EF EuroProofNet
 Introduction to Proof System Interoperability

Frédéric Blanqui

Deduc \vdash eam

September 2022

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting
Dedukti language
Lambdapi proof assistant
Encoding logics in $\lambda \Pi / \mathcal{R}$
Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Libraries of formal proofs today

Libraries of formal proofs today

- Every system has basic libraries on integers, lists, . .
- Some definitions/theorems are available in one system only

Libraries of formal proofs today

- Every system has basic libraries on integers, lists, ...
- Some definitions/theorems are available in one system only
\Rightarrow Can't we translate a proof between two systems automatically?

Interest of proof interoperability

- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Relativize the choice of a system (school, industry)
- Provide multi-system data to machine learning

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- Is it reasonable to have $n(n-1)$ translators for n systems?

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- Is it reasonable to have $n(n-1)$ translators for n systems?

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory $D(S)$ in D

Example: $D=$ predicate calculus
allows one to represent $S=$ geometry, $S=$ arithmetic, $S=$ set theory, ..
not well suited for functional computations and dependent types

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory $D(S)$ in D

Example: $D=$ predicate calculus
allows one to represent $S=$ geometry, $S=$ arithmetic, $S=$ set theory, ..
not well suited for functional computations and dependent types
Better: $D=\lambda \Pi$-calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$
allows one to represent also:
$S=$ HOL,$S=$ Coq, $S=$ Agda, $S=$ PVS,\ldots

How to translate a proof $t \in A$ in a proof $u \in B$?
In a logical framework D :

1. translate $t \in A$ in $t^{\prime} \in D(A)$
2. translate $u^{\prime} \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?
In a logical framework D :

1. translate $t \in A$ in $t^{\prime} \in D(A)$
2. identify the axioms and deduction rules of A used in t^{\prime} translate $t^{\prime} \in D(A)$ in $u^{\prime} \in D(B)$ if possible
3. translate $u^{\prime} \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?
In a logical framework D :

1. translate $t \in A$ in $t^{\prime} \in D(A)$
2. identify the axioms and deduction rules of A used in t^{\prime} translate $t^{\prime} \in D(A)$ in $u^{\prime} \in D(B)$ if possible
3. translate $u^{\prime} \in D(B)$ in $u \in B$
\Rightarrow represent in the same way functionalities common to A and B

The modular $\lambda \Pi / \mathcal{R}$ theory U and its sub-theories 38 symbols, 28 rules, 13 sub-theories

Dedukti, an assembly language for proof systems implementing $\lambda \Pi / \mathcal{R}$

Libraries currently available in Dedukti

System	Libraries
HOL-Light	OpenTheory
Matita	Arith
Coq	Stdlib parts, GeoCoq
Isabelle	HOL.Complex_Main $($ AFP soon?)
Agda	Stdlib parts $\pm 25 \%)$
PVS	Stdlib parts
TPTP	E 69%, Vampire 83%

Case study:
Matita/Arith \longrightarrow OpenTheory, Coq, PVS, Lean, Agda
http://logipedia.inria.fr

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus

Simple types

Dependent types
Pure Type Systems
Rewriting
Dedukti language
Lambdapi proof assistant
Encoding logics in $\lambda \Pi / \mathcal{R}$
Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

What is the $\lambda \Pi$-calculus modulo rewriting?

$\lambda \Pi / \mathcal{R}=$	
λ	simply-typed λ-calculus
$+\Pi$	dependent types, e.g. Array n
$+\mathcal{R}$	identification of types modulo rewrites rules $/ \hookrightarrow r$

What is λ-calculus?

introduced by Alonzo Church in 1932
the (untyped or pure) λ-calculus is a general framework for defining functional terms (objects or propositions)
initially thought as a possible foundation for logic
but turned out to be inconsistent
it however provided a foundation for computability theory and functional programming !

What is λ-calculus?

only 3 constructions:

- variables x, y, \ldots
- application of a term t to another term u, written $t u$
- abstraction over a variable x in a term t, written $\lambda x, t$
example: the function mapping x to $2 x+1$ is written

$$
\lambda x,+(* 2 x) 1
$$

α-equivalence

the names of abstracted variables are theoretically not significant:
$\lambda x,+(* 2 x) 1 \quad$ denotes the same function as $\quad \lambda y,+(* 2 y) 1$
terms equivalent modulo valid renamings are said α-equivalent in theory, one usually works modulo α-equivalence, that is, on α-equivalence classes of terms (hence, one can always rename some abstracted variables if it is more convenient)
\Rightarrow but, then, one has to be careful that functions and relations are actually invariant by α-equivalence!...
in practice, dealing with α-equivalence is not trivial
\Rightarrow this gave raise to a lot of research and tools (still nowdays)!

