=h|_ EuroProofNet

Introduction to Proof System Interoperability

Frédéric Blanqui

Deducleam

r école

normale
7 supérieure

September 2022

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting

Dedukti language
Lambdapi proof assistant
Encoding logics in AI/R

Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Libraries of formal proofs today

Library Nb files | Nb objects*
Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000
Lean Mathlib 2,000 81,000

Mizar Mathlib 1,400 77,000
HOL-Light 500 35,000

* type, definition, theorem, ...

LOC
3500000

3000000

2500000

2000000

1500000

1000000

500000

Libraries of formal proofs today

Library Nb files | Nb objects*
Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000
Lean Mathlib 2,000 81,000
Mizar Mathlib 1,400 77,000
HOL-Light 500 35,000

* type, definition, theorem, ...

LOC
3500000

3000000
2500000
2000000
1500000
1000000
500000 I
0 --.-.l. | - | - |
&

FPL O B0 .0 N00 05,00 .20 M0N0
& P PO P o b 2 W P 8 R B3 R
FEECEES S B E S S e S S

e Every system has basic libraries on integers, lists, ...

e Some definitions/theorems are available in one system only

Libraries of formal proofs today

Library Nb files | Nb objects*
Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000
Lean Mathlib 2,000 81,000
Mizar Mathlib 1,400 77,000
HOL-Light 500 35,000

* type, definition, theorem, ...

LOC
3500000

3000000
2500000
2000000
1500000
1000000
500000 I
0 --.-.l. | - | - |
&

FPL O B0 .0 N00 05,00 .20 M0N0
& P PO P o b 2 W P 8 R B3 R
FEECEES S B E S S e S S

e Every system has basic libraries on integers, lists, ...

e Some definitions/theorems are available in one system only

=- Can't we translate a proof between two systems automatically?

Interest of proof interoperability

Avoid duplicating developments and losing time
Facilitate development of new proof systems
Increase reliability of formal proofs (cross-checking)
Facilitate validation by certification authorities
Relativize the choice of a system (school, industry)

Provide multi-system data to machine learning

Difficulties of interoperability

e Each system is based on different axioms and deduction rules

e |t is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)

Difficulties of interoperability

e Each system is based on different axioms and deduction rules

e |t is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)

e Is it reasonable to have n(n — 1) translators for n systems?

1 1

2 2
n(n—1)

3 3

Difficulties of interoperability

e Each system is based on different axioms and deduction rules

e |t is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)

e Is it reasonable to have n(n — 1) translators for n systems?

1 11 1
2 2 2\\ /2

n(n—1) \D/ 2n
3 3 37 §3

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for functional computations and dependent types

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for functional computations and dependent types

Better: D = All-calculus modulo rewriting (AM1/R)

allows one to represent also:
S5=HOL, S=Coq, S=Agda, S=PVS, ...

How to translate a proof t € A in a proof u € B?

In a logical framework D:

system A D(A) D(B) system B
1. translate t € Ain t' € D(A)

3. translate v’ € D(B) inu € B

How to translate a proof t € A in a proof u € B?

In a logical framework D:

system A D(A) D(B) system B

1. translate t € Ain t' € D(A)

2. identify the axioms and deduction rules of A used in t/
translate t' € D(A) in v’ € D(B) if possible

3. translate v’ € D(B) inu € B

How to translate a proof t € A in a proof u € B?

In a logical framework D:

system A D(A) D(B) system B

1. translate t € Ain t' € D(A)

2. identify the axioms and deduction rules of A used in t/
translate t' € D(A) in v’ € D(B) if possible

3. translate v’ € D(B) inu € B

= represent in the same way functionalities common to A and B

The modular Al/R theory U and its sub-theories
38 symbols, 28 rules, 13 sub-theories

P'rfCa =cy Ne, VC,VC, =N

0

succe
pred
positive

7,1, - fﬁ"’ %{g)

Dedukti, an assembly language for proof systems
implementing AI1/R

CubicalTT _ Nuprl?
FoCaliZe

Agda Lean - //
- Coq

Mizar?

