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Summary of first lecture

Introduction to:

• logical frameworks

• λ-calculus

• simple types

• dependent types

• rewriting

• λΠ-calculus modulo rewriting (λΠ/R)

• Dedukti language

• Lambdapi proof assistant
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Encoding logics in λΠ/R

we have seen what is a theory in the λΠ-calculus modulo rewriting

we are now going to see how to encode logics as λΠ/R theories



First-order logic

• the set of terms

– built from a set of function symbols equipped with an arity

• the set of propositions

– built from a set of predicate symbols equipped with an arity
– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)



Natural deduction

provability, ⊢, is a relation between a sequence of propositions Γ
(the assumptions) and a proposition B (the conclusion) inductively
defined from introduction and elimination rules for each connective:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-elim)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro) Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A (∀-elim)
Γ ⊢ ∀x ,A

Γ ⊢ A{(x , u)}

. . .
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Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

• the set of propositions Prop : TYPE

– built from a set of predicate symbols equipped with an arity
predicate symbol: I → . . . → I → Prop

– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)
but how to encode proofs?



Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

logic λ-calculus

proposition type
proof λ-term

assumption variable

⇒ →
⇒-intro abstraction
⇒-elim application

∀ Π
. . . . . .

the Curry-de Bruijn-Howard isomorphism reduces:

• proof-checking to type-checking

• provability to type inhabitation
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Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

A1, . . . ,An ; x1 :A1, . . . , xn :An

by mapping every deduction rule to a λ-term construction
the typing rules of λΠ correspond to natural deduction rules!

(⇒-intro)
Γ, x :A ⊢ t :B

Γ ⊢ λx : A, t :A ⇒ B

(⇒-elim)
Γ ⊢ t :A ⇒ B Γ ⊢ u :A

Γ ⊢ tu :B

(∀-intro) Γ ⊢ t :A x /∈ Γ

Γ ⊢ λx , t : ∀x ,A

(∀-elim)
Γ ⊢ t : ∀x ,A

Γ ⊢ tu : A{(x , u)}
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Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ,→ Prf A → Prf B



Encoding ∀

we can do something similar for ∀ : (I → Prop) → Prop by taking:

Prf (∀A) ,→ Πx : I ,Prf (Ax)



Encoding the other connectives
the other connectives can be defined by using a meta-level
quantification on propositions:

Prf (A∧B) ,→ Π♭ : Prop, (Prf A → Prf B → Prf ♭) → Prf ♭

note that introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A,λb : Prf B,λ♭ : Prop,λh : Prf A → Prf B → Prf ♭, hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A,λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A



To summarize: λΠ/R-theory FOL for first-order logic

signature ΣFOL:

I : TYPE
f : I → . . . → I → I for each function symbol f of arity n
Prop : TYPE
P : I → . . . → I → Prop for each predicate symbol P of arity n
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
Prf : Prop → TYPE

a : Prf A for each axiom A

rules RFOL:

Prf (A⇒B) ,→ Prf A → Prf B
Prf (∀A) ,→ Πx : I ,Prf (Ax)

Prf (A∧B) ,→ Π♭ : Prop, (Prf A → Prf B → Prf ♭) → Prf ♭
Prf⊥ ,→ Π♭ : Prop,Prf ♭

Prf (¬A) ,→ Prf A → Prf⊥
. . .



Encoding of first-order logic in λΠ/FOL

encoding of terms:

|x | = x
|ft1 . . . tn| = f |t1| . . . |tn|

encoding of propositions:

|Pt1 . . . tn| = P |t1| . . . |tn|
|⊤| = ⊤
|A ∧ B| = |A|∧ |B |
|∀x ,A| = ∀(λx : I , |A|)
. . .
|Γ,A| = |Γ|, x∥Γ∥+1 : A

encoding of proofs:�����
πΓ,A⊢B

Γ ⊢ A ⇒ B
(⇒i )

����� = λx∥Γ∥+1 : Prf |A|, |πΓ,A⊢B |
�����
πΓ⊢A⇒B πΓ⊢A

Γ ⊢ B
(⇒e)

����� = |πΓ⊢A⇒B | |πΓ⊢A|

. . .



Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|
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Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|

but, if we find a term t of type Prf |A|, can we deduce that A is
provable ?

