

Introduction to Proof System Interoperability

Frédéric Blanqui

Deduc⊢eam

September 2022

Outline

Introduction

Lambda-Pi-calculus modulo rewriting Lambda-calculus Simple types Dependent types Pure Type Systems Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$

Automated Theorem Provers

Intrumenting provers for Dedukti proof production Reconstructing proofs

Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	16,000	473,000
Isabelle AFP	7,000	90,000
Lean Mathlib	2,000	81,000
Mizar Mathlib	1,400	77,000
HOL-Light	500	35,000

* type, definition, theorem, ...

Libraries of formal proofs today

0

			LOC 3500000	
			3000000	
Library	Nb files	Nb objects*	2500000	
Coq Opam	16,000	473,000	200000	
Isabelle AFP	7,000	90,000	2000000	
Lean Mathlib	2,000	81,000	1500000	
Mizar Mathlib	1,400	77,000	1500000	
HOL-Light	500	35,000	1000000	
			500000	_ =
* type, definition,	, theorem,		000000	_ 1100

- Every system has basic libraries on integers, lists, ...
- Some definitions/theorems are available in one system only

Libraries of formal proofs today

			LOC 3500000
			3000000
Library	Nb files	Nb objects*	2500000
Coq Opam	16,000	473,000	2300000
Isabelle AFP	7,000	90,000	2000000
Lean Mathlib	2,000	81,000	1500000
Mizar Mathlib	1,400	77,000	1500000
HOL-Light	500	35,000	1000000
			500000
* type, definition,	, theorem,		300000

- Every system has basic libraries on integers, lists, ...
- Some definitions/theorems are available in one system only
- \Rightarrow Can't we translate a proof between two systems automatically?

Interest of proof interoperability

- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Relativize the choice of a system (school, industry)
- Provide multi-system data to machine learning

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- Is it reasonable to have n(n-1) translators for *n* systems?

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)
- Is it reasonable to have n(n-1) translators for *n* systems?

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D = predicate calculus allows one to represent S= geometry, S= arithmetic, S= set theory, ... not well suited for functional computations and dependent types

A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ... not well suited for functional computations and dependent types

Better: $D = \lambda \Pi$ -calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$ allows one to represent also: S=HOL, S=Coq, S=Agda, S=PVS, ...

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework D:

1. translate $t \in A$ in $t' \in D(A)$

3. translate $u' \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework D:

- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework D:

- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$
- \Rightarrow represent in the same way functionalities common to A and B

The modular $\lambda \Pi/\mathcal{R}$ theory U and its sub-theories

Dedukti, an assembly language for proof systems

Libraries currently available in Dedukti

Libraries
OpenTheory
Arith
Stdlib parts, GeoCoq
HOL.Complex_Main 🗰 (AFP soon?)
Stdlib parts (\pm 25%)
Stdlib parts
E 69%, Vampire 83%

Case study:

 $\mathsf{Matita}/\mathsf{Arith} \longrightarrow \mathsf{OpenTheory,} \ \mathsf{Coq,} \ \mathsf{PVS,} \ \mathsf{Lean,} \ \mathsf{Agda}$

http://logipedia.inria.fr

Outline

Introduction

Lambda-Pi-calculus modulo rewriting Lambda-calculus Simple types Dependent types Pure Type Systems Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$

Automated Theorem Provers

Intrumenting provers for Dedukti proof production Reconstructing proofs

What is the $\lambda\Pi$ -calculus modulo rewriting?

$\lambda \Pi / \mathcal{R} =$	
λ	simply-typed λ -calculus
$+ \Pi$	dependent types, e.g. Array <i>n</i>
$+ \mathcal{R}$	identification of types modulo rewrites rules $l \hookrightarrow r$

What is λ -calculus?

introduced by Alonzo Church in 1932

the (untyped or pure) λ -calculus is a general framework for defining functional terms (objects or propositions)

initially thought as a possible foundation for logic but turned out to be inconsistent

it however provided a foundation for computability theory and functional programming !