: Zenon
. : ~— TSTP
Matita : ArchSAT
HOL Dedukti automated

vy T .
/"7 " Lambdapi ~— PVS —— provers
Isabelle | 1 Startmg Vampire, E, ...

CSPA proj"ec.t__ /
K "- AtelierB
TLAPS

Libraries currently available in Dedukti

System Libraries
HOL-Light OpenTheory

Matita Arith

Coq Stdlib parts, GeoCoq
Isabelle | HOL.Complex_Main ¥t (AFP soon?)
Agda Stdlib parts (£ 25%)

PVS Stdlib parts
TPTP E 69%, Vampire 83%

Case study:

Matita/Arith — OpenTheory, Coq, PVS, Lean, Agda

http://logipedia.inria.fr

Outline

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting

What is the All-calculus modulo rewriting?

AM/R =

+ 1
+R

simply-typed A-calculus
dependent types, e.g. Arrayn
identification of types modulo rewrites rules [< r

What is \-calculus?

introduced by Alonzo Church in 1932

the (untyped or pure) A-calculus is a general framework for
defining functional terms (objects or propositions)

initially thought as a possible foundation for logic
but turned out to be inconsistent

it however provided a foundation for computability theory
and functional programming !

What is \-calculus?

only 3 constructions:
e variables x, y, ...

e application of a term t to another term u, written tu

e abstraction over a variable x in a term t, written Ax, t
example: the function mapping x to 2x + 1 is written

Ax, +(*2x)1

a-equivalence

the names of abstracted variables are theoretically not significant:
Ax,+(%2x)1 denotes the same function as Ay, +(*2y)1
terms equivalent modulo valid renamings are said a-equivalent

in theory, one usually works modulo a-equivalence, that is, on
a-equivalence classes of terms (hence, one can always rename
some abstracted variables if it is more convenient)

= but, then, one has to be careful that functions and relations are
actually invariant by a-equivalence!. ..

in practice, dealing with a-equivalence is not trivial

= this gave raise to a lot of research and tools (still nowdays)!

Example: the set of free variables

a variable is free if it is not abstracted

the set F'V(t) of free variables of a term t is defined as follows:
e FV(x) = {x}

e FV(tu) =FV(t) UFV(u)

o FV(Ax,t) =FV(t) — {x}

one can check that F'V is invariant by a-equivalence:

if t = u then FV(t) = FV(u)

Substitution

a substitution is a finite map from variables to terms

o={(x1,t1),...,(Xn, tn)}

the domain of a substitution o is

dom(o) = {x € V| o(x) # x}
how to define the result of applying a substitution o on a term t?
e xo = o(x) if x € dom(o)
e xo = x if x ¢ dom(o)
o (tu)o = (to)(uo)
o (Ax,t)o = Ax, (to) 7 example: (Ax,y){(y,x)} =Ax,x ?

Substitution

a substitution is a finite map from variables to terms

o={(x1,t1),...,(Xn, tn)}
the domain of a substitution o is
dom(o) = {x € V| o(x) # x}

how to define the result of applying a substitution o on a term t?
e xo = o(x) if x € dom(o)

e xo = x if x ¢ dom(o)

o (tu)o = (to)(uo)

o (Ax,t)o = Ax, (to) 7 example: (Ax,y){(y,x)} =Ax,x ?

definition not invariant by a-equivalence ! Ax,y =, Az, y

Substitution

in A-calculus, substitution is not triviall

we must rename abstracted variables to avoid name clashes:
(Ax, t)o = Ay, (to’)

where o/ = oy U{(x,y)}, V=FV(A\x,t)and y ¢ V

Operational semantics: [-reduction

applying the term Ax, +(*2x)1 to 3 should return 7

this is the top S-rewrite relation:
(Ax, t)u —5 t{(x, u)}
the [-rewrite relation — 3 is the closure by context of —7:

toGu t—gu t—pu t—pu

t—=gu tv—guv Vvt—=gvu AX,t—g XU

let ~3 be the smallest equivalence relation containing — g

Properties of S-reduction

— 3 is confluent:

ift<—>g u and t<—>’[3 v,
then there is w s.t.
u <—>z w and v <—>,’§ w

in pure A-calculus

this means that the order of reduction steps does not matter

and every term has at most one normal form

Properties of S-reduction in pure A-calculus

— g does not terminate:

(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)

Properties of S-reduction in pure A-calculus

— g does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; i= (Ax, t(xx))(Ax, t(xx)):

Yt —>ﬁ th

Properties of S-reduction in pure A-calculus

— g does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; i= (Ax, t(xx))(Ax, t(xx)):
Ye =5 tY:

A-calculus is Turing-complete/can encode any recursive function

Properties of S-reduction in pure A-calculus

— g does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; i= (Ax, t(xx))(Ax, t(xx)):
Ye =5 tY:

A-calculus is Turing-complete/can encode any recursive function
a natural number n can be encoded as
AL Ax, Fx

where fOx = x and f""1x = f(f"x)

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A-calculus, every term is a function
= every term can be applied to another term, including itself!

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell's paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) we have RR —3 —(RR)

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell's paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) we have RR —3 —(RR)

proposals to overcome this problem:

e restrict comprehension axiom to already defined sets
use {x € A| P} instead of {x | P}
~> modern set theory

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell's paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) we have RR —3 —(RR)

proposals to overcome this problem:

e restrict comprehension axiom to already defined sets
use {x € A| P} instead of {x | P}
~> modern set theory

e organize terms into a hierarchy

— natural numbers are of type ¢ and propositions of type o
unary predicates/sets of natural numbers are of type ¢t — o
sets of sets of natural numbers are of type (¢« — 0) — o

~> modern type theory

Church simply-typed A-calculus

simple types:

AB=X€EVy,|A=B

e X is a user-defined type variable
e A — B is the type of functions from A to B

raw terms:

t,u=x¢€ Vopj | tu| Ax 1 At

Well-typed terms

a typing environment [is a finite map from variables to types

typing rules for terms:

(x,A) el
N=-x:A

lM~t:A—=B TrFu:A
N~tu:B

FrUu{(x,A)}Ft:B x¢dom(l)
NFXx:At:A— B

e xx is not typable anymore
e — 3 terminates on well-typed terms

e 3 preserves typing: if [=t:Aandt =g u, thenFu:A

Dependent types / All-calculus

a dependent type is a type that depends on terms
example: type (Array n) of arrays of size n

first introduced by de Bruijn in the Automath system in the 60's

types:
AB:=Xt...t,|Nx:AB

A — B is an abbreviation for lx : A, B when x ¢ FV(B)

example: concatenation function on arrays

concat: [p:N,Array p — g :N, Array g — Array(p + q)

Dependent types / Al-calculus

Harper,Honsell&Plotkin distinguish 4 syntactic classes for terms:

name definition type
KIND
kinds K TYPE | Mx : A K KIND
families A | X | At | Nx: AJA| Ax: A/A | kinds
objects t x| tt] A At families

this can be summarized as follows:
"t A: K :KIND"
kinds describe the types of families; they are of the form:
Mxi: Ag,...,Mx, : A,, TYPE
a family is like a function returning a type:

(An:N,Array n)2 —3 Array 2

Typing rules for typing environments

because types depend on terms, we now need typing rules for types!

a typing environnment is now a sequence of type declarations

Fr=0|rx:A|LX:K

“I' =" means that I is a well-typed environment:

N=A:TYPE x ¢ dom(IN) N K:XIND X ¢ dom(IN)
0 Mx:AF LX:Kk

Signatures X

a typing environment can be split in two parts:
1. a fixed part X representing global constants

2. a variable part I for local variables

Typing rules for kinds and families

kinds:

M= Nx:AF K:KIND
FTYPE:KIND [FTlx:A, K :KIND

families:
r- (X,K)erlr TI,x:AF B:TYPE
N=X:K N=Tlx: A, B : TYPE

Nx:AFB: K I'FA:Mx:B,K T+t:B
FEAx A B:Mx: A K M= At: K{(x,t)}

rNFA:K Koy KO TEK KIND
MrM=A: K’

