to client

Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot b’ > b will also propose v

e Ensures the value chosen will not be changed —
nodes don't disagree about the chosen value



Proof of the key invariant

® |nvariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v



Proof of the key invariant

Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v

Fix an execution of a protocol and assume that in this execution Q
accepted v(@b.



Proof of the key invariant

Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v

Fix an execution of a protocol and assume that in this execution Q
accepted v(@b.

We prove by induction on b’ that: for any b’ > b, leader(b”) may only
propose V.



Proof of the key invariant

Invariant: If a quorum Q accepted a value v at ballot b, then any leader
of a ballot b’ > b may only propose v

Fix an execution of a protocol and assume that in this execution Q
accepted v(@b.

We prove by induction on b’ that: for any b’ > b, leader(b”) may only
propose V.

Consider b” > b and assume leader(b’’) may only propose v if
b <b” <b’. We prove that leader(b’) may only propose v.



® Q accepted v@b
® b'>b

® |eader(b”) may only propose v if b < b"” < b’




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b

p couldn't accept v@b after voting for leader(b’): after voting, p joins b’
and rejects all messages with ballot b < b’




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b

p couldn't accept v@b after voting for leader(b’): after voting, p joins b’
and rejects all messages with ballot b < b’

p accepted v@b before voting for leader(b’)




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b

p couldn't accept v@b after voting for leader(b’): after voting, p joins b’
and rejects all messages with ballot b < b’

p accepted v@b before voting for leader(b’)

p's ballot when voting for leader(b’) is b, = b > 0, and it will reply with
v'@b, for some value v’




Q accepted v(@b
b’ > b

leader(b”) may only propose v if b < b” < b’

leader(b’) gets support from a quorum Q’ before proposing

QN Q'+ @ = 3 process p e Q N Q" which both voted for leader(b’)
and accepted v@b

p couldn't accept v@b after voting for leader(b’): after voting, p joins b’
and rejects all messages with ballot b < b’

p accepted v@b before voting for leader(b’)

p's ballot when voting for leader(b’) is b, = b > 0, and it will reply with
v'@b, for some value v’

leader(b’) can't propose its own value, has to pick one accepted at the
highest ballot bmax = b in the votes it got




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax = b:




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax = b:

® A leader makes a single proposal per ballot,and Q accepted v@Qb =
any vote v @bmax for leader(b’) must have v/ = v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax = b:

® A leader makes a single proposal per ballot,and Q accepted v@Qb =
any vote v @bmax for leader(b’) must have v/ = v

® |eader(b’) has to choose v, QED.




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

bmax > b:

® b < b’,since processes only vote for leaders of higher ballots




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots

® By induction hypothesis leader(bmax) could only propose v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v

® Processes that accepted a value at bmax could only accept v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v
® Processes that accepted a value at bmax could only accept v

® Any vote V' @bmax for leader(b’) must have v/ = v




® Q accepted v@b
® b'>b
® |eader(b”) may only propose v if b < b"” < b’

® bmax > b

brmax > b:

® b < b’,since processes only vote for leaders of higher ballots
® By induction hypothesis leader(bmax) could only propose v

® Processes that accepted a value at bmax could only accept v

® Any vote V' @bmax for leader(b’) must have v/ = v

® |eader(b’) has to choose v, QED.




Key invariant: If a quorum Q accepted a value v at ballot
b, then any leader of a ballot b’ > b will also propose v

Ensures nodes don't disagree about the chosen value




Multi-Paxos

State machine replication requires solving a sequence
of consensus instances

C3,C2, C ci, C2, C3




Multi-Paxos

State machine replication requires solving a sequence
of consensus instances

C3, C2, C| cil, C2, C3 c2, Ci, C3

® Naive solution: execute a separate Paxos instance
for each sequence element

® Multi-Paxos: execute Phase | once for multiple
sequence elements



Paxos verification

® | ots of work on formally verifying Paxos-like
protocols in theorem provers or semi-automatic

systems

® Fully automatic verification is an open problem



The end

® Spectrum of data consistency models in distributed
systems

® Downsides of weakening consistency can be
mitigated by verification techniques and
programming abstractions: replicated data types,
transactions

® Proving correctness of consistency protocols is a
verification challenge