What is λ -calculus?

only 3 constructions:

- variables *x*, *y*, ...
- **application** of a term *t* to another term *u*, written *tu*
- **abstraction** over a variable x in a term t, written $\lambda x, t$

example: the function mapping x to 2x + 1 is written

 $\lambda x, +(*2x)1$

α -equivalence

the names of abstracted variables are theoretically not significant:

 λx , +(*2x)1 denotes the same function as λy , +(*2y)1

terms equivalent modulo valid renamings are said $\alpha\text{-equivalent}$

in theory, one usually works modulo α -equivalence, that is, on α -equivalence classes of terms (hence, one can always rename some abstracted variables if it is more convenient)

 \Rightarrow but, then, one has to be careful that functions and relations are actually invariant by $\alpha\text{-equivalence!}\dots$

- in practice, dealing with α -equivalence is not trivial
- \Rightarrow this gave raise to a lot of research and tools (still nowdays)!

Example: the set of free variables

a variable is free if it is not abstracted

the set FV(t) of free variables of a term t is defined as follows:

- $FV(x) = \{x\}$
- $FV(tu) = FV(t) \cup FV(u)$
- $FV(\lambda x, t) = FV(t) \{x\}$

one can check that FV is invariant by $\alpha\text{-equivalence:}$

if $t =_{\alpha} u$ then FV(t) = FV(u)

Substitution

a substitution is a finite map from variables to terms

$$\sigma = \{(x_1, t_1), \ldots, (x_n, t_n)\}$$

the domain of a substitution σ is

$$\operatorname{dom}(\sigma) = \{x \in \mathcal{V} \mid \sigma(x) \neq x\}$$

how to define the result of applying a substitution σ on a term t?

- $x\sigma = \sigma(x)$ if $x \in \operatorname{dom}(\sigma)$
- $x\sigma = x$ if $x \notin \operatorname{dom}(\sigma)$
- $(tu)\sigma = (t\sigma)(u\sigma)$
- $(\lambda x, t)\sigma = \lambda x, (t\sigma)$? example: $(\lambda x, y)\{(y, x)\} = \lambda x, x$?

Substitution

a substitution is a finite map from variables to terms

$$\sigma = \{(x_1, t_1), \ldots, (x_n, t_n)\}$$

the domain of a substitution σ is

$$\operatorname{dom}(\sigma) = \{x \in \mathcal{V} \mid \sigma(x) \neq x\}$$

how to define the result of applying a substitution σ on a term t?

- $x\sigma = \sigma(x)$ if $x \in dom(\sigma)$
- $x\sigma = x$ if $x \notin dom(\sigma)$
- $(tu)\sigma = (t\sigma)(u\sigma)$
- $(\lambda x, t)\sigma = \lambda x, (t\sigma)$? example: $(\lambda x, y)\{(y, x)\} = \lambda x, x$?

definition not invariant by α -equivalence ! $\lambda x, y =_{\alpha} \lambda z, y$

Substitution

in λ -calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:

 $(\lambda x, t)\sigma = \lambda y, (t\sigma')$

where $\sigma' = \sigma|_V \cup \{(x, y)\}$, $V = \operatorname{FV}(\lambda x, t)$ and $y \notin V$

Operational semantics: β -reduction

applying the term $\lambda x, +(*2x)\mathbf{1}$ to 3 should return 7

this is the top β -rewrite relation:

$$(\lambda x, t)u \rightarrow^{\varepsilon}_{\beta} t\{(x, u)\}$$

the $\beta\text{-rewrite relation}\to_\beta$ is the closure by context of \to_β^ε :

$$\frac{t \to_{\beta}^{\varepsilon} u}{t \to_{\beta} u} \quad \frac{t \to_{\beta} u}{t v \to_{\beta} u v} \quad \frac{t \to_{\beta} u}{v t \to_{\beta} v u} \quad \frac{t \to_{\beta} u}{\lambda x, t \to_{\beta} \lambda x, u}$$

let \simeq_β be the smallest equivalence relation containing \rightarrow_β

 \rightarrow_{β} is confluent:

this means that the order of reduction steps does not matter

and every term has at most one normal form

 \rightarrow_{β} does not terminate:

 $(\lambda x, xx)(\lambda x, xx) \rightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)$

 \rightarrow_{β} does not terminate:

 $(\lambda x, xx)(\lambda x, xx) \rightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)$

every term t has a fixpoint $Y_t := (\lambda x, t(xx))(\lambda x, t(xx))$:

 $Y_t
ightarrow_eta \ t Y_t$

 \rightarrow_{β} does not terminate:

 $(\lambda x, xx)(\lambda x, xx) \rightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)$

every term t has a fixpoint $Y_t := (\lambda x, t(xx))(\lambda x, t(xx))$:

 $Y_t \rightarrow_{\beta} t Y_t$

 $\lambda\text{-calculus}$ is Turing-complete/can encode any recursive function

Properties of β -reduction in pure λ -calculus

 \rightarrow_{β} does not terminate:

 $(\lambda x, xx)(\lambda x, xx) \rightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)$

every term t has a fixpoint $Y_t := (\lambda x, t(xx))(\lambda x, t(xx))$:

 $Y_t \rightarrow_{\beta} t Y_t$

 λ -calculus is Turing-complete/can encode any recursive function a natural number *n* can be encoded as

 $\lambda f, \lambda x, f^n x$

where $f^0x = x$ and $f^{n+1}x = f(f^nx)$

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x, \neg(xx)$ we have $RR \rightarrow_{\beta} \neg(RR)$

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x, \neg(xx)$ we have $RR \rightarrow_{\beta} \neg(RR)$

proposals to overcome this problem:

 restrict comprehension axiom to already defined sets use {x ∈ A | P} instead of {x | P}

 \rightsquigarrow modern set theory

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x, \neg(xx)$ we have $RR \rightarrow_{\beta} \neg(RR)$

proposals to overcome this problem:

 restrict comprehension axiom to already defined sets use {x ∈ A | P} instead of {x | P}

 \rightsquigarrow modern set theory

- organize terms into a hierarchy
- natural numbers are of type ι and propositions of type o
- unary predicates/sets of natural numbers are of type $\iota
 ightarrow o$
- sets of sets of natural numbers are of type $(\iota
 ightarrow o)
 ightarrow o$

- ...

 \rightsquigarrow modern type theory
Church simply-typed $\lambda\text{-calculus}$

simple types:

$$A, B \coloneqq X \in \mathcal{V}_{typ} \mid A \to B$$

- X is a user-defined type variable
- $A \rightarrow B$ is the type of functions from A to B

raw terms:

$$t, u \coloneqq x \in \mathcal{V}_{obj} \mid tu \mid \lambda x : A, t$$

Well-typed terms

a typing environment Γ is a finite map from variables to types

typing rules for terms:

$$\frac{(x, A) \in \Gamma}{\Gamma \vdash x : A}$$
$$\frac{\Gamma \vdash t : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B}$$
$$\frac{\Gamma \cup \{(x, A)\} \vdash t : B \quad x \notin \operatorname{dom}(\Gamma)}{\Gamma \vdash \lambda x : A, t : A \to B}$$

- xx is not typable anymore
- \rightarrow_{β} terminates on well-typed terms
- \rightarrow_{β} preserves typing: if $\Gamma \vdash t : A$ and $t \rightarrow_{\beta} u$, then $\Gamma \vdash u : A$

Dependent types / $\lambda \Pi$ -calculus

a dependent type is a type that depends on terms

example: type $(\operatorname{Array} n)$ of arrays of size n

first introduced by de Bruijn in the Automath system in the 60's

types:

$$A, B \coloneqq X t_1 \dots t_n \mid \Pi x : A, B$$

 $A \rightarrow B$ is an abbreviation for $\Pi x : A, B$ when $x \notin FV(B)$

example: concatenation function on arrays

 $\texttt{concat}: \mathsf{\Pi} p : \mathbb{N}, \texttt{Array} \ p o \mathsf{\Pi} q : \mathbb{N}, \texttt{Array} \ q o \texttt{Array}(p+q)$

Dependent types / $\lambda \Pi$ -calculus

Harper, Honsell&Plotkin distinguish 4 syntactic classes for terms:

	name	definition	type
		KIND	
	kinds <i>K</i>	$TYPE \mid \Pi x : \mathcal{A}, \mathcal{K}$	KIND
	families A	$X \mid At \mid \Pi x : A, A \mid \lambda x : A, A$	kinds
	objects <i>t</i>	$x \mid tt \mid \lambda x : A, t$	families

this can be summarized as follows:

''t: A: K: KIND''

kinds describe the types of families; they are of the form:

 $\Pi x_1 : A_1, \ldots, \Pi x_n : A_n, TYPE$

a family is like a function returning a type:

 $(\lambda n:\mathbb{N},\operatorname{Array} n)$ 2 \hookrightarrow_{eta} Array 2

Typing rules for typing environments

because types depend on terms, we now need typing rules for types!

a typing environnment is now a sequence of type declarations

 $\Gamma := \emptyset \mid \Gamma, x : A \mid \Gamma, X : K$

" $\Gamma \vdash$ " means that Γ is a well-typed environment:

 $\frac{}{\emptyset \vdash} \qquad \frac{\Gamma \vdash A : \texttt{TYPE} \quad x \notin \texttt{dom}(\Gamma)}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash K : \texttt{KIND} \quad X \notin \texttt{dom}(\Gamma)}{\Gamma, X : K \vdash}$

Signatures $\boldsymbol{\Sigma}$

- a typing environment can be split in two parts:
- 1. a fixed part $\boldsymbol{\Sigma}$ representing global constants
- 2. a variable part Γ for local variables

Typing rules for kinds and families

kinds:	$\frac{\Gamma \vdash}{\Gamma \vdash \texttt{TYPE}:\texttt{KIND}} \frac{\Gamma, x : A \vdash K : \texttt{KIND}}{\Gamma \vdash \Pi x : A, K : \texttt{KIND}}$	
families:	$\frac{\Gamma \vdash (X, K) \in \Gamma}{\Gamma \vdash X : K} \frac{\Gamma, x : A \vdash B : \texttt{TYPE}}{\Gamma \vdash \Pi x : A, B : \texttt{TYPE}}$	
۲ŀ	$\frac{\Gamma, x : A \vdash B : K}{\neg \lambda x : A, B : \Pi x : A, K} \frac{\Gamma \vdash A : \Pi x : B, K \Gamma \vdash t : B}{\Gamma \vdash At : K\{(x, t)\}}$	
$\frac{{{\Gamma}\vdash {A:K}} {K\simeq_\beta K'} {{\Gamma}\vdash {K':\text{KIND}}}}{{{\Gamma}\vdash {A:K'}}}$		

Typing rules for objects

 $\frac{\Gamma \vdash (x, A) \in \Gamma}{\Gamma \vdash x : A}$ $\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B}$ $\frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B\{(x, t)\}}$ $\frac{\Gamma \vdash t : A \quad A \simeq_{\beta} A' \quad \Gamma \vdash A' : TYPE}{\Gamma \vdash t : A'}$

Properties of the $\lambda\Pi\text{-calculus}$

- types are equivalent: if $\Gamma \vdash t : A$ and $\Gamma \vdash t : B$ then $A \simeq_{\beta} B$
- \hookrightarrow_{β} terminates on well-typed terms
- \hookrightarrow_{β} preserves typing
- type-inference $\exists A, \Gamma \vdash t : A$? is decidable
- type-checking $\Gamma \vdash t : A$? is decidable

PTS presentation of $\lambda \Pi$ (Barendregt)

terms and types:

 $t := x \mid tt \mid \lambda x : t, t \mid \Pi x : t, t \mid s \in \mathcal{S} = \{\texttt{TYPE}, \texttt{KIND}\}$

typing rules:

$$\frac{\Gamma \vdash A : s}{\emptyset \vdash} \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash (x, A) \in \Gamma}{\Gamma \vdash x : A} \\
(sort) \frac{\Gamma \vdash}{\Gamma \vdash \text{TYPE} : \text{KIND}} (prod) \frac{\Gamma \vdash A : \text{TYPE} \quad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A, B : s} \\
\frac{\Gamma, x : A \vdash t : B \quad \Gamma \vdash \Pi x : A, B : s}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \quad \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B\{(x, u)\}} \\
\frac{\Gamma \vdash t : A \quad A \simeq_{\beta} A' \quad \Gamma \vdash A' : s}{\Gamma \vdash t : A'}$$

Pure Type Systems (PTS)