Typing rules for objects

N (x,A)er
N=x:A

Nx:AFt:B
N=Xx:At:Tix: A B

N=t:Mx:AB TFu:A
M tu: B{(x,t)}

r-t:A Axg A THA :TYPE

MF=t: A

Properties of the All-calculus

types are equivalent: if (=t: Aand '~t: B then A~3 B
g terminates on well-typed terms

g preserves typing

type-inference A, I - t : A7 is decidable

type-checking I - t : A? is decidable

PTS presentation of Al (Barendregt)

terms and types:

t=x|tt|Ax:t,t|Mx:t,t|seS={TYPE KIND}

typing rules:
Nr-A:s = (x,A)er
0 T,x:AF FEx:A
. I+ J I'FA:TYPE [,x:AFB:s
(sort) T ype xmp (P09 FFMx:AB:s
MNx:AFt:B THMNx:AB:s TFt:Mx:AB TFu:A
NEXx:At:Nx:AB I tu: B{(x,u)}

FTEt:A Acg A THA s
M=t: A

Pure Type Systems (PTS)

I+ IFA:TYPE [,x:AFB:s

(sort) T ype xmp (P09 FMx:AB:s

the rules (sort) and (prod) can be generalized as follows:

I+ (51,52)6./4
r}—Sl)

(sort)

lFA:sy IMx:AFB:s ((51,52),53)677
METNx:AB:s3

(prod)

where:

e S is an arbitrary set of sorts

e A C S xS describes the types of sorts

e P C 82 x S describes the allowed products

Pure Type Systems (PTS)

many well-known type systems can be described as PTSs

examples with & = {TYPE,KIND} and .4 = {(TYPE,KIND)}:

feature product rule in P
simple types TYPE, TYPE, TYPE
polymorphic types | KIND, TYPE, TYPE
dependent types | TYPE,KIND,KIND
type constructors | KIND, KIND, KIND

the combination of all these rules is the calculus of constructions

remark: a PTS is functional if A and P are functions (e.g. CoC)
then types are unique modulo ~4

Universes

e a universe U is a type closed by exponentiation

A:U B:U
A—B:U

example: the sort TYPE of the simple types ¢, ¢t — o, ...

e universes are like inaccessible cardinals in set theory:

— an inaccessible cardinal is closed by set exponentiation
— a universe is closed by type exponentiation

More universes

e some math. constructions quantifies over the elements of Uy
= they need to inhabit a new universe U; containing Uy

e by iteration we get an infinite sequence of nested universes

A:U B:U
A— B: Umax(i,j)

U02U1:...U,':U,'+1...

available in some proof assistants like Coq, Agda, Lean

e PTS representation:
S = {TYPE; | i € N}
A = {(TYPE;, TYPE; ;1) | i € N}
P = {(TYPE;, TYPE;, TYPEay(ij)) | i, € N}

What is rewriting?

introduced at the end of the 60's (Knuth)
a rewrite rule | < r is an equation / = r used from left-to-right

rewriting simply consists in repeatedly replacing a subterm /o by ro
(rewriting is Turing-complete)

it can be used to decide equational theories:

given a set £ of equations, ~¢ is decidable
if there is a rewrite system R such that:

e —p terminates

e —p is confluent

o Mp =M

where <5 is the closure by context of R

AlN-calculus modulo rewriting (AI/R)

a theory in the All-calculus modulo rewriting is given by
e a signature

e a set R of rewrite rules on

such that:
e —3 U g terminates
e —g U g is confluent

e every rule | < r preserves typing: if T=/oc: AthenlFro: A

Outline

Dedukti language

Dedukti

Dedukti is a concrete language for defining Al1/R theories

There are several tools to check the correctness of Dedukti files:

e Kocheck https://github.com/01mf02/kontroli-rs
e Dkcheck https://github.com/Deducteam/dedukti
e Lambdapi https://github.com/Deducteam/lambdapi

Efficiency: Kocheck > Dkcheck > Lambdapi
Features: Kocheck < Dkcheck < Lambdapi

Dkcheck and Lambdapi can export All/R theories to:
e the HRS format of the confluence competition

e the XTC format of the termination competition
extended with dependent types

How to install and use Kocheck?