Example: the set of free variables
a variable is free if it is not abstracted
the set $\mathrm{FV}(t)$ of free variables of a term t is defined as follows:

- $\operatorname{FV}(x)=\{x\}$
- $\operatorname{FV}(t u)=\mathrm{FV}(t) \cup \mathrm{FV}(u)$
- $\operatorname{FV}(\lambda x, t)=\mathrm{FV}(t)-\{x\}$
one can check that FV is invariant by α-equivalence:

$$
\text { if } t={ }_{\alpha} u \text { then } \operatorname{FV}(t)=\mathrm{FV}(u)
$$

Substitution

a substitution is a finite map from variables to terms

$$
\sigma=\left\{\left(x_{1}, t_{1}\right), \ldots,\left(x_{n}, t_{n}\right)\right\}
$$

the domain of a substitution σ is

$$
\operatorname{dom}(\sigma)=\{x \in \mathcal{V} \mid \sigma(x) \neq x\}
$$

how to define the result of applying a substitution σ on a term t ?

- $x \sigma=\sigma(x)$ if $x \in \operatorname{dom}(\sigma)$
- $x \sigma=x$ if $x \notin \operatorname{dom}(\sigma)$
- $(t u) \sigma=(t \sigma)(u \sigma)$
- $(\lambda x, t) \sigma=\lambda x,(t \sigma)$? example: $(\lambda x, y)\{(y, x)\}=\lambda x, x$?

Substitution

a substitution is a finite map from variables to terms

$$
\sigma=\left\{\left(x_{1}, t_{1}\right), \ldots,\left(x_{n}, t_{n}\right)\right\}
$$

the domain of a substitution σ is

$$
\operatorname{dom}(\sigma)=\{x \in \mathcal{V} \mid \sigma(x) \neq x\}
$$

how to define the result of applying a substitution σ on a term t ?

- $x \sigma=\sigma(x)$ if $x \in \operatorname{dom}(\sigma)$
- $x \sigma=x$ if $x \notin \operatorname{dom}(\sigma)$
- $(t u) \sigma=(t \sigma)(u \sigma)$
- $(\lambda x, t) \sigma=\lambda x,(t \sigma)$? example: $(\lambda x, y)\{(y, x)\}=\lambda x, x$?
definition not invariant by α-equivalence! $\lambda x, y={ }_{\alpha} \lambda z, y$

Substitution

in λ-calculus, substitution is not trivial!
we must rename abstracted variables to avoid name clashes:

$$
(\lambda x, t) \sigma=\lambda y,\left(t \sigma^{\prime}\right)
$$

where $\sigma^{\prime}=\left.\sigma\right|_{V} \cup\{(x, y)\}, V=\operatorname{FV}(\lambda x, t)$ and $y \notin V$

Operational semantics: β-reduction

applying the term $\lambda x,+(* 2 x) 1$ to 3 should return 7
this is the top β-rewrite relation:

$$
(\lambda x, t) u \rightarrow_{\beta}^{\varepsilon} t\{(x, u)\}
$$

the β-rewrite relation \rightarrow_{β} is the closure by context of $\rightarrow_{\beta}^{\varepsilon}$:

$$
\frac{t \rightarrow_{\beta}^{\varepsilon} u}{t \rightarrow_{\beta} u} \quad \frac{t \rightarrow_{\beta} u}{t v \rightarrow_{\beta} u v} \quad \frac{t \rightarrow_{\beta} u}{v t \rightarrow_{\beta} v u} \quad \frac{t \rightarrow_{\beta} u}{\lambda x, t \rightarrow_{\beta} \lambda x, u}
$$

let \simeq_{β} be the smallest equivalence relation containing \rightarrow_{β}

Properties of β-reduction in pure λ-calculus

\rightarrow_{β} is confluent:

$$
\begin{aligned}
& \text { if } t \hookrightarrow_{\beta}^{*} u \text { and } t \hookrightarrow_{\beta}^{*} v, \\
& \text { then there is } w \text { s.t. } \\
& u \hookrightarrow_{\beta}^{*} w \text { and } v \hookrightarrow_{\beta}^{*} w
\end{aligned}
$$

this means that the order of reduction steps does not matter and every term has at most one normal form

Properties of β-reduction in pure λ-calculus
\rightarrow_{β} does not terminate:

$$
(\lambda x, x x)(\lambda x, x x) \rightarrow_{\beta}(\lambda x, x x)(\lambda x, x x)
$$