(sort)
$$\frac{\Gamma \vdash}{\Gamma \vdash \text{TYPE}: \text{KIND}}$$
 (prod) $\frac{\Gamma \vdash A: \text{TYPE} \quad \Gamma, x: A \vdash B: s}{\Gamma \vdash \Pi x: A, B: s}$

the rules (sort) and (prod) can be generalized as follows:

$$(\textit{sort}) \; \frac{ \Gamma \vdash \quad (s_1, s_2) \in \mathcal{A} }{ \Gamma \vdash s_1 : s_2 }$$

$$(prod) \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad ((s_1, s_2), s_3) \in \mathcal{P}}{\Gamma \vdash \Pi x : A, B : s_3}$$

where:

- \mathcal{S} is an arbitrary set of sorts
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ describes the types of sorts
- $\bullet \ \mathcal{P} \subseteq \mathcal{S}^2 \times \mathcal{S}$ describes the allowed products

Pure Type Systems (PTS)

many well-known type systems can be described as PTSs

examples with $S = \{TYPE, KIND\}$ and $A = \{(TYPE, KIND)\}$:

feature	product rule in ${\cal P}$	
simple types	TYPE, TYPE, TYPE	
polymorphic types	KIND, TYPE, TYPE	
dependent types	TYPE, KIND, KIND	
type constructors	KIND, KIND, KIND	

the combination of all these rules is the calculus of constructions

remark: a PTS is functional if A and P are functions (e.g. CoC) then types are unique modulo \simeq_{β}

Universes

• a universe U is a type closed by exponentiation

$$\frac{A:U \quad B:U}{A \to B:U}$$

example: the sort TYPE of the simple types ι , $\iota
ightarrow o$, ...

- universes are like inaccessible cardinals in set theory:
- an inaccessible cardinal is closed by set exponentiation
- a universe is closed by type exponentiation

More universes

- some math. constructions quantifies over the elements of U_0 \Rightarrow they need to inhabit a new universe U_1 containing U_0
- by iteration we get an infinite sequence of nested universes

$$U_0: U_1: \ldots U_i: U_{i+1} \ldots \qquad \frac{A: U_i \quad B: U_j}{A \to B: U_{\max(i,j)}}$$

available in some proof assistants like Coq, Agda, Lean

• PTS representation:

$$\begin{split} \mathcal{S} &= \{\texttt{TYPE}_i \mid i \in \mathbb{N}\}\\ \mathcal{A} &= \{(\texttt{TYPE}_i, \texttt{TYPE}_{i+1}) \mid i \in \mathbb{N}\}\\ \mathcal{P} &= \{(\texttt{TYPE}_i, \texttt{TYPE}_j, \texttt{TYPE}_{\mathsf{max}(i,j)}) \mid i, j \in \mathbb{N}\} \end{split}$$

What is rewriting?

introduced at the end of the 60's (Knuth)

a rewrite rule $l \hookrightarrow r$ is an equation l = r used from left-to-right

rewriting simply consists in repeatedly replacing a subterm $l\sigma$ by $r\sigma$ (rewriting is Turing-complete)

it can be used to decide equational theories:

given a set \mathcal{E} of equations, $\simeq_{\mathcal{E}}$ is decidable if there is a rewrite system \mathcal{R} such that: • $\hookrightarrow_{\mathcal{R}}$ terminates • $\hookrightarrow_{\mathcal{R}}$ is confluent • $\simeq_{\mathcal{R}} = \simeq_{\mathcal{E}}$ where $\hookrightarrow_{\mathcal{R}}$ is the closure by context of \mathcal{R} $\lambda \Pi$ -calculus modulo rewriting ($\lambda \Pi / \mathcal{R}$)

- a theory in the $\lambda\Pi\text{-calculus}$ modulo rewriting is given by
- a signature Σ
- a set ${\mathcal R}$ of rewrite rules on Σ

such that:

- $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ terminates
- $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ is confluent
- every rule $I \hookrightarrow r$ preserves typing: if $\Gamma \vdash I\sigma : A$ then $\Gamma \vdash r\sigma : A$

Outline

Introduction

Lambda-Pi-calculus modulo rewriting Lambda-calculus Simple types Dependent types Pure Type Systems Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$