• yes, the encoding is conservative: if Prf |A| is inhabited then A
is provable

proof sketch: because ,→β terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction



Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

Ik : TYPE
∀k : (Ik → Prop) → Prop

Prf (∀kA) ,→ Πx : Ik ,Prf (Ax)



Polymorphic first-order logic

same trick as Curry-de Bruijn-Howard

Set : TYPE
El : Set → TYPE

ι : Set for each sort ι
∀ : Πa : Set, (El a → Prop) → Prop

Prf (∀ap) ,→ Πx : El a,Prf (p x)



Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
. . . . . .
ω any set
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Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
. . . . . .
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ,→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ,→ Prop



Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)



Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ,→ Πx : El a,El(b x)



Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ,→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ,→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι,π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)

and returns a term of type El ι



Encoding the calculus of constructions

we now have all the ingredients to encode
the calculus of constructions:

system PTS rule λΠ/R rule

simple types TYPE, TYPE Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)
polymorphic types KIND, TYPE Prf (∀ab) ,→ Πx : El a,Prf (b x)
dependent types TYPE, KIND El(π a b) ,→ Πx : Prf a,El(b x)
type constructors KIND, KIND El(a;d b) ,→ Πx : El a,El(b x)



Encoding Functional Pure Type Systems
terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′



Encoding Functional Pure Type Systems
(Cousineau & Dowek, 2007)

signature:

Us : TYPE for each sort s ∈ S
Els : Us → TYPE

s1 : Us2 for every (s1, s2) ∈ A
πs1,s2 : Πa : Us1 , (Els1 a → Us2) → Us3 for every (s1, s2, s3) ∈ P

rules:

Els2 s1 ,→ Us1 for every (s1, s2) ∈ A
Els3(πs1,s2 a b) ,→ Πx : Els1 a,Els2(b x) for every (s1, s2, s3) ∈ P

encoding:

|x |Γ = x
|s|Γ = s
|λx : A, t|Γ = λx : Els |A|Γ, |t|Γ,x :A if Γ ⊢ A : s
|tu|Γ = |t|Γ|u|Γ
|Πx : A,B |Γ = πs1,s2 |A|Γ(λx : Els1 |A|Γ, |B |Γ,x :A)

if Γ ⊢ A : s1 and Γ, x : A ⊢ B : s2



Encoding other features

• recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)

– different approaches, no general theory
– encoding in recursors (ongoing work by Felicissimo & Cockx)

• universe polymorphism (Genestier 2020)

– requires rewriting with matching modulo AC
or rewriting on AC canonical forms

• η-conversion on function types (Genestier 2020)

• predicate subtyping with proof irrelevance (Hondet 2020)

• co-inductive objects and co-recursion (Felicissimo 2021)
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from slides by Guillaume Burel at the Dedukti school (June 2022)



ITP vs ATP

Limitations of interactive theorem provers (ITP):

• lack of automation

• need for specially trained experts

• bottleneck for widespread use

Limitations of automated theorem provers (ATP):

• lack of confidence

• highly optimized tools

• code too complex to be certified



Cooperation

ITP:

• use ATPs to discharge some proof obligations
e.g. Sledgehammer, SMTCoq

ATP:

• Export proofs that can be independently checked

• Ideally, checkable by a well known tool



Ideal goal

ITP

formula

ATP

proof

translation call

outputreconstruction



From Lambdapi to ATPs

Why3:

• platform for deductive program verification

• able to delegate proofs to many provers

• https://why3.lri.fr/

Calling provers within Lambdapi:

• Tactic why3



Current why3 tactic

Lambdapi abstract Why3

Vampire

AltErgo

CVC4

goal FOL

formula

return
yes

goal admitted
as an axiom



Trusting ATPs

ATP:

• quite big piece of software

• complex proof calculi

• finely tuned, optimization hacks

Trust?