Installation:
cargo install —git https://github.com/01mf02/kontroli—rs
Use:

kocheck file.dk

How to install and use Dkcheck?

Installation:

Using Opam:

opam install dedukti

Compilation from the sources:

git clone https://github.com/Deducteam/dedukti.git
cd dedukti

make

make install

Use:

dk check file.dk

Dedukti syntax

BNF grammar:

https://github.com/Deducteam/Dedukti/blob/master/syntax.bnf
file extension: .dk
comments: (; ... (... ;)... ;)

identifiers:
(a-z|A-Z|0-9|_)+ and {| arbitrary string 1}

Type

id

id. id

term term ... term
id [: term] => term
[id :] term -> term
(term)

Terms

sort for types

variable or constant
constant from another file
application

abstraction

[dependent] product

Command for declaring/defining a symbol

modifier* id param* : term [:= term | .
param ::= (id : term)

modifier's:
e def: definable
e thm: never reduced
e AC: associative and commutative
e private: exported but usable in rule left-hand sides only

e injective: used in subject reduction algorithm

N : Type.

O : N.

s : N -> N.

def add : N -> N -> N.

thm add_com
x:N -> y:N -> Eq (add x y) (add y x) :=

Command for declaring rewrite rules

[id* 1 (term --> term)™ .

[x y]
x + 0 --> x
x + sy -->s8 (x + y).

Dkcheck tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Queries and assertions

INFER term .

#EVAL term .

(# ASSERT | # ASSERTNOT) term (:|==) term .
(# CHECK | # CHECKNOT) term (:|==) term .

#INFER O.
#EVAL add 2 2.

#ASSERT O : N.
#ASSERTNOT O : N — N.

#ASSERT add 2 2 =

= 4.
#ASSERTNOT add 2 2 =

= 5.

Importing the declarations of other files

filel.dk:

A : Type.

file2.dk:

#REQUIRE filel.
a : filel.A.

Outline

Lambdapi proof assistant

Lambdapi

Lambdapi is an interactive proof assistant for \[1/R

e has its own syntax and file extension .1p
e can read and output .dk files

e symbols can have implicit arguments

symbol declaration/definition generates typing/unification goals

goals can be solved by structured proof scripts (tactic trees)

Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi

User manual: https://lambdapi.readthedocs.io/

Libraries:
https://github.com/Deducteam/opam-lambdapi-repository

How to install Lambdapi?

Using Opam:

opam install lambdapi

Compilation from the sources:

git clone https://github.com/Deducteam/lambdapi.git
cd lambdapi

make

make install

How to use Lambdapi?

Command line (batch mode):

lambdapi check file.lp

Through an editor (interactive mode):
e Emacs
e VSCode

Lambdapi automatically (re)compiles dependencies if necessary

How to install the Emacs interface?

3 possibilities:
1. Nothing to do when installing Lambdapi with opam
2. From Emacs using MELPA:

M-x package-install RET lambdapi-mode

3. From sources:

make install_emacs

+ add in ~/.emacs:

(load)

Emacs interface

= emacs@blanqui-Latitude-5500
Fle gt Opions Suffers Toos Fymake Help

X [suse & kI E Q@ [@B]%

checked part

5 the fotlouing goat to prove:
RN

<—— edition buffer

el |
«~—— goals
= o i e

window layout
can be customized

a1/ tests /0 Logic. 1p
cats/0

S <«——— Mmessages

NS Fipegst Bot (16,6) (Fundamencal company)

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

How to install the VSCode interface?

From the VSCode Marketplace

VSCode interface

= tutoriallp - Visual Studio Code

301 builtin *T* = 7 0 Prf ((ze2z) =2)
32 builtin "eq” = = h k d 3
o checked part &
3 304 B = N x68: Nat, Prf ((z e x8) = x0) - Prf ((z e s x8) = s x0)

306 /* We now reprove our theorem on the inductive type Nat instead of N,
307 using the tactics “induction®, "reflexivity” and "rewrite*. i
308 To this end, we first need to define addition on Nat: +/ 7

310 symbol e i Nat = Nat = Natj
311 potation e infix right 10;
312 rule $x @ 2« $x