Properties of β-reduction in pure λ-calculus
\rightarrow_{β} does not terminate:

$$
(\lambda x, x x)(\lambda x, x x) \rightarrow_{\beta}(\lambda x, x x)(\lambda x, x x)
$$

every term t has a fixpoint $Y_{t}:=(\lambda x, t(x x))(\lambda x, t(x x))$:

$$
Y_{t} \rightarrow_{\beta} t Y_{t}
$$

Properties of β-reduction in pure λ-calculus
\rightarrow_{β} does not terminate:

$$
(\lambda x, x x)(\lambda x, x x) \rightarrow_{\beta}(\lambda x, x x)(\lambda x, x x)
$$

every term t has a fixpoint $Y_{t}:=(\lambda x, t(x x))(\lambda x, t(x x))$:

$$
Y_{t} \rightarrow_{\beta} t Y_{t}
$$

λ-calculus is Turing-complete/can encode any recursive function

Properties of β-reduction in pure λ-calculus
\rightarrow_{β} does not terminate:

$$
(\lambda x, x x)(\lambda x, x x) \rightarrow_{\beta}(\lambda x, x x)(\lambda x, x x)
$$

every term t has a fixpoint $Y_{t}:=(\lambda x, t(x x))(\lambda x, t(x x))$:

$$
Y_{t} \rightarrow_{\beta} t Y_{t}
$$

λ-calculus is Turing-complete/can encode any recursive function
a natural number n can be encoded as

$$
\lambda f, \lambda x, f^{n} x
$$

where $f^{0} x=x$ and $f^{n+1} x=f\left(f^{n} x\right)$

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
\Rightarrow every term can be applied to another term, including itself!

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
\Rightarrow every term can be applied to another term, including itself!
Russell's paradox: with $R:=\{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ-calculus: with $R:=\lambda x, \neg(x x)$ we have $R R \rightarrow_{\beta} \neg(R R)$

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
\Rightarrow every term can be applied to another term, including itself!
Russell's paradox: with $R:=\{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$
λ-calculus: with $R:=\lambda x, \neg(x x)$ we have $R R \rightarrow_{\beta} \neg(R R)$
proposals to overcome this problem:

- restrict comprehension axiom to already defined sets
use $\{x \in A \mid P\}$ instead of $\{x \mid P\}$
\leadsto modern set theory

On the origin of type theory
like in unrestricted set theory where every term is a set in pure λ-calculus, every term is a function
\Rightarrow every term can be applied to another term, including itself!
Russell's paradox: with $R:=\{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ-calculus: with $R:=\lambda x, \neg(x x)$ we have $R R \rightarrow_{\beta} \neg(R R)$
proposals to overcome this problem:

- restrict comprehension axiom to already defined sets
use $\{x \in A \mid P\}$ instead of $\{x \mid P\}$
\sim modern set theory
- organize terms into a hierarchy
- natural numbers are of type ι and propositions of type O
- unary predicates/sets of natural numbers are of type $\iota \rightarrow 0$
- sets of sets of natural numbers are of type $(\iota \rightarrow 0) \rightarrow 0$
- ...
\sim modern type theory

Church simply-typed λ-calculus

simple types:

$$
A, B:=X \in \mathcal{V}_{t y p} \mid A \rightarrow B
$$

- X is a user-defined type variable
- $A \rightarrow B$ is the type of functions from A to B
raw terms:

$$
t, u:=x \in \mathcal{V}_{o b j}|t u| \lambda x: A, t
$$

Well-typed terms

a typing environment Γ is a finite map from variables to types
typing rules for terms:

$$
\begin{gathered}
\frac{(x, A) \in \Gamma}{\Gamma \vdash x: A} \\
\frac{\Gamma \vdash t: A \rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B} \\
\frac{\Gamma \cup\{(x, A)\} \vdash t: B \quad x \notin \operatorname{dom}(\Gamma)}{\Gamma \vdash \lambda x: A, t: A \rightarrow B}
\end{gathered}
$$

- $x x$ is not typable anymore
- \rightarrow_{β} terminates on well-typed terms
- \rightarrow_{β} preserves typing: if $\Gamma \vdash t: A$ and $t \rightarrow_{\beta} u$, then $\Gamma \vdash u: A$