• Originally, only answer “yes”/“no” (more often, “maybe”)

• More and more, produce proof traces/big steps proofs



Trusting ATPs

To increase confidence:

• either build a certified proof checker for proof traces
e.g. Coq certified checker for DRAT proof traces of SAT solvers

• or directly produce a proof checkable by your favorite assistant

Problem
.p

Instrumented
ATP

Proof
.dk



Instrumenting a prover to produce proofs

Pros:

• Access to all needed informations

Cons:

• Needs to embed the calculus of the prover into Dedukti

• Needs to know precisely the code of the prover

more or less easy depending complexity of code/proof calculus
easier if proof output designed from the start (e.g. Zenon)

⇒ can only be done for a few provers



Provers outputing Dedukti proofs

• iProverModulo:
extension of iProver for Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

• ZenonModulo:
extension of Zenon for Deduction Modulo Theory + Arithmetic
https://github.com/Deducteam/zenon modulo.git

• ArchSAT:
SMT solver
https://github.com/Gbury/archsat



Translating proofs

First, need to carefully choose in which theory we are working
e.g. FOL

Then, two approaches:

• Directly translate proofs into Dedukti, e.g. iProverModulo

• Embedding the proof calculus into Dedukti, e.g. ZenonModulo



iProverModulo (Burel 2011)

Patch to iProver (Korovin 2008)

iProver: Combination of two proof procedures:

• Inst-Gen

• Ordered resolution

iProverModulo: add support for Deduction Modulo Theory



Resolution Calculus

Literal: atom A or negation of atom ¬A
Clause: set/disjunction of literals L1 ∨ . . . ∨ Lm (m ≥ 0)
Problem: set/conjunction of clauses C1 ∧ . . . ∧ Ck

Derive new clauses using

A,C ¬B ,D
Cσ,Dσ

σ = mgu(A,B)

until the empty clause is produced



Translation of clauses

we want to prove (C1 ∧ . . . ∧ Ck) ⇒ ⊥

(C1 ∧ . . . ∧ Ck) ⇒ ⊥ is equivalent to (C1 ⇒ ⊥) ∨ . . . ∨ (Ck ⇒ ⊥)
(L1 ∨ . . . ∨ Lm) ⇒ ⊥ is equivalent to (L1 ⇒ ⊥) ∧ . . . ∧ (Lm ⇒ ⊥)

C = {L1, . . . , Lm} which corresponds to ∀x1, . . . , ∀xp, L1 ∨ . . .∨Lm,
where x1, .., xp are the free variables of L1, .., Lm, is translated as:

Πx1 : I , . . .Πxp : I ,Π♭ : Prop, |L1|♭ → . . . → |Lm|♭ → Prf ♭

with |A|♭ = Prf A → Prf ♭ and |¬A|♭ = (Prf A → Prf ♭) → Prf ♭

(remember that Prf⊥ ,→ Π♭ : Prop,Prf ♭)



Translation of propositional resolution

A, L1, . . . , Lm ¬A, Lm+1, . . . , Ln

L1, . . . , Ln

given c : |A, L1, . . . , Lm|
= Π♭ : Prop, |A|♭ → |L1|♭ → . . . → |Lm|♭ → Prf ♭

and d : |¬A, Lm+1, . . . , Ln|
= Π♭ : Prop, (|A|♭ → Prf ♭) → |Lm+1|♭ → . . . → |Ln|♭ → Prf ♭

we obtain
e : |L1, . . . , Ln| = Π♭ : Prop, |L1|♭ → . . . → |Ln|♭ → Prf ♭

by taking
e = λ♭,λl1, . . . ,λln, c ♭ (λa, d ♭ (λa, aa) lm+1 . . . ln) l1 . . . lm



Limits

Can handle various simplification rules, rewriting

Can be extended to superposition (E, Vampire, . . . )

But:

• works if the proof uses resolution only (i.e. no Inst-Gen)

• no translation of the transformation into clauses



ZenonModulo
(Delahaye, Doligez, Gilbert, Halmagrand, and Hermant, 2013)

• extension of Zenon to Deduction Modulo Theory

• tableau-based

• polymorphic first-order logic with equality



Tableau proofs

• proofs by contradiction

• roughly bottom-up sequent-calculus with metavariables

P ,¬P ⊙⊙
¬(A ⇒ B)

α¬⇒
A,¬B

¬(A ∧ B)
β¬∧¬A | ¬B

Example of proof:

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ⊙⊙
¬P ⊙⊙



Deep embedding of proof calculus

P ,¬P ⊙⊙ :

symbol Rax p : Prf p → Prf (¬ p) → Prf ⊥;

¬(A ⇒ B)
α¬⇒

A,¬B :

symbol R¬⇒ a b :

(Prf a → Prf(¬ b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧ B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥)
→ (Prf(¬ b) → Prf ⊥) → Prf (¬(a ∧ b)) → Prf ⊥;



