
EuroProofNet

Introduction to Proof System Interoperability

Frédéric Blanqui

Deduc⊢eam

September 2022

Summary of first lecture

Introduction to:

• logical frameworks

• λ-calculus

• simple types

• dependent types

• rewriting

• λΠ-calculus modulo rewriting (λΠ/R)

• Dedukti language

• Lambdapi proof assistant

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in λΠ/R

Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Encoding logics in λΠ/R

we have seen what is a theory in the λΠ-calculus modulo rewriting

we are now going to see how to encode logics as λΠ/R theories

First-order logic

• the set of terms

– built from a set of function symbols equipped with an arity

• the set of propositions

– built from a set of predicate symbols equipped with an arity
– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)

Natural deduction

provability, ⊢, is a relation between a sequence of propositions Γ
(the assumptions) and a proposition B (the conclusion) inductively
defined from introduction and elimination rules for each connective:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-elim)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro) Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A (∀-elim)
Γ ⊢ ∀x ,A

Γ ⊢ A{(x , u)}

. . .

Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

• the set of propositions Prop : TYPE

– built from a set of predicate symbols equipped with an arity
predicate symbol: I → . . . → I → Prop

Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

• the set of propositions Prop : TYPE

– built from a set of predicate symbols equipped with an arity
predicate symbol: I → . . . → I → Prop

– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

• the set of propositions Prop : TYPE

– built from a set of predicate symbols equipped with an arity
predicate symbol: I → . . . → I → Prop

– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)
but how to encode proofs?

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

logic λ-calculus

proposition type
proof λ-term

assumption variable

⇒ →
⇒-intro abstraction
⇒-elim application

∀ Π
.

the Curry-de Bruijn-Howard isomorphism reduces:

• proof-checking to type-checking

• provability to type inhabitation

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction

(⇒-intro)
Γ, A ⊢ B

Γ ⊢ A ⇒ B

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro) Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A

(∀-elim)
Γ ⊢ ∀x ,A

Γ ⊢ A{(x , u)}

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

A1, . . . ,An ; x1 :A1, . . . , xn :An

(⇒-intro)
Γ, A ⊢ B

Γ ⊢ A ⇒ B

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro) Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A

(∀-elim)
Γ ⊢ ∀x ,A

Γ ⊢ A{(x , u)}

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

A1, . . . ,An ; x1 :A1, . . . , xn :An

by mapping every deduction rule to a λ-term construction
the typing rules of λΠ correspond to natural deduction rules!

(⇒-intro)
Γ, x :A ⊢ t :B

Γ ⊢ λx : A, t :A ⇒ B

(⇒-elim)
Γ ⊢ t :A ⇒ B Γ ⊢ u :A

Γ ⊢ tu :B

(∀-intro) Γ ⊢ t :A x /∈ Γ

Γ ⊢ λx , t : ∀x ,A

(∀-elim)
Γ ⊢ t : ∀x ,A

Γ ⊢ tu : A{(x , u)}

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ,→ Prf A → Prf B

Encoding ∀

we can do something similar for ∀ : (I → Prop) → Prop by taking:

Prf (∀A) ,→ Πx : I ,Prf (Ax)

Encoding the other connectives
the other connectives can be defined by using a meta-level
quantification on propositions:

Prf (A∧B) ,→ Π♭ : Prop, (Prf A → Prf B → Prf ♭) → Prf ♭

note that introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A,λb : Prf B,λ♭ : Prop,λh : Prf A → Prf B → Prf ♭, hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A,λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A

To summarize: λΠ/R-theory FOL for first-order logic

signature ΣFOL:

I : TYPE
f : I → . . . → I → I for each function symbol f of arity n
Prop : TYPE
P : I → . . . → I → Prop for each predicate symbol P of arity n
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
Prf : Prop → TYPE

a : Prf A for each axiom A

rules RFOL:

Prf (A⇒B) ,→ Prf A → Prf B
Prf (∀A) ,→ Πx : I ,Prf (Ax)

Prf (A∧B) ,→ Π♭ : Prop, (Prf A → Prf B → Prf ♭) → Prf ♭
Prf⊥ ,→ Π♭ : Prop,Prf ♭

Prf (¬A) ,→ Prf A → Prf⊥
. . .

Encoding of first-order logic in λΠ/FOL

encoding of terms:

|x | = x
|ft1 . . . tn| = f |t1| . . . |tn|

encoding of propositions:

|Pt1 . . . tn| = P |t1| . . . |tn|
|⊤| = ⊤
|A ∧ B| = |A|∧ |B |
|∀x ,A| = ∀(λx : I , |A|)
. . .
|Γ,A| = |Γ|, x∥Γ∥+1 : A

encoding of proofs:�����
πΓ,A⊢B

Γ ⊢ A ⇒ B
(⇒i)

����� = λx∥Γ∥+1 : Prf |A|, |πΓ,A⊢B |
�����
πΓ⊢A⇒B πΓ⊢A

Γ ⊢ B
(⇒e)

����� = |πΓ⊢A⇒B | |πΓ⊢A|

. . .

Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|

Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|

but, if we find a term t of type Prf |A|, can we deduce that A is
provable ?

Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|

but, if we find a term t of type Prf |A|, can we deduce that A is
provable ?

• yes, the encoding is conservative: if Prf |A| is inhabited then A
is provable

proof sketch: because ,→β terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

Ik : TYPE
∀k : (Ik → Prop) → Prop

Prf (∀kA) ,→ Πx : Ik ,Prf (Ax)

Polymorphic first-order logic

same trick as Curry-de Bruijn-Howard

Set : TYPE
El : Set → TYPE

ι : Set for each sort ι
∀ : Πa : Set, (El a → Prop) → Prop

Prf (∀ap) ,→ Πx : El a,Prf (p x)

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ,→ El a → El b

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ,→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ,→ Prop

Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)

Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ,→ Πx : El a,El(b x)

Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ,→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ,→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι,π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)

and returns a term of type El ι

Encoding the calculus of constructions

we now have all the ingredients to encode
the calculus of constructions:

system PTS rule λΠ/R rule

simple types TYPE, TYPE Prf (a⇒d b) ,→ Πx : Prf a,Prf (b x)
polymorphic types KIND, TYPE Prf (∀ab) ,→ Πx : El a,Prf (b x)
dependent types TYPE, KIND El(π a b) ,→ Πx : Prf a,El(b x)
type constructors KIND, KIND El(a;d b) ,→ Πx : El a,El(b x)

Encoding Functional Pure Type Systems
terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′

Encoding Functional Pure Type Systems
(Cousineau & Dowek, 2007)

signature:

Us : TYPE for each sort s ∈ S
Els : Us → TYPE

s1 : Us2 for every (s1, s2) ∈ A
πs1,s2 : Πa : Us1 , (Els1 a → Us2) → Us3 for every (s1, s2, s3) ∈ P

rules:

Els2 s1 ,→ Us1 for every (s1, s2) ∈ A
Els3(πs1,s2 a b) ,→ Πx : Els1 a,Els2(b x) for every (s1, s2, s3) ∈ P

encoding:

|x |Γ = x
|s|Γ = s
|λx : A, t|Γ = λx : Els |A|Γ, |t|Γ,x :A if Γ ⊢ A : s
|tu|Γ = |t|Γ|u|Γ
|Πx : A,B |Γ = πs1,s2 |A|Γ(λx : Els1 |A|Γ, |B |Γ,x :A)

if Γ ⊢ A : s1 and Γ, x : A ⊢ B : s2

Encoding other features

• recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)

– different approaches, no general theory
– encoding in recursors (ongoing work by Felicissimo & Cockx)

• universe polymorphism (Genestier 2020)

– requires rewriting with matching modulo AC
or rewriting on AC canonical forms

• η-conversion on function types (Genestier 2020)

• predicate subtyping with proof irrelevance (Hondet 2020)

• co-inductive objects and co-recursion (Felicissimo 2021)

Outline

Introduction

Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting

Dedukti language

Lambdapi proof assistant

Encoding logics in λΠ/R

Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

from slides by Guillaume Burel at the Dedukti school (June 2022)

ITP vs ATP

Limitations of interactive theorem provers (ITP):

• lack of automation

• need for specially trained experts

• bottleneck for widespread use

Limitations of automated theorem provers (ATP):

• lack of confidence

• highly optimized tools

• code too complex to be certified

Cooperation

ITP:

• use ATPs to discharge some proof obligations
e.g. Sledgehammer, SMTCoq

ATP:

• Export proofs that can be independently checked

• Ideally, checkable by a well known tool

Ideal goal

ITP

formula

ATP

proof

translation call

outputreconstruction

From Lambdapi to ATPs

Why3:

• platform for deductive program verification

• able to delegate proofs to many provers

• https://why3.lri.fr/

Calling provers within Lambdapi:

• Tactic why3

Current why3 tactic

Lambdapi abstract Why3

Vampire

AltErgo

CVC4

goal FOL

formula

return
yes

goal admitted
as an axiom

Trusting ATPs

ATP:

• quite big piece of software

• complex proof calculi

• finely tuned, optimization hacks

Trust?

• Originally, only answer “yes”/“no” (more often, “maybe”)

• More and more, produce proof traces/big steps proofs

Trusting ATPs

To increase confidence:

• either build a certified proof checker for proof traces
e.g. Coq certified checker for DRAT proof traces of SAT solvers

• or directly produce a proof checkable by your favorite assistant

Problem
.p

Instrumented
ATP

Proof
.dk

Instrumenting a prover to produce proofs

Pros:

• Access to all needed informations

Cons:

• Needs to embed the calculus of the prover into Dedukti

• Needs to know precisely the code of the prover

more or less easy depending complexity of code/proof calculus
easier if proof output designed from the start (e.g. Zenon)

⇒ can only be done for a few provers

Provers outputing Dedukti proofs

• iProverModulo:
extension of iProver for Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