Dependent types / $\lambda \Pi$-calculus

a dependent type is a type that depends on terms
example: type (Array n) of arrays of size n
first introduced by de Bruijn in the Automath system in the 60's
types:

$$
A, B:=X t_{1} \ldots t_{n} \mid \Pi x: A, B
$$

$A \rightarrow B$ is an abbreviation for $\Pi x: A, B$ when $x \notin \operatorname{FV}(B)$
example: concatenation function on arrays
concat: $\Pi p: \mathbb{N}, \operatorname{Array} p \rightarrow \Pi q: \mathbb{N}, \operatorname{Array} q \rightarrow \operatorname{Array}(p+q)$

Dependent types / $\lambda \Pi$-calculus

Harper,Honsell\&Plotkin distinguish 4 syntactic classes for terms:

name	definition	type
	KIND	
kinds K	TYPE $\mid \Pi x: A, K$	KIND
families A	$X\|A t\| \Pi x: A, A \mid \lambda x: A, A$	kinds
objects t	$x\|t t\| \lambda x: A, t$	families

this can be summarized as follows:
"t:A:K:KIND"
kinds describe the types of families; they are of the form:

$$
\Pi x_{1}: A_{1}, \ldots, \Pi x_{n}: A_{n}, \text { TYPE }
$$

a family is like a function returning a type:
$(\lambda n: \mathbb{N}$, Array $n) 2 \hookrightarrow_{\beta}$ Array 2

Typing rules for typing environments
because types depend on terms, we now need typing rules for types!
a typing environnment is now a sequence of type declarations

$$
\Gamma:=\emptyset \mid\ulcorner, x: A \mid\ulcorner, X: K
$$

" $\Gamma \vdash$ " means that Γ is a well-typed environment:
$\overline{\emptyset \vdash} \quad \frac{\Gamma \vdash A: \text { TYPE } x \notin \operatorname{dom}(\Gamma)}{\Gamma, x: A \vdash} \quad \frac{\Gamma \vdash K: \text { KIND } \quad X \notin \operatorname{dom}(\Gamma)}{\Gamma, X: K \vdash}$

Signatures Σ

a typing environment can be split in two parts:

1. a fixed part Σ representing global constants
2. a variable part Γ for local variables

Typing rules for kinds and families
kinds:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \mathrm{TYPE}: \mathrm{KIND}} \quad \frac{\Gamma, x: A \vdash K: \mathrm{KIND}}{\Gamma \vdash \Pi x: A, K: \mathrm{KIND}}
$$

families:

$$
\begin{aligned}
& \frac{\Gamma \vdash(X, K) \in \Gamma}{\Gamma \vdash X: K}
\end{aligned} \quad \frac{\Gamma, x: A \vdash B: \text { TYPE }}{\Gamma \vdash \Pi x: A, B: \text { TYPE }}
$$

Typing rules for objects

$$
\begin{gathered}
\frac{\Gamma \vdash(x, A) \in \Gamma}{\Gamma \vdash x: A} \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A, t: \Pi x: A, B} \\
\frac{\Gamma \vdash t: \Pi x: A, B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B\{(x, t)\}} \\
\frac{\Gamma \vdash t: A \quad A \simeq_{\beta} A^{\prime} \quad \Gamma \vdash A^{\prime}: \text { TYPE }}{\Gamma \vdash t: A^{\prime}}
\end{gathered}
$$

Properties of the $\lambda \Pi$-calculus

- types are equivalent: if $\Gamma \vdash t: A$ and $\Gamma \vdash t: B$ then $A \simeq{ }_{\beta} B$
- \hookrightarrow_{β} terminates on well-typed terms
- \hookrightarrow_{β} preserves typing
- type-inference $\exists A, \Gamma \vdash t: A$? is decidable
- type-checking $\Gamma \vdash t: A$? is decidable

PTS presentation of $\lambda \Pi$ (Barendregt)
terms and types:

$$
t:=x|t t| \lambda x: t, t|\Pi x: t, t| s \in \mathcal{S}=\{\text { TYPE, KIND }\}
$$

typing rules:

$$
\begin{gathered}
\overline{\emptyset \vdash} \frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash} \quad \frac{\Gamma \vdash(x, A) \in \Gamma}{\Gamma \vdash x: A} \\
(\text { sort }) \frac{\Gamma \vdash}{\Gamma \vdash \operatorname{TYPE}: \mathrm{KIND}}(\text { prod }) \frac{\Gamma \vdash A: \operatorname{TYPE} \quad \Gamma, x: A \vdash B: s}{\Gamma \vdash \Pi x: A, B: s} \\
\frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash \Pi x: A, B: s}{\Gamma \vdash \lambda x: A, t: \Pi x: A, B} \\
\frac{\Gamma \vdash t: \Pi x: A, B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B\{(x, u)\}} \\
\frac{\Gamma \vdash t: A^{\prime}}{}
\end{gathered}
$$