Automated Theorem Provers

Intrumenting provers for Dedukti proof production Reconstructing proofs

Dedukti

Dedukti is a concrete language for defining $\lambda \Pi / \mathcal{R}$ theories

There are several tools to check the correctness of Dedukti files:

- Kocheck https://github.com/01mf02/kontroli-rs
- Dkcheck https://github.com/Deducteam/dedukti
- Lambdapi https://github.com/Deducteam/lambdapi

Efficiency: Kocheck > Dkcheck > Lambdapi Features: Kocheck < Dkcheck < Lambdapi

Dkcheck and Lambdapi can export $\lambda \Pi / \mathcal{R}$ theories to:

- the HRS format of the confluence competition
- the XTC format of the termination competition extended with dependent types

How to install and use Kocheck?

Installation:

cargo install — git https://github.com/01mf02/kontroli-rs

Use:

kocheck file.dk

How to install and use Dkcheck?

Installation:

Using Opam:

opam install dedukti

Compilation from the sources:

git clone https://github.com/Deducteam/dedukti.git
cd dedukti
make
make install

Use:

dk check file.dk

Dedukti syntax

BNF grammar:

https://github.com/Deducteam/Dedukti/blob/master/syntax.bnf

file extension: .dk

comments: (; ... (; ... ;) ... ;)

identifiers:

(a-z|A-Z|0-9|_)+ and {| arbitrary string |}

Terms

application

abstraction

sort for types Type id variable or constant id.id constant from another file term term ... term id [: term] => term [dependent] product [id :] term -> term (term)

Command for declaring/defining a symbol

modifier* id param* : term [:= term] .

param ::= (id : term)

modifier's:

- def: definable
- thm: never reduced
- AC: associative and commutative
- private: exported but usable in rule left-hand sides only
- injective: used in subject reduction algorithm

N : Type. 0 : N. s : N -> N. def add : N -> N -> N. thm add_com : x:N -> y:N -> Eq (add x y) (add y x) := ... Command for declaring rewrite rules

[id *] (term --> term)⁺ .

[x y] x + 0 --> x x + s y --> s (x + y).

Dkcheck tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Queries and assertions

INFER term .
EVAL term .
(# ASSERT | # ASSERTNOT) term (:|==) term .
(# CHECK | # CHECKNOT) term (:|==) term .

#INFER 0. #EVAL add 2 2.

 $\begin{array}{rrrr} \text{\texttt{#ASSERT O}} & : & \text{N} \ . \\ \text{\texttt{#ASSERTNOT O}} & : & \text{N} \ \rightarrow \ \text{N} \ . \end{array}$

#ASSERT add 2 2 == 4. #ASSERTNOT add 2 2 == 5. Importing the declarations of other files

file1.dk:

A : Type.

file2.dk:

#REQUIRE file1.
a : file1.A.

Outline

Introduction

Lambda-Pi-calculus modulo rewriting Lambda-calculus Simple types Dependent types Pure Type Systems Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$

Automated Theorem Provers

Intrumenting provers for Dedukti proof production Reconstructing proofs

Lambdapi

Lambdapi is an interactive proof assistant for $\lambda\Pi/\mathcal{R}$

- has its own syntax and file extension .1p
- can read and output .dk files
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- . . .

Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi

User manual: https://lambdapi.readthedocs.io/

Libraries:

https://github.com/Deducteam/opam-lambdapi-repository

How to install Lambdapi?

Using Opam:

opam install lambdapi

Compilation from the sources:

git clone https://github.com/Deducteam/lambdapi.git
cd lambdapi
make
make install

How to use Lambdapi?

Command line (batch mode):

lambdapi check file.lp

Through an editor (interactive mode):

- Emacs
- VSCode

Lambdapi automatically (re)compiles dependencies if necessary

How to install the Emacs interface?

3 possibilities:

1. Nothing to do when installing Lambdapi with opam

2. From Emacs using MELPA:

M-x package-install RET lambdapi-mode

3. From sources:

make install_emacs

+ add in ~/.emacs:

(load "lambdapi-site-file")

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

How to install the VSCode interface?