Deep translation of the example

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ⊙⊙
¬P ⊙⊙

opaque symbol goal : Prf ¬(p ⇒ (p ∧ p)) → Prf ⊥ :=
R¬⇒ p (p ∧ p) (λ π, R¬∧ p p (Rax p π) (Rax p π));



Making the embedding more shallow

by reducing it to Natural Deduction:

(∧I ) Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧El) Γ ⊢ A ∧ B

Γ ⊢ A
(∧Er) Γ ⊢ A ∧ B

Γ ⊢ A

(⇒ I )
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒E )

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

Natural Deduction in Lambdapi:

symbol ∧I p q : Prf p → Prf q → Prf (p ∧ q);

symbol ∧El p q : Prf (p ∧ q) → Prf p;

symbol ∧Er p q : Prf (p ∧ q) → Prf q;

symbol ⇒I p q : (Prf p → Prf q) → Prf (p ⇒ q);

symbol ⇒E p q : Prf (p ⇒ q) → Prf p → Prf q;



Defining Tableau rules in ND

rule Rax ,→ λ p h π, ¬E p π h;

rule R¬∧ ,→ λ p q h1 h2 h3 ,

h1 (¬I p (λ h5, h2 (¬I q (λ h6,

¬E (p ∧ q) h3 (∧I p q h5 h6 )))));

rule R¬⇒ ,→ λ p q h1 h2 ,

¬E (p ⇒ q) h2 (⇒I p q (λ h3 , ⊥E (h1 h3

(¬I q (λ h4 , ¬E (p ⇒ q) h2 (⇒I p q (λ _, h4 ))))) q));

correctness follows from subject reduction
which is checked automatically by Lambdapi!

compute goal;

assert ⊢ goal ≡ λ h2 , ¬E (p ⇒ (p ∧ p)) h2 (⇒I p (p ∧ p)

(λ h3, ⊥E (¬E (p ⇒ (p ∧ p)) h2

(⇒I p (p ∧ p) (λ _, ∧I p p h3 h3))) (p ∧ p)));



Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

rule ⇒I ,→ λ p q π, π;
rule ⇒E ,→ λ p q π, π;

rule ∧I ,→ λ p q πp πq r πp⇒q⇒r, πp⇒q⇒r πp πq;
rule ∧El ,→ λ p q πp∧q, πp∧q p (λ x _, x);

rule ∧Er ,→ λ p q πp∧q, πp∧q q (λ _ x, x);

compute goal;

assert ⊢ goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));



Limits of instrumentation

Provers can be hard to instrument to produce Dedukti proofs

• large piece of software

• developers not expert in λΠ-calculus modulo theory

• non stable and quite big proof calculus



Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). �

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or
– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

�

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u ̸≃v ∨R

σ(R)

if σ = mgu(u, v) and σ(u ��
v) is eligible for resolution.
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• Superposition into negative literals :

(SN)
s≃ t ∨ S u ̸≃v ∨R

σ(u[p ← t] ̸≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s≃ t ∨ S u≃v ∨R

σ(u[p ← t]≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u�v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s≃ t ∨ S u ̸≃v ∨R

σ(S ∨ (u ̸≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s≃ t ∨ S u≃v ∨R

σ(S ∨ (u≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s≃ t ∨ u≃v ∨R

σ(t ̸≃v ∨ u≃v ∨R)

if σ = mgu(s,u), σ(t) �>
σ(s) and σ(s� t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s≃ t u ̸≃v ∨R

s≃ t u[p ← σ(t)] ̸≃v ∨R
if u|p = σ(s) and σ(s) > σ(t).
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• Rewriting of positive literals2:

(RP)
s≃ t u≃v ∨R

s≃ t u[p ← σ(t)]≃v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u� v is not eligible for
paramodulation or v > u or
p �= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s≃ t u[p ← σ(s)]≃u[p ← σ(t)] ∨R

s≃ t

• Positive simplify-reflect3:

(PS)
s≃ t u[p ← σ(s)] ̸≃u[p ← σ(t)] ∨R

s≃ t R

• Negative simplify-reflect

(NS)
s ̸≃ t σ(s) ̸≃σ(t) ∨R

s ̸≃ t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s� t u�v ∨R

s� t u[p ← σ(t)]�v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u�
v is not eligible for paramdulation or
u �> v or p �= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).
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• Deletion of duplicate literals :

(DD)
s≃ t ∨ s≃ t ∨R

s≃ t ∨R

• Deletion of resolved literals :

(DR)
s ̸≃s ∨R

R

• Destructive equality resolution:

(DE)
x ̸≃y ∨R

σ(R)
if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s≃̇t) C ∨ s≃̇t

σ(C ∨R) C ∨ s≃̇t

where s�̇t is the negation of
s�̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R

σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S

σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.
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Proof trace

But often, provers produce at least a proof trace:

• list of formulas that were derived to obtain the proof

• sometimes with more information

– premises
– name of the inference rules
– theory
– . . .



Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

• list of formulas

• annotated by an inference tree whose leaves are other formulas

cnf(c_0_60,plain,

( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).



Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

• list of formulas

• annotated by an inference tree whose leaves are other formulas

cnf(c_0_60,plain,

( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus



Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

• Prove each step using a Dedukti producing tool

• Combine those proofs to get a proof of the original formula

Try to be agnostic:

• w.r.t. the prover that produces the trace

• w.r.t. the prover that reproves the steps



Ekstrakto (El Haddad 2021)

• Input: TSTP proof trace

• Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto



Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo



Experimental evaluation

Benchmark:

• CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

• E and Vampire

Step provers:

• ZenonModulo and ArchSat



Results

Percentage of reconstructed proof steps

Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of completely reconstructed proofs

Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%



Non provable steps

Problem:

• some steps are not provable
their conclusion is not a logical consequence of their premises

• OK because they preserve provability

• but Ekstrakto cannot work for them



Non provable steps

Problem:

• some steps are not provable
their conclusion is not a logical consequence of their premises

• OK because they preserve provability

• but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ∀⃗x , ∃y ,A[x⃗ , y ] ⊢ B iff Γ, ∀⃗x ,A[x⃗ , f (x⃗)] ⊢ B for a fresh f

Present in the CNF transformation used by almost all ATPs



Skonverto (El Haddad 2021)

Inputs:

• an axiom and its Skolemized version

• a Lambdapi proof using the latter

Output:

• a Lambdapi proof using the non-Skolemized axiom



Content

Implementation of Dowek&Werner’s constructive proof of Skolem
theorem (2005) in the context of first-order natural deduction

Problem:

• the proof has to be in normal form

• also w.r.t. so-called commuting cuts



Commuting cuts

Γ ⊢ A ∨ B Γ,A ⊢ C ∧ D Γ,B ⊢ C ∧ D ∨E
Γ ⊢ C ∧ D ∧El
Γ ⊢ C

⇝

Γ ⊢ A ∨ B

Γ,A ⊢ C ∧ D ∧El
Γ,A ⊢ C

Γ,B ⊢ C ∧ D ∧El
Γ,B ⊢ C ∨E

Γ ⊢ C



Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

⇒ we need to stay at the ND level
and add rules to reduce commuting cuts:

rule ∧El $c $d (∨E $a $b $paorb ($c ∧ $d) $pac $pbc)
,→ ∨E $a $b $paorb $c (λ pa , ∧El $c $d ($pac pa))

(λ pb , ∧El $c $d ($pbc pb));



Example proof with Skolem symbol

symbol goal

(ax_tran : Prf (∀ (λ X1 , ∀ (λ X2 , ∀ (λ X3 ,

(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

// skolemized version of

// (ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_step : Prf (∀ (λ X, (p X (s (f X))))))

(ax_congr : Prf (∀ (λ X1, ∀ (λ X2 ,

(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X, ((p a (s (s X))))))))

: Prf ⊥
:= ax_goal (∃I (λ X, p a (s (s X))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));



Example proof without Skolem symbol
generated by Skonverto

symbol goal

(ax_tran : Prf (∀ (λ X1 , ∀ (λ X2 , ∀ (λ X3 ,

(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1, ∀ (λ X2 ,

(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X4 , ((p a (s (s X4 ))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1 , ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2 )))));



Conclusion

Instrumenting a prover to produce Dedukti proofs

• good if you start your prover from scratch

Reconstructing proofs

• more adapted for existing provers

• cannot reconstruct all proofs

• useful for proof assistants using provers internally
e.g. PVS, Atelier B



Putting everything together

Dedukti ATP

Ekstrakto
+ Skonverto

Formula

Pr
oo

f t
rac

e
Proof