Pure Type Systems (PTS)

$$
(\text { sort }) \frac{\Gamma \vdash}{\Gamma \vdash \text { TYPE }: \text { KIND }}(\text { prod }) \frac{\Gamma \vdash A: \text { TYPE } \quad \Gamma, x: A \vdash B: s}{\Gamma \vdash \Pi x: A, B: s}
$$

the rules (sort) and (prod) can be generalized as follows:

$$
\begin{gathered}
(\text { sort }) \frac{\Gamma \vdash\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Gamma \vdash s_{1}: s_{2}} \\
(\text { prod }) \frac{\Gamma \vdash A: s_{1} \quad \Gamma, x: A \vdash B: s_{2} \quad\left(\left(s_{1}, s_{2}\right), s_{3}\right) \in \mathcal{P}}{\Gamma \vdash \Pi x: A, B: s_{3}}
\end{gathered}
$$

where:

- \mathcal{S} is an arbitrary set of sorts
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ describes the types of sorts
- $\mathcal{P} \subseteq \mathcal{S}^{2} \times \mathcal{S}$ describes the allowed products

Pure Type Systems (PTS)

many well-known type systems can be described as PTSs
examples with $\mathcal{S}=\{$ TYPE, KIND $\}$ and $\mathcal{A}=\{($ TYPE, KIND $)\}:$

feature	product rule in \mathcal{P}
simple types	TYPE, TYPE, TYPE
polymorphic types	KIND, TYPE, TYPE
dependent types	TYPE, KIND, KIND
type constructors	KIND, KIND, KIND

the combination of all these rules is the calculus of constructions
remark: a PTS is functional if \mathcal{A} and \mathcal{P} are functions (e.g. CoC) then types are unique modulo \simeq_{β}

Universes

- a universe U is a type closed by exponentiation

$$
\frac{A: U B: U}{A \rightarrow B: U}
$$

example: the sort TYPE of the simple types $\iota, \iota \rightarrow 0, \ldots$

- universes are like inaccessible cardinals in set theory:
- an inaccessible cardinal is closed by set exponentiation
- a universe is closed by type exponentiation

More universes

- some math. constructions quantifies over the elements of U_{0}
\Rightarrow they need to inhabit a new universe U_{1} containing U_{0}
- by iteration we get an infinite sequence of nested universes

$$
U_{0}: U_{1}: \ldots U_{i}: U_{i+1} \ldots \quad \frac{A: U_{i} \quad B: U_{j}}{A \rightarrow B: U_{\max (i, j)}}
$$

available in some proof assistants like Coq, Agda, Lean

- PTS representation
$\mathcal{S}=\left\{\mathrm{TYPE}_{i} \mid i \in \mathbb{N}\right\}$
$\mathcal{A}=\left\{\left(\operatorname{TYPE}_{i}, \operatorname{TYPE}_{i+1}\right) \mid i \in \mathbb{N}\right\}$
$\mathcal{P}=\left\{\left(\operatorname{TYPE}_{i}, \operatorname{TYPE}_{j}, \operatorname{TYPE}_{m a x}(i, j)\right) \mid i, j \in \mathbb{N}\right\}$

What is rewriting?

introduced at the end of the 60's (Knuth)
a rewrite rule $I \hookrightarrow r$ is an equation $I=r$ used from left-to-right
rewriting simply consists in repeatedly replacing a subterm $/ \sigma$ by $r \sigma$ (rewriting is Turing-complete)
it can be used to decide equational theories:

```
given a set \mathcal{E}}\mathrm{ of equations, }\mp@subsup{\simeq}{\mathcal{E}}{}\mathrm{ is decidable
if there is a rewrite system \mathcal{R}}\mathrm{ such that:
- }\mp@subsup{\hookrightarrow}{\mathcal{R}}{}\mathrm{ terminates
- }\mp@subsup{\hookrightarrow}{\mathcal{R}}{}\mathrm{ is confluent
- }\mp@subsup{\simeq}{\mathcal{R}}{}=\mp@subsup{\simeq}{\mathcal{E}}{
where }\mp@subsup{\hookrightarrow}{\mathcal{R}}{}\mathrm{ is the closure by context of }\mathcal{R
```