From the VSCode Marketplace

VSCode interface

File lambdapi.pkg

developments must have a file lambdapi.pkg describing where to install the files relatively to the root of all installed libraries

package_name = my_lib
root_path = logical.path.from.root.to.my_lib
Importing the declarations of other files

lambdapi.pkg:

package_name = unary
root_path = nat.unary

file1.lp:

symbol A : TYPE;

file2.lp:

require nat.unary.file1; symbol a : nat.unary.file1.A; open nat.unary.file1; symbol a' : A;

file3.lp:

```
require open nat.unary.file1 nat.unary.file2;
symbol b := a;
```

Lambdapi syntax

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

file extension: .lp

comments: /* ... /* ... */ ... */ or // ...

identifiers: UTF16 characters and {| arbitrary string |}

Terms

TYPE

(id.)*idterm term ... term λ id [: term], term \sqcap id [: term], term term \rightarrow term (term)

let id [: term] ≔ term in term sort for types variable or constant application abstraction dependent product non-dependent product

unknown term

Command for declaring/defining a symbol

modifier's:

- constant: not definable
- opaque: never reduced
- associative
- commutative
- private: not exported
- protected: exported but usable in rule left-hand sides only
- sequential: reduction strategy
- injective: used in unification

Examples of symbol declarations

symbol	Ν	:	TYPE;						
symbol	0	:	N;						
symbol	s	:	N ightarrow N;						
symbol	+	:	N ightarrow N ightarrow N;	notation	+	infix	right	10;	
symbol	×	:	$N \rightarrow N \rightarrow N;$	notation	×	infix	right	20;	

Command for declaring rewrite rules

rule term \hookrightarrow term (with term \hookrightarrow term)* ;

pattern variables must be prefixed by \$:

Lambdapi tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)

Command for adding rewrite rules

Lambdapi supports:

overlapping rules

rule $x + 0 \hookrightarrow x$ with $x + s \ y \hookrightarrow s \ (x + y)$ with $0 + x \hookrightarrow x$ with $s \ x + y \hookrightarrow s \ (x + y);$

matching on defined symbols

rule (x + y) + $z \rightarrow x + (y + z)$;

non-linear patterns

rule $x - x \hookrightarrow 0;$

Lambdapi tries to automatically check:

local confluence (AC symbols/HO patterns not handled yet)

Higher-order pattern-matching

symbol R:TYPE; symbol 0:R; symbol sin:R \rightarrow R; symbol cos:R \rightarrow R; symbol D:(R \rightarrow R) \rightarrow (R \rightarrow R); rule D (λ x, sin \$F.[x]) $\hookrightarrow \lambda$ x, D \$F.[x] \times cos \$F.[x]; rule D (λ x, \$V.[]) $\hookrightarrow \lambda$ x, 0;

Non-linear matching

Example: decision procedure for group theory

```
symbol G : TYPE;
symbol 1 : G;
symbol \cdot : G \rightarrow G \rightarrow G; notation \cdot infix 10;
symbol inv : G \rightarrow G;
rule ($x \cdot $y) \cdot $z \rightarrow $x \cdot ($y \cdot $z)
with 1 \cdot $x \rightarrow $x
with $x \cdot 1 \rightarrow $x
with $x \cdot 1 \rightarrow $x
with inv $x \cdot $x \rightarrow 1
with $x \cdot inv $x \rightarrow 1
with $x \cdot (inv $x \cdot $y) \rightarrow $y
with $x \cdot (inv $x \cdot $y) \rightarrow $y
with $x \cdot (inv $x \cdot $y) \rightarrow $y
with inv 1 \rightarrow 1
with inv (inv $x) \rightarrow $x
with inv ($x \cdot $y) \rightarrow inv $y \cdot inv $x;
```

Queries and assertions

```
print id ;
type term ;
compute term ;
(assert | assertnot) id * + term (: |=) term ;
```

```
print +; // print type and rules too
print N; // print constructors and induction principle
```

```
type \times;
compute 2 \times 5;
```

assert x y z \vdash x + y \times z \equiv x + (y \times z); assertnot x y z \vdash x + y \times z \equiv (x + y) \times z;

Reducing proof checking to type checking

(aka the Curry-Howard isomorphism)