313 with $x e s 8y s ($x e 8y);

‘ goals

315 opaque symbol zero is neutral for e x : Prf(z e x =) =

317 induction
318 [[simplify; reflexivity; §

319 | { assure x hyp on x; simplify; rewrite hyp on x; reflexivity; }
320 end;
321

edition buffer =

rule ind Nat $9 $1$2 2 « $1
with ind_Nat $6 $1 $2 (s $3) « $2 $3 (ind_Nat $0 $1 $2 $3); (5]

I messages

ymbol + & N = = s
notation + infix right associative 10.000000;
rule 50 + 0 « 30
with $6 + succ $1 o succ ($0 + $1)

with 6+ 40 « $0;

TS e Lambd]

File lambdapi . pkg

developments must have a file lambdapi . pkg describing where to
install the files relatively to the root of all installed libraries

package_name = my_lib
root_path = logical.path.from.root.to.my_1ib

Importing the declarations of other files

lambdapi.pkg:

package_name = unary
root_path = nat.unary
filel.1lp:

symbol A : TYPE;

file2.1p:

require nat.unary.filel;
symbol a : nat.unary.filel.A;
open nat.unary.filel;

symbol a’ : A;

file3.1p:

require open nat.unary.filel nat.unary.file2;
symbol b = a;

Lambdapi syntax

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf
file extension: .1p
comments: /x ... /x... x/... ®/0Or // ...

identifiers: UTF16 characters and {| arbitrary string |}

TYPE

(id .)*id

term term ... term
Mid[: term], term
nid|[: term] , term
term — term

(term)

Terms

sort for types

variable or constant
application

abstraction

dependent product
non-dependent product

unknown term

let id [: term | := term in term

Command for declaring/defining a symbol

modifier* symbol id param™* [: term | [:= term | [begin proof end| ;

param = id |_|Cid ™t : term) |[id T : term]
implicit
parameters
modifier's:
e constant: not definable
® opaque: never reduced
® associative
® commutative
e private: not exported
® protected: exported but usable in rule left-hand sides only
® sequential: reduction strategy

e injective: used in unification

symbol
symbol
symbol
symbol

symbol

o

: N;
: N —> N;

Examples of symbol declarations

LY PES

: N—- N — N;

: N> N — N;

notation + infix right 10;

notation X infix right 20;

Command for declaring rewrite rules

rule term — term (with term — term)* ;

pattern variables must be prefixed by $:

rule $x + 0 — $x
with $x + s $y = s ($x + $y);

Lambdapi tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Command for adding rewrite rules

Lambdapi supports:

overlapping rules

rule $x + 0 — $x
with $x + s $y — s ($x + $y)
with 0 + $x — $x
with s $x + $y — s ($x + $y);

matching on defined symbols
rule ($x + $y) + $z — $x + ($y + $z);

non-linear patterns

rule $x - $x — 0;

Lambdapi tries to automatically check:

local confluence (AC symbols/HO patterns not handled yet)

Higher-order pattern-matching

symbol R:TYPE;

symbol O:R;

symbol sin:R — R;

symbol cos:R — R;

symbol D:(R — R) — (R — R);

rule D (A x, sin $F.[x])

— X x, D $F.[x] X cos $F.[x];
rule D (X x, $V.[1)

> XA x, 0;

Non-linear matching

Example: decision procedure for group theory

symbol G
symbol 1
symbol

symbol

rule
with
with
with
with
with
with
with
with
with

($x
1 -
$x
inv
$x
inv
$x
inv
inv
inv

inv

TYPE;

G;

G —> G — G; notation

$y)
$x —
1 —
$x
inv
$x
(inv
1 —1
(inv

($x

G — G;

$z — $x - ($y
$x
$x
$x — 1
$x — 1
($x - $y) — $y
$x - $y) — 8y

$x) — $x
$y) — inv $y

infix 10;

$z)

inv $x;

Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id* F term (: |E) term ;

print +; // print type and rules too
print N; // print constructors and induction principle

type X;
compute 2 X 5;

assert 0 : N;
assertnot 0 : N — N;

assert x y z F x +y X z=x+ (y X 2);
assertnot x y z F x + y X z = (x +y) X z;

Reducing proof checking to type checking

(aka the Curry-Howard isomorphism)

// type of propostitions
symbol Prop : TYPE;
symbol = : N —- N — Prop; notation = infix 1;

// interpretation of propostitions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop — TYPE;

// ezamples of azioms
symbol refl x : Prf(x = x);
symbol s-mon x y : Prf(x = y) — Prf(s x = s y);
symbol ind_N (p : N — Prop)
(case_0: Prf(p 0))
(case_s: Nl x : N, Prf(p x) — Prf(p(s x)))
(n : N) : Prf(p n);

Stating an axiom vs Proving a theorem

Stating an axiom:

opaque symbol O_is_neutral_for_+ x : Prf (0 + x
// mno definition given now
// one can still be given later with a rule

Proving a theorem:

opaque symbol O_is_neutral_for_+ x : Prf (0 + x
// generates the typing goal Prf (0 + z = z)
// a proof must be given now
begin
// proof script
end ;

x);

X)

Goals and proofs

symbol declarations/definitions can generate:
e typing goals x1: AL, ..., Xp ApE 7B

e unification goals x1:A1, ..., xpApFt=u
these goals can be solved by writing proof 's:

proof ::= (proof_step ;)*
proof_step ::= tactic ({ proof })*

e a proof is a ;-separated sequence of proof_step 's

e a proof_step is a tactic followed by as many proof's enclosed in
curly braces as the number of goals generated by the tactic

tactic 's for unification goals:

e solve (applied automatically)

Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/0K/tutorial.lp

opaque symbol O_is_neutral_for_+ x : Prf(0 + x = x) =
begin
induction
{reflexivity;}
{assume x h; simplify; rewrite h; reflexivity;}
end;

Tactics for typing goals

e simplify [id]
® refine term
— assume id™"
— generalize id
— apply term
— induction
— have id : term
— reflexivity
— symmetry
— rewrite [right] [pattern] term like Coq SSReflect

® why3 calls external prover

Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily
define inductive-recursive types in Dedukti or Lambdapi:

// lists without duplicated elements
constant symbol L : TYPE;
symbol ¢ : N — L — Prop; notation ¢ infix 20;

constant symbol nil : L;
constant symbol cons x 1 : Prf(x ¢ 1) — L;

rule _ ¢ nil — T
with $x ¢ comns $y $1 _ — $x # $y A $x ¢ $1;

Command for generating induction principles

(currently for strictly positive parametric inductive types only)

inductive N : TYPE =0 : N | s : N — N;

is equivalent to:

symbol N : TYPE;
symbol 0 : N;
symbol s : N — N;
symbol ind_N (p : N — Prop)
(case_0: Prf(p 0))
(case_s: Il x : N, Prf(p x) — Prf(p(s x)))
(n : N) : Prf(p n);
rule ind_N $p $cO0 $cs 0 — $cO
with ind_N $p $c0 $cs (s $x)
— $cs $x (ind_N $p $c0 $cs $x)

Example of inductive-inductive type

/% contexts and types in dependent type theory
Forsberg’s 2013 PhD thesis */

// contexts

inductive Ctx : TYPE =
| O : Ctx

| - : Ty I = Ctx

// types

with Ty : Ctx — TYPE =

| Ur : Tyl

| PIMNa: Ty (- T a) Ty I;

Lambdapi’s additional features wrt Dkcheck /Kocheck

Lambdapi is an interactive proof assistant for \[1/R

e has its own syntax and file extension 1p

e can read and output dk files

e supports Unicode characters and infix operators

e symbols can have implicit arguments

e symbol declaration/definition generates typing/unification goals
e goals can be solved by structured proof scripts (tactic trees)
e provides a rewrite tactic similar to Coq/SSReflect

e can call external (first-order) theorem provers

e provides a command for generating induction principles

e provides a local confluence checker

e handles associative-commutative symbols differently

e supports user-defined unification rules

Exercise for next lecture

e install https://github.com/Deducteam/lambdapi
e have a look at https://lambdapi.readthedocs.io/
e and the tutorial tests/0K/tutorial.lp