• ZenonModulo:
extension of Zenon for Deduction Modulo Theory + Arithmetic
https://github.com/Deducteam/zenon modulo.git

• ArchSAT:
SMT solver
https://github.com/Gbury/archsat

Translating proofs

First, need to carefully choose in which theory we are working
e.g. FOL

Then, two approaches:

• Directly translate proofs into Dedukti, e.g. iProverModulo

• Embedding the proof calculus into Dedukti, e.g. ZenonModulo

iProverModulo (Burel 2011)

Patch to iProver (Korovin 2008)

iProver: Combination of two proof procedures:

• Inst-Gen

• Ordered resolution

iProverModulo: add support for Deduction Modulo Theory

Resolution Calculus

Literal: atom A or negation of atom ¬A
Clause: set/disjunction of literals L1 ∨ . . . ∨ Lm (m ≥ 0)
Problem: set/conjunction of clauses C1 ∧ . . . ∧ Ck

Derive new clauses using

A,C ¬B ,D
Cσ,Dσ

σ = mgu(A,B)

until the empty clause is produced

Translation of clauses

we want to prove (C1 ∧ . . . ∧ Ck) ⇒ ⊥

(C1 ∧ . . . ∧ Ck) ⇒ ⊥ is equivalent to (C1 ⇒ ⊥) ∨ . . . ∨ (Ck ⇒ ⊥)
(L1 ∨ . . . ∨ Lm) ⇒ ⊥ is equivalent to (L1 ⇒ ⊥) ∧ . . . ∧ (Lm ⇒ ⊥)

C = {L1, . . . , Lm} which corresponds to ∀x1, . . . , ∀xp, L1 ∨ . . .∨Lm,
where x1, .., xp are the free variables of L1, .., Lm, is translated as:

Πx1 : I , . . .Πxp : I ,Π♭ : Prop, |L1|♭ → . . . → |Lm|♭ → Prf ♭

with |A|♭ = Prf A → Prf ♭ and |¬A|♭ = (Prf A → Prf ♭) → Prf ♭

(remember that Prf⊥ ,→ Π♭ : Prop,Prf ♭)

Translation of propositional resolution

A, L1, . . . , Lm ¬A, Lm+1, . . . , Ln

L1, . . . , Ln

given c : |A, L1, . . . , Lm|
= Π♭ : Prop, |A|♭ → |L1|♭ → . . . → |Lm|♭ → Prf ♭

and d : |¬A, Lm+1, . . . , Ln|
= Π♭ : Prop, (|A|♭ → Prf ♭) → |Lm+1|♭ → . . . → |Ln|♭ → Prf ♭

we obtain
e : |L1, . . . , Ln| = Π♭ : Prop, |L1|♭ → . . . → |Ln|♭ → Prf ♭

by taking
e = λ♭,λl1, . . . ,λln, c ♭ (λa, d ♭ (λa, aa) lm+1 . . . ln) l1 . . . lm

Limits

Can handle various simplification rules, rewriting

Can be extended to superposition (E, Vampire, . . .)

But:

• works if the proof uses resolution only (i.e. no Inst-Gen)

• no translation of the transformation into clauses

ZenonModulo
(Delahaye, Doligez, Gilbert, Halmagrand, and Hermant, 2013)

• extension of Zenon to Deduction Modulo Theory

• tableau-based

• polymorphic first-order logic with equality

Tableau proofs

• proofs by contradiction

• roughly bottom-up sequent-calculus with metavariables

P ,¬P ⊙⊙
¬(A ⇒ B)

α¬⇒
A,¬B

¬(A ∧ B)
β¬∧¬A | ¬B

Example of proof:

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ⊙⊙
¬P ⊙⊙

Deep embedding of proof calculus

P ,¬P ⊙⊙ :

symbol Rax p : Prf p → Prf (¬ p) → Prf ⊥;

¬(A ⇒ B)
α¬⇒

A,¬B :

symbol R¬⇒ a b :

(Prf a → Prf(¬ b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧ B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥)
→ (Prf(¬ b) → Prf ⊥) → Prf (¬(a ∧ b)) → Prf ⊥;

Deep translation of the example

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ⊙⊙
¬P ⊙⊙

opaque symbol goal : Prf ¬(p ⇒ (p ∧ p)) → Prf ⊥ :=
R¬⇒ p (p ∧ p) (λ π, R¬∧ p p (Rax p π) (Rax p π));

Making the embedding more shallow

by reducing it to Natural Deduction:

(∧I) Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧El) Γ ⊢ A ∧ B

Γ ⊢ A
(∧Er) Γ ⊢ A ∧ B

Γ ⊢ A

(⇒ I)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒E)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

Natural Deduction in Lambdapi:

symbol ∧I p q : Prf p → Prf q → Prf (p ∧ q);

symbol ∧El p q : Prf (p ∧ q) → Prf p;

symbol ∧Er p q : Prf (p ∧ q) → Prf q;

symbol ⇒I p q : (Prf p → Prf