// type of propositions
symbol Prop : TYPE;
symbol = : $N \rightarrow N \rightarrow$ Prop; notation = infix 1;
// interpretation of propositions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop \rightarrow TYPE;
// examples of axioms
symbol refl x : Prf(x = x);

symbol s-mon x y : Prf(x = y) \rightarrow Prf(s x = s y); symbol ind_N (p : N \rightarrow Prop) (case_0: Prf(p 0)) (case_s: Π x : N, Prf(p x) \rightarrow Prf(p(s x))) (n : N) : Prf(p n);

Stating an axiom vs Proving a theorem

Stating an axiom:

opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x);
// no definition given now
// one can still be given later with a rule

Proving a theorem:

```
opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x) :=
// generates the typing goal Prf (0 + x = x)
// a proof must be given now
begin
    ... // proof script
end;
```

Goals and proofs

symbol declarations/definitions can generate:

•	typing goals	$x_1: A_1, \ldots, x_n: A_n \vdash ?: B$
•	unification goals	$x_1: A_1, \ldots, x_n: A_n \vdash t \equiv u$

these goals can be solved by writing proof 's:

- a proof is a ;-separated sequence of proof_step 's
- a *proof_step* is a *tactic* followed by as many *proof* 's enclosed in curly braces as the number of goals generated by the *tactic*

tactic 's for unification goals:

• solve (applied automatically)

Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

```
opaque symbol 0_is_neutral_for_+ x : Prf(0 + x = x) :=
begin
    induction
      {reflexivity;}
      {assume x h; simplify; rewrite h; reflexivity;}
end;
```

Tactics for typing goals

- simplify [id]
- refine term
- assume id^+
- generalize id
- apply term
- induction
- have id : term
- reflexivity
- symmetry
- rewrite [right] [pattern] term
- why3

like Coq SSReflect

calls external prover

Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily define inductive-recursive types in Dedukti or Lambdapi:

// lists without duplicated elements constant symbol L : TYPE; symbol $\notin : N \to L \to Prop$; notation \notin infix 20; constant symbol nil : L; constant symbol cons x l : Prf(x \notin l) \to L; rule _ \notin nil $\hookrightarrow \top$ with $x \notin$ cons $y \leq 1 _ \hookrightarrow x \neq y \land x \notin l;$

Command for generating induction principles

(currently for strictly positive parametric inductive types only)

inductive N : TYPE := 0 : $N \mid s : N \rightarrow N$;

is equivalent to:

```
symbol N : TYPE;

symbol 0 : N;

symbol s : N \rightarrow N;

symbol ind_N (p : N \rightarrow Prop)

(case_0: Prf(p 0))

(case_s: \Pi x : N, Prf(p x) \rightarrow Prf(p(s x)))

(n : N) : Prf(p n);

rule ind_N $p $c0 $cs 0 \leftrightarrow $c0

with ind_N $p $c0 $cs (s $x)

\leftrightarrow $cs $x (ind_N $p $c0 $cs $x)
```

Example of inductive-inductive type

/* contexts and types in dependent type theory Forsberg's 2013 PhD thesis */

// contexts inductive Ctx : TYPE := $| \Box : Ctx$ $| \cdot \Gamma : Ty \Gamma \rightarrow Ctx$

// types with Ty : Ctx \rightarrow TYPE := | U Γ : Ty Γ | P Γ a : Ty (\cdot Γ a) \rightarrow Ty Γ ;

Lambdapi's additional features wrt Dkcheck/Kocheck

Lambdapi is an *interactive* proof assistant for $\lambda \Pi / \mathcal{R}$

- has its own syntax and file extension lp
- can read and output dk files
- supports Unicode characters and infix operators
- symbols can have implicit arguments
- symbol declaration/definition generates typing/unification goals
- goals can be solved by structured proof scripts (tactic trees)
- provides a rewrite tactic similar to Coq/SSReflect
- can call external (first-order) theorem provers
- provides a command for generating induction principles
- provides a local confluence checker
- handles associative-commutative symbols differently
- supports user-defined unification rules

Exercise for next lecture

- install https://github.com/Deducteam/lambdapi
- have a look at https://lambdapi.readthedocs.io/
- and the tutorial tests/OK/tutorial.lp