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Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000
Lean Mathlib 2,000 81,000
Mizar Mathlib 1,400 77,000
HOL-Light 500 35,000

. . . . . . . . .

LOC

∗ type, definition, theorem, . . .

• Every system has basic libraries on integers, lists, . . .

• Some definitions/theorems are available in one system only

⇒ Can’t we translate a proof between two systems automatically?



Interest of proof interoperability

• Avoid duplicating developments and losing time

• Facilitate development of new proof systems

• Increase reliability of formal proofs (cross-checking)

• Facilitate validation by certification authorities

• Relativize the choice of a system (school, industry)

• Provide multi-system data to machine learning



Difficulties of interoperability

• Each system is based on different axioms and deduction rules

• It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)



Difficulties of interoperability

• Each system is based on different axioms and deduction rules

• It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)

• Is it reasonable to have n(n − 1) translators for n systems?

1

2

3

4

1

2

3

4

n(n − 1)
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• Each system is based on different axioms and deduction rules

• It is usually non trivial and sometimes impossible to translate a
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A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for functional computations and dependent types



A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for functional computations and dependent types

Better: D = λΠ-calculus modulo rewriting (λΠ/R)

allows one to represent also:
S=HOL, S=Coq, S=Agda, S=PVS, . . .



How to translate a proof t ∈ A in a proof u ∈ B?

In a logical framework D:

t
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1. translate t ∈ A in t ′ ∈ D(A)

3. translate u′ ∈ D(B) in u ∈ B
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How to translate a proof t ∈ A in a proof u ∈ B?

In a logical framework D:

t

system A

u

system BD(A) D(B)

t’
1

u’
32

1. translate t ∈ A in t ′ ∈ D(A)

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D(A) in u′ ∈ D(B) if possible

3. translate u′ ∈ D(B) in u ∈ B

⇒ represent in the same way functionalities common to A and B



The modular λΠ/R theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories



Dedukti, an assembly language for proof systems
implementing λΠ/R

Dedukti

AtelierB
TLAPS

starting
ICSPA project

K

Isabelle

HOL

Matita

Agda Lean

CubicalTT

Coq

FoCaLiZe

Zenon
ArchSAT TSTP

Lambdapi PVS

automated
provers

Vampire, E, . . .

Nuprl?

Mizar?



Libraries currently available in Dedukti

System Libraries

HOL-Light OpenTheory
Matita Arith
Coq Stdlib parts, GeoCoq

Isabelle HOL.Complex Main (AFP soon?)

Agda Stdlib parts (± 25%)
PVS Stdlib parts
TPTP E 69%, Vampire 83%

Case study:

Matita/Arith −→ OpenTheory, Coq, PVS, Lean, Agda

http://logipedia.inria.fr
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What is the λΠ-calculus modulo rewriting?

λΠ/R =
λ simply-typed λ-calculus

+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ,→ r



What is λ-calculus?

introduced by Alonzo Church in 1932

the (untyped or pure) λ-calculus is a general framework for
defining functional terms (objects or propositions)

initially thought as a possible foundation for logic
but turned out to be inconsistent

it however provided a foundation for computability theory
and functional programming !



What is λ-calculus?

only 3 constructions:

• variables x , y , . . .

• application of a term t to another term u, written tu

• abstraction over a variable x in a term t, written λx , t

example: the function mapping x to 2x + 1 is written

λx ,+(∗2x)1



α-equivalence

the names of abstracted variables are theoretically not significant:

λx ,+(∗2x)1 denotes the same function as λy ,+(∗2y)1

terms equivalent modulo valid renamings are said α-equivalent

in theory, one usually works modulo α-equivalence, that is, on
α-equivalence classes of terms (hence, one can always rename
some abstracted variables if it is more convenient)

⇒ but, then, one has to be careful that functions and relations are
actually invariant by α-equivalence!. . .

in practice, dealing with α-equivalence is not trivial

⇒ this gave raise to a lot of research and tools (still nowdays)!



Example: the set of free variables

a variable is free if it is not abstracted

the set FV(t) of free variables of a term t is defined as follows:

• FV(x) = {x}
• FV(tu) = FV(t) ∪ FV(u)

• FV(λx , t) = FV(t)− {x}

one can check that FV is invariant by α-equivalence:

if t =α u then FV(t) = FV(u)



Substitution

a substitution is a finite map from variables to terms

σ = {(x1, t1), . . . , (xn, tn)}

the domain of a substitution σ is

dom(σ) = {x ∈ V | σ(x) ̸= x}

how to define the result of applying a substitution σ on a term t?

• xσ = σ(x) if x ∈ dom(σ)

• xσ = x if x /∈ dom(σ)

• (tu)σ = (tσ)(uσ)

• (λx , t)σ = λx , (tσ) ? example: (λx , y){(y , x)} = λx , x ?



Substitution

a substitution is a finite map from variables to terms

σ = {(x1, t1), . . . , (xn, tn)}

the domain of a substitution σ is

dom(σ) = {x ∈ V | σ(x) ̸= x}

how to define the result of applying a substitution σ on a term t?

• xσ = σ(x) if x ∈ dom(σ)

• xσ = x if x /∈ dom(σ)

• (tu)σ = (tσ)(uσ)

• (λx , t)σ = λx , (tσ) ? example: (λx , y){(y , x)} = λx , x ?

definition not invariant by α-equivalence ! λx , y =α λz , y



Substitution

in λ-calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:

(λx , t)σ = λy , (tσ′)

where σ′ = σ|V ∪ {(x , y)}, V = FV(λx , t) and y /∈ V



Operational semantics: β-reduction

applying the term λx ,+(∗2x)1 to 3 should return 7

this is the top β-rewrite relation:

(λx , t)u →ε
β t{(x , u)}

the β-rewrite relation →β is the closure by context of →ε
β :

t →ε
β u

t →β u

t →β u

tv →β uv

t →β u

vt →β vu

t →β u

λx , t →β λx , u

let ≃β be the smallest equivalence relation containing →β



Properties of β-reduction in pure λ-calculus

→β is confluent:

if t ,→∗
β u and t ,→∗

β v ,

then there is w s.t.
u ,→∗

β w and v ,→∗
β w

∀t

∀u ∀v

∃w

this means that the order of reduction steps does not matter

and every term has at most one normal form
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→β does not terminate:
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Properties of β-reduction in pure λ-calculus

→β does not terminate:

(λx , xx)(λx , xx) →β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt →β tYt



Properties of β-reduction in pure λ-calculus

→β does not terminate:

(λx , xx)(λx , xx) →β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt →β tYt

λ-calculus is Turing-complete/can encode any recursive function



Properties of β-reduction in pure λ-calculus

→β does not terminate:

(λx , xx)(λx , xx) →β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt →β tYt

λ-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as

λf , λx , f nx

where f 0x = x and f n+1x = f (f nx)



On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!
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On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!

Russell’s paradox: with R :={x | x /∈ x} we have R∈R and R /∈R
λ-calculus: with R := λx ,¬(xx) we have RR →β ¬(RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets
use {x ∈ A | P} instead of {x | P}

; modern set theory

• organize terms into a hierarchy

– natural numbers are of type ι and propositions of type o
– unary predicates/sets of natural numbers are of type ι → o
– sets of sets of natural numbers are of type (ι → o) → o
– . . .

; modern type theory



Church simply-typed λ-calculus

simple types:

A,B := X ∈ Vtyp | A → B

• X is a user-defined type variable

• A → B is the type of functions from A to B

raw terms:

t, u := x ∈ Vobj | tu | λx : A, t



Well-typed terms

a typing environment Γ is a finite map from variables to types

typing rules for terms:

(x ,A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ tu : B

Γ ∪ {(x ,A)} ⊢ t : B x /∈ dom(Γ)

Γ ⊢ λx : A, t : A → B

• xx is not typable anymore

• →β terminates on well-typed terms

• →β preserves typing: if Γ ⊢ t : A and t →β u, then Γ ⊢ u : A



Dependent types / λΠ-calculus

a dependent type is a type that depends on terms

example: type (Array n) of arrays of size n

first introduced by de Bruijn in the Automath system in the 60’s

types:
A,B := X t1 . . . tn | Πx : A,B

A → B is an abbreviation for Πx : A,B when x /∈ FV(B)

example: concatenation function on arrays

concat : Πp :N, Array p → Πq :N, Array q → Array(p + q)



Dependent types / λΠ-calculus

Harper,Honsell&Plotkin distinguish 4 syntactic classes for terms:

name definition type

KIND

kinds K TYPE | Πx : A,K KIND

families A X | At | Πx : A,A | λx : A,A kinds

objects t x | tt | λx : A, t families

this can be summarized as follows:

′′t : A : K : KIND′′

kinds describe the types of families; they are of the form:

Πx1 : A1, . . . ,Πxn : An, TYPE

a family is like a function returning a type:

(λn : N, Array n) 2 ,→β Array 2



Typing rules for typing environments

because types depend on terms, we now need typing rules for types!

a typing environnment is now a sequence of type declarations

Γ := ∅ | Γ, x : A | Γ,X : K

“Γ ⊢” means that Γ is a well-typed environment:

∅ ⊢
Γ ⊢ A : TYPE x /∈ dom(Γ)

Γ, x : A ⊢
Γ ⊢ K : KIND X /∈ dom(Γ)

Γ,X : K ⊢



Signatures Σ

a typing environment can be split in two parts:

1. a fixed part Σ representing global constants

2. a variable part Γ for local variables



Typing rules for kinds and families

kinds:
Γ ⊢

Γ ⊢ TYPE : KIND

Γ, x : A ⊢ K : KIND

Γ ⊢ Πx : A,K : KIND

families:
Γ ⊢ (X ,K ) ∈ Γ

Γ ⊢ X : K

Γ, x : A ⊢ B : TYPE

Γ ⊢ Πx : A,B : TYPE

Γ, x : A ⊢ B : K

Γ ⊢ λx : A,B : Πx : A,K

Γ ⊢ A : Πx : B,K Γ ⊢ t : B

Γ ⊢ At : K{(x , t)}

Γ ⊢ A : K K ≃β K ′ Γ ⊢ K ′ : KIND

Γ ⊢ A : K ′



Typing rules for objects

Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

Γ, x : A ⊢ t : B

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , t)}

Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : TYPE

Γ ⊢ t : A′



Properties of the λΠ-calculus

• types are equivalent: if Γ ⊢ t : A and Γ ⊢ t : B then A ≃β B

• ,→β terminates on well-typed terms

• ,→β preserves typing

• type-inference ∃A, Γ ⊢ t : A? is decidable

• type-checking Γ ⊢ t : A? is decidable



PTS presentation of λΠ (Barendregt)

terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S = {TYPE, KIND}

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢

Γ ⊢ TYPE : KIND
(prod)

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s

Γ ⊢ Πx : A,B : s

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′



Pure Type Systems (PTS)

(sort)
Γ ⊢

Γ ⊢ TYPE : KIND
(prod)

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s

Γ ⊢ Πx : A,B : s

the rules (sort) and (prod) can be generalized as follows:

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

where:

• S is an arbitrary set of sorts

• A ⊆ S × S describes the types of sorts

• P ⊆ S2 × S describes the allowed products



Pure Type Systems (PTS)

many well-known type systems can be described as PTSs

examples with S = {TYPE, KIND} and A = {(TYPE, KIND)}:

feature product rule in P
simple types TYPE, TYPE, TYPE

polymorphic types KIND, TYPE, TYPE
dependent types TYPE, KIND, KIND
type constructors KIND, KIND, KIND

the combination of all these rules is the calculus of constructions

remark: a PTS is functional if A and P are functions (e.g. CoC)
then types are unique modulo ≃β



Universes

• a universe U is a type closed by exponentiation

A : U B : U

A → B : U

example: the sort TYPE of the simple types ι, ι → o, . . .

• universes are like inaccessible cardinals in set theory:

– an inaccessible cardinal is closed by set exponentiation
– a universe is closed by type exponentiation



More universes

• some math. constructions quantifies over the elements of U0

⇒ they need to inhabit a new universe U1 containing U0

• by iteration we get an infinite sequence of nested universes

U0 : U1 : . . .Ui : Ui+1 . . .
A : Ui B : Uj

A → B : Umax(i ,j)

available in some proof assistants like Coq, Agda, Lean

• PTS representation:

S = {TYPEi | i ∈ N}
A = {(TYPEi , TYPEi+1) | i ∈ N}
P = {(TYPEi , TYPEj , TYPEmax(i ,j)) | i , j ∈ N}



What is rewriting?

introduced at the end of the 60’s (Knuth)

a rewrite rule l ,→ r is an equation l = r used from left-to-right

rewriting simply consists in repeatedly replacing a subterm lσ by rσ
(rewriting is Turing-complete)

it can be used to decide equational theories:

given a set E of equations, ≃E is decidable
if there is a rewrite system R such that:

• ,→R terminates

• ,→R is confluent

• ≃R = ≃E
where ,→R is the closure by context of R



λΠ-calculus modulo rewriting (λΠ/R)

a theory in the λΠ-calculus modulo rewriting is given by

• a signature Σ

• a set R of rewrite rules on Σ

such that:

• ,→β ∪ ,→R terminates

• ,→β ∪ ,→R is confluent

• every rule l ,→ r preserves typing: if Γ ⊢ lσ : A then Γ ⊢ rσ : A
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Dedukti

Dedukti is a concrete language for defining λΠ/R theories

There are several tools to check the correctness of Dedukti files:

• Kocheck https://github.com/01mf02/kontroli-rs

• Dkcheck https://github.com/Deducteam/dedukti

• Lambdapi https://github.com/Deducteam/lambdapi

Efficiency: Kocheck > Dkcheck > Lambdapi
Features: Kocheck < Dkcheck < Lambdapi

Dkcheck and Lambdapi can export λΠ/R theories to:

• the HRS format of the confluence competition

• the XTC format of the termination competition
extended with dependent types



How to install and use Kocheck?

Installation:

ca rgo i n s t a l l −−g i t h t t p s : // g i t hub . com/01mf02/ k o n t r o l i −r s

Use:

kocheck file.dk



How to install and use Dkcheck?

Installation:

Using Opam:

opam install dedukti

Compilation from the sources:

git clone https :// github.com/Deducteam/dedukti.git

cd dedukti

make

make install

Use:

dk check file.dk



Dedukti syntax

BNF grammar:
https://github.com/Deducteam/Dedukti/blob/master/syntax.bnf

file extension: .dk

comments: (; ... (; ... ;)... ;)

identifiers:
(a-z|A-Z|0-9| )+ and {| arbitrary string |}



Terms

Type sort for types
id variable or constant
id.id constant from another file
term term . . . term application
id [: term ] => term abstraction
[id :] term -> term [dependent] product
( term )



Command for declaring/defining a symbol

modifier* id param * : term [:= term ] .
param ::= ( id : term )

modifier’s:

• def: definable

• thm: never reduced

• AC: associative and commutative

• private: exported but usable in rule left-hand sides only

• injective: used in subject reduction algorithm

N : Type.

0 : N.

s : N -> N.

def add : N -> N -> N.

thm add_com :

x:N -> y:N -> Eq (add x y) (add y x) := ...



Command for declaring rewrite rules

[ id * ] (term --> term )+ .

[x y]

x + 0 --> x

x + s y --> s (x + y).

Dkcheck tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)



Queries and assertions

# INFER term .

# EVAL term .

(# ASSERT | # ASSERTNOT) term (:|==) term .

(# CHECK | # CHECKNOT) term (:|==) term .

#INFER 0.

#EVAL add 2 2.

#ASSERT 0 : N.

#ASSERTNOT 0 : N → N.

#ASSERT add 2 2 == 4.

#ASSERTNOT add 2 2 == 5.



Importing the declarations of other files

file1.dk:

A : Type.

file2.dk:

#REQUIRE file1.

a : file1.A.
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Lambdapi

Lambdapi is an interactive proof assistant for λΠ/R

• has its own syntax and file extension .lp

• can read and output .dk files

• symbols can have implicit arguments

• symbol declaration/definition generates typing/unification goals

• goals can be solved by structured proof scripts (tactic trees)

• . . .



Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi

User manual: https://lambdapi.readthedocs.io/

Libraries:
https://github.com/Deducteam/opam-lambdapi-repository



How to install Lambdapi?

Using Opam:

opam install lambdapi

Compilation from the sources:

git clone https :// github.com/Deducteam/lambdapi.git

cd lambdapi

make

make install



How to use Lambdapi?