$\lambda \Pi$-calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$

a theory in the $\lambda \Pi$-calculus modulo rewriting is given by

- a signature Σ
- a set \mathcal{R} of rewrite rules on Σ
such that:
- $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ terminates
- $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ is confluent
- every rule $I \hookrightarrow r$ preserves typing: if $\Gamma \vdash I \sigma: A$ then $\Gamma \vdash r \sigma: A$

Outline

Introduction
Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting

Dedukti language
Lambdapi proof assistant
Encoding logics in $\lambda \Pi / \mathcal{R}$
Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Dedukti

Dedukti is a concrete language for defining $\lambda \Pi / \mathcal{R}$ theories
There are several tools to check the correctness of Dedukti files:

- Kocheck https://github.com/01mf02/kontroli-rs
- Dkcheck https://github.com/Deducteam/dedukti
- Lambdapi https://github.com/Deducteam/lambdapi

Efficiency: Kocheck > Dkcheck > Lambdapi
Features: Kocheck < Dkcheck < Lambdapi
Dkcheck and Lambdapi can export $\lambda \Pi / \mathcal{R}$ theories to:

- the HRS format of the confluence competition
- the XTC format of the termination competition extended with dependent types

How to install and use Kocheck?

Installation:

cargo install-git https://github.com/01mf02/kontroli-rs
Use:
kocheck file.dk

How to install and use Dkcheck?

Installation:
Using Opam:
opam install dedukti
Compilation from the sources:
git clone https://github.com/Deducteam/dedukti.git cd dedukti
make
make install

Use:
dk check file.dk

Dedukti syntax

BNF grammar:

https://github.com/Deducteam/Dedukti/blob/master/syntax.bnf
file extension: . dk
comments: (; ... (;... ;) ... ;)
identifiers:
(a-z|A-Z|0-9|_)+ and \{| arbitrary string $\mid\}$

Terms

Type	sort for types
id	variable or constant
id.id	constant from another file
term term . . . term	application
id [: term] ${ }^{\text {c> }}$ term	abstraction
[id :] term \rightarrow term	[dependent] product
(term)	

Command for declaring/defining a symbol

 modifier* id param* : term [:= term] .$$
\text { param }::=(\text { id }: \text { term })
$$

modifier's:

- def: definable
- thm: never reduced
- AC: associative and commutative
- private: exported but usable in rule left-hand sides only
- injective: used in subject reduction algorithm

```
N : Type.
0 : N.
s : N -> N.
def add : N -> N -> N.
thm add_com :
    x:N -> y:N -> Eq (add x y) (add y x) := ...
```

Command for declaring rewrite rules

```
[ id * ] (term --> term )+ .
[x y]
x + 0 --> x
x + s y --> s (x + y).
Dkcheck tries to automatically check:
preservation of typing by rewrite rules (aka subject reduction)
```

Queries and assertions

```
# INFER term
# EVAL term.
(# ASSERT | # ASSERTNOT) term (:|==) term .
(# CHECK | # CHECKNOT) term (:|==) term .
#INFER 0.
#EVAL add 2 2.
#ASSERT O : N
#ASSERTNOT O : N -> N.
#ASSERT add 2 2 == 4.
#ASSERTNOT add 2 2 == 5.
```

Importing the declarations of other files
file1.dk:
A : Type.
file2.dk:
\#REQUIRE file1.
a : file1.A.

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting
Dedukti language

Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$
Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Lambdapi

Lambdapi is an interactive proof assistant for $\lambda \Pi / \mathcal{R}$

- has its own syntax and file extension .lp
- can read and output . dk files
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- . .

Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi
User manual: https://lambdapi.readthedocs.io/

Libraries:

https://github.com/Deducteam/opam-lambdapi-repository

How to install Lambdapi?

Using Opam:
opam install lambdapi
Compilation from the sources:
git clone https://github.com/Deducteam/lambdapi.git
cd lambdapi
make
make install

How to use Lambdapi?

Command line (batch mode):
lambdapi check file.lp

Through an editor (interactive mode):

- Emacs
- VSCode

Lambdapi automatically (re)compiles dependencies if necessary

How to install the Emacs interface?
3 possibilities:

1. Nothing to do when installing Lambdapi with opam
2. From Emacs using MELPA:
M-x package-install RET lambdapi-mode
3. From sources:
make install_emacs

+ add in ~/.emacs:
(load "lambdapi-site-file")

Emacs interface

window layout can be customized
shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

How to install the VSCode interface?

From the VSCode Marketplace

VSCode interface

File lambdapi.pkg
developments must have a file lambdapi.pkg describing where to install the files relatively to the root of all installed libraries

package_name $=m y _l i b$

root_path $=$ logical.path.from.root.to.my_lib

Importing the declarations of other files

```
lambdapi.pkg:
package_name = unary
root_path = nat.unary
file1.lp:
symbol A : TYPE;
file2.lp:
require nat.unary.file1;
symbol a : nat.unary.file1.A;
open nat.unary.file1;
symbol a' : A;
file3.lp:
require open nat.unary.file1 nat.unary.file2;
symbol b := a;
```


Lambdapi syntax

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf
file extension: .lp
comments: /* ... /*... */... */ or // ...
identifiers: UTF16 characters and \{। arbitrary string 1$\}$

Terms

TYPE
(id.)*id
term term ...term
λ id [: term] , term
Π id [: term] , term
term \rightarrow term
(term)
let id [: term] := term in term
sort for types
variable or constant
application
abstraction
dependent product non-dependent product
unknown term

$$
\begin{aligned}
& \text { Command for declaring/defining a symbol } \\
& \text { modifier* symbol id param* [: term] [:= term] [begin proof end] ; } \\
& \text { param }=\left.i d\right|_{-} \mid\left(\text {id }^{+}: \text {term }\right) \mid\left[\text { id }_{\text {+ }}^{+} \text {: term }\right] \\
& \text { implicit } \\
& \text { parameters }
\end{aligned}
$$

modifier's:

- constant: not definable
- opaque: never reduced
- associative
- commutative
- private: not exported
- protected: exported but usable in rule left-hand sides only
- sequential: reduction strategy
- injective: used in unification

Examples of symbol declarations
symbol $N:$ TYPE;
symbol 0 : N;
symbol s : $N \rightarrow N$;
symbol $+: N \rightarrow N \rightarrow N$ notation + infix right $10 ;$
symbol $\times: N \rightarrow N \rightarrow N$; notation \times infix right 20 ;

Command for declaring rewrite rules

$$
\text { rule term } \hookrightarrow \text { term (with term } \hookrightarrow \text { term })^{*} ;
$$

pattern variables must be prefixed by $\$$:

$$
\text { rule } \$ x+0 \hookrightarrow \$ x
$$

$$
\text { with } \$ \mathrm{x}+\mathrm{s} \$ \mathrm{y} \hookrightarrow \mathrm{~s}(\$ \mathrm{x}+\$ \mathrm{y}) \text {; }
$$

Lambdapi tries to automatically check:
preservation of typing by rewrite rules (aka subject reduction)

Command for adding rewrite rules

Lambdapi supports:
overlapping rules

```
rule $x + 0 ¢ $x
with $x + s $y ¢ s ($x + $y)
with 0 + $x \hookrightarrow $x
with s $x + $y ¢ s ($x + $y).
```


matching on defined symbols

rule $(\$ x+\$ y)+\$ z \hookrightarrow \$ x+(\$ y+\$ z) ;$
non-linear patterns
rule $\$ \mathrm{x}-\$ \mathrm{x} \hookrightarrow 0$;

Lambdapi tries to automatically check:
local confluence (AC symbols/HO patterns not handled yet)

Higher-order pattern-matching

```
symbol R:TYPE;
symbol 0:R;
symbol sin:R }->\textrm{R
symbol cos:R }->\textrm{R
symbol D:(R }->R)->(R->R)
rule D ( }\lambda\textrm{x},\textrm{sin}$\textrm{F}.[\textrm{x}]
    \hookrightarrow\lambda x, D $F.[x] x cos $F.[x];
rule D ( }\lambda\textrm{x}, $\textrm{V}.[]
    \hookrightarrow x, 0;
```


Non-linear matching

Example: decision procedure for group theory

```
symbol G : TYPE;
symbol 1 : G;
symbol . : G }->\textrm{G}->\textrm{G}; notation . infix 10
symbol inv : G }->\textrm{G}\mathrm{ ;
rule ($x · $y) · $z @ $x · ($y . $z)
with 1 . $x \hookrightarrow $x
with $x | 1 @ $x
with inv $x · $x \hookrightarrow 1
with $x · inv $x \hookrightarrow 1
with inv $x · ($x | $y) \hookrightarrow $y
with $x · (inv $x · $y) \hookrightarrow $y
with inv 1 \hookrightarrow 1
with inv (inv $x) \hookrightarrow $x
with inv ($x . $y) \hookrightarrow inv $y . inv $x;
```


Queries and assertions

```
print id ;
type term ;
compute term;
(assert | assertnot) id * }\vdash\mathrm{ term (:| 三) term ;
print +; // print type and rules too
print N; // print constructors and induction principle
type ×;
compute 2 }\times
assert 0 : N;
assertnot 0 : N 
assert x y z ト x + y x z 三 x + (y x z);
assertnot x y z f x + y x z \equiv (x + y) x z;
```

Reducing proof checking to type checking
(aka the Curry-Howard isomorphism)

```
// type of propositions
symbol Prop : TYPE;
symbol = :N->N M Prop; notation = infix 1;
// interpretation of propositions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop }->\mathrm{ TYPE;
// examples of axioms
symbol refl x : Prf(x = x);
symbol s-mon x y : Prf(x = y) }->\operatorname{Prf(s x = s y);
symbol ind_N (p : N -> Prop)
    (case_0: Prf(p 0))
    (case_s: Пx : N, Prf(p x) }->\operatorname{Prf(p(s x)))
    (n : N) : Prf(p n);
```

Stating an axiom vs Proving a theorem

```
Stating an axiom:
```

```
opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x);
```

opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x);
// no definition given now
// no definition given now
// one can still be given later with a rule

```
// one can still be given later with a rule
```


Proving a theorem:

```
opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x) := // generates the typing goal \(\operatorname{Prf}(0+x=x)\)
// a proof must be given now
begin
... // proof script
end;
```


Goals and proofs

symbol declarations/definitions can generate:

- typing goals

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash ?: B
$$

- unification goals
these goals can be solved by writing proof 's:

$$
\begin{gathered}
\text { proof }::=(\text { proof_step } ;)^{*} \\
\text { proof_step }::=\text { tactic }(\{\text { proof }\})^{*}
\end{gathered}
$$

- a proof is a ;-separated sequence of proof_step 's
- a proof_step is a tactic followed by as many proof's enclosed in curly braces as the number of goals generated by the tactic
tactic 's for unification goals:
- solve (applied automatically)

Example of proof
https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/0K/tutorial.lp
opaque symbol 0_{-}is_neutral_for_+ $x: \operatorname{Prf}(0+x=x):=$ begin
induction
\{reflexivity;\}
\{assume x h; simplify; rewrite h; reflexivity;\}

Tactics for typing goals

- simplify [id]
- refine term
- assume $i d^{+}$
- generalize id
- apply term
- induction
- have id : term
- reflexivity
- symmetry
- rewrite [right] [pattern] term
like Coq SSReflect
- why3
calls external prover

Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily define inductive-recursive types in Dedukti or Lambdapi:

```
// lists without duplicated elements
constant symbol L : TYPE;
symbol }\not=:N->L M Prop; notation & infix 20
constant symbol nil : L
constant symbol cons x l : Prf(x # l) }->\textrm{L}
rule _ # nil \hookrightarrowT
with $x & cons $y $l _ \hookrightarrow $x f= $y ^ $x & $l;
```


Command for generating induction principles

(currently for strictly positive parametric inductive types only)

```
inductive N : TYPE := 0:N | s :N 
is equivalent to:
symbol N : TYPE;
symbol 0 : N;
symbol s : N}->N\mathrm{ ;
symbol ind_N (p :N }->\mathrm{ Prop)
    (case_0: Prf(p 0))
    (case_s: П x : N, Prf(p x) }->\operatorname{Prf(p(s x)))
    (n : N) : Prf(p n);
rule ind_N $p $c0 $cs 0 ↔$c0
with ind_N $p $cO $cs (s $x)
    \hookrightarrow $cs $x (ind_N $p $c0 $cs $x)
```


Example of inductive－inductive type

```
/* contexts and types in dependent type theory
Forsberg's 2013 PhD thesis */
// contexts
inductive Ctx : TYPE :=
| \square : Ctx
| . 「 : Ty 「 }->\mathrm{ Ctx
// types
with Ty : Ctx }->\mathrm{ TYPE :=
| U 「 : Ty \Gamma
| P Г a : Ty (. Г a) -> Ту Г;
```


Lambdapi's additional features wrt Dkcheck/Kocheck

Lambdapi is an interactive proof assistant for $\lambda \Pi / \mathcal{R}$

- has its own syntax and file extension 1 p
- can read and output dk files
- supports Unicode characters and infix operators
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- provides a rewrite tactic similar to Coq/SSReflect
- can call external (first-order) theorem provers
- provides a command for generating induction principles
- provides a local confluence checker
- handles associative-commutative symbols differently
- supports user-defined unification rules

Exercise for next lecture

- install https://github.com/Deducteam/lambdapi
- have a look at https://lambdapi.readthedocs.io/
- and the tutorial tests/OK/tutorial.lp