Command line (batch mode):

lambdapi check file.lp

Through an editor (interactive mode):

• Emacs

• VSCode

Lambdapi automatically (re)compiles dependencies if necessary



How to install the Emacs interface?

3 possibilities:

1. Nothing to do when installing Lambdapi with opam

2. From Emacs using MELPA:

M-x package -install RET lambdapi -mode

3. From sources:

make install_emacs

+ add in ~/.emacs:

(load "lambdapi-site-file")



Emacs interface

edition buffer

goals

messages window layout
can be customized

checked part

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html



How to install the VSCode interface?

From the VSCode Marketplace



VSCode interface

edition buffer

goals

messages

checked part



File lambdapi.pkg

developments must have a file lambdapi.pkg describing where to
install the files relatively to the root of all installed libraries

package_name = my_lib

root_path = logical.path.from.root.to.my_lib



Importing the declarations of other files

lambdapi.pkg:

package_name = unary

root_path = nat.unary

file1.lp:

symbol A : TYPE;

file2.lp:

require nat.unary.file1;

symbol a : nat.unary.file1.A;

open nat.unary.file1;

symbol a’ : A;

file3.lp:

require open nat.unary.file1 nat.unary.file2;

symbol b := a;



Lambdapi syntax

BNF grammar:
https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

file extension: .lp

comments: /* ... /* ... */... */ or // ...

identifiers: UTF16 characters and {| arbitrary string |}



Terms

TYPE sort for types
(id .)*id variable or constant
term term . . . term application
λ id [: term ] , term abstraction
Π id [: term ] , term dependent product
term → term non-dependent product
( term )

_ unknown term
let id [: term ] := term in term



Command for declaring/defining a symbol

modifier* symbol id param * [: term ] [:= term ] [begin proof end] ;

param = id | _ |( id + : term ) |[ id + : term ]

implicit
parameters

modifier’s:

• constant: not definable

• opaque: never reduced

• associative

• commutative

• private: not exported

• protected: exported but usable in rule left-hand sides only

• sequential: reduction strategy

• injective: used in unification



Examples of symbol declarations

symbol N : TYPE;

symbol 0 : N;

symbol s : N → N;

symbol + : N → N → N; notation + infix right 10;

symbol × : N → N → N; notation × infix right 20;



Command for declaring rewrite rules

rule term ,→ term (with term ,→ term )* ;

pattern variables must be prefixed by $:

rule $x + 0 ,→ $x
with $x + s $y ,→ s ($x + $y);

Lambdapi tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)



Command for adding rewrite rules

Lambdapi supports:

overlapping rules

rule $x + 0 ,→ $x
with $x + s $y ,→ s ($x + $y)
with 0 + $x ,→ $x
with s $x + $y ,→ s ($x + $y);

matching on defined symbols

rule ($x + $y) + $z ,→ $x + ($y + $z);

non-linear patterns

rule $x - $x ,→ 0;

Lambdapi tries to automatically check:

local confluence (AC symbols/HO patterns not handled yet)



Higher-order pattern-matching

symbol R:TYPE;

symbol 0:R;

symbol sin:R → R;

symbol cos:R → R;

symbol D:(R → R) → (R → R);

rule D (λ x, sin $F.[x])
,→ λ x, D $F.[x] × cos $F.[x];

rule D (λ x, $V.[])
,→ λ x, 0;



Non-linear matching

Example: decision procedure for group theory

symbol G : TYPE;

symbol 1 : G;

symbol · : G → G → G; notation · infix 10;

symbol inv : G → G;

rule ($x · $y) · $z ,→ $x · ($y · $z)
with 1 · $x ,→ $x
with $x · 1 ,→ $x
with inv $x · $x ,→ 1

with $x · inv $x ,→ 1

with inv $x · ($x · $y) ,→ $y
with $x · (inv $x · $y) ,→ $y
with inv 1 ,→ 1

with inv (inv $x) ,→ $x
with inv ($x · $y) ,→ inv $y · inv $x;



Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id * ⊢ term (: |≡) term ;

print +; // print type and rules too

print N; // print constructors and induction principle

type ×;
compute 2 × 5;

assert 0 : N;

assertnot 0 : N → N;

assert x y z ⊢ x + y × z ≡ x + (y × z);

assertnot x y z ⊢ x + y × z ≡ (x + y) × z;



Reducing proof checking to type checking
(aka the Curry-Howard isomorphism)

// type of propositions

symbol Prop : TYPE;

symbol = : N → N → Prop; notation = infix 1;

// interpretation of propositions as types

// (Curry -Howard isomorphism)

symbol Prf : Prop → TYPE;

// examples of axioms

symbol refl x : Prf(x = x);

symbol s-mon x y : Prf(x = y) → Prf(s x = s y);

symbol ind_N (p : N → Prop)

(case_0: Prf(p 0))

(case_s: Π x : N, Prf(p x) → Prf(p(s x)))

(n : N) : Prf(p n);



Stating an axiom vs Proving a theorem

Stating an axiom:

opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x);

// no definition given now

// one can still be given later with a rule

Proving a theorem:

opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x) :=
// generates the typing goal Prf (0 + x = x)

// a proof must be given now

begin

... // proof script

end;



Goals and proofs

symbol declarations/definitions can generate:

• typing goals x1 : A1, . . . , xn : An ⊢ ? : B

• unification goals x1 : A1, . . . , xn : An ⊢ t ≡ u

these goals can be solved by writing proof ’s:

proof ::= (proof step ;)*
proof step ::= tactic ({ proof })*

• a proof is a ;-separated sequence of proof step ’s

• a proof step is a tactic followed by as many proof ’s enclosed in
curly braces as the number of goals generated by the tactic

tactic ’s for unification goals:

• solve (applied automatically)



Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

opaque symbol 0_is_neutral_for_+ x : Prf(0 + x = x) :=
begin

induction

{reflexivity ;}

{assume x h; simplify; rewrite h; reflexivity ;}

end;



Tactics for typing goals

• simplify [id ]

• refine term

– assume id+

– generalize id
– apply term
– induction

– have id : term
– reflexivity

– symmetry

– rewrite [right] [pattern] term like Coq SSReflect

• why3 calls external prover



Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily
define inductive-recursive types in Dedukti or Lambdapi:

// lists without duplicated elements

constant symbol L : TYPE;

symbol /∈ : N → L → Prop; notation /∈ infix 20;

constant symbol nil : L;

constant symbol cons x l : Prf(x /∈ l) → L;

rule _ /∈ nil ,→ ⊤
with $x /∈ cons $y $l _ ,→ $x ̸= $y ∧ $x /∈ $l;



Command for generating induction principles
(currently for strictly positive parametric inductive types only)

inductive N : TYPE := 0 : N | s : N → N;

is equivalent to:

symbol N : TYPE;

symbol 0 : N;

symbol s : N → N;

symbol ind_N (p : N → Prop)

(case_0: Prf(p 0))

(case_s: Π x : N, Prf(p x) → Prf(p(s x)))

(n : N) : Prf(p n);

rule ind_N $p $c0 $cs 0 ,→ $c0
with ind_N $p $c0 $cs (s $x)

,→ $cs $x (ind_N $p $c0 $cs $x)



Example of inductive-inductive type

/* contexts and types in dependent type theory

Forsberg ’s 2013 PhD thesis */

// contexts

inductive Ctx : TYPE :=
| 2 : Ctx

| · Γ : Ty Γ → Ctx

// types

with Ty : Ctx → TYPE :=
| U Γ : Ty Γ
| P Γ a : Ty ( · Γ a) → Ty Γ;



Lambdapi’s additional features wrt Dkcheck/Kocheck

Lambdapi is an interactive proof assistant for λΠ/R

• has its own syntax and file extension lp

• can read and output dk files

• supports Unicode characters and infix operators

• symbols can have implicit arguments

• symbol declaration/definition generates typing/unification goals

• goals can be solved by structured proof scripts (tactic trees)

• provides a rewrite tactic similar to Coq/SSReflect

• can call external (first-order) theorem provers

• provides a command for generating induction principles

• provides a local confluence checker

• handles associative-commutative symbols differently

• supports user-defined unification rules



Exercise for next lecture

• install https://github.com/Deducteam/lambdapi

• have a look at https://lambdapi.readthedocs.io/

• and the tutorial tests/OK/tutorial.lp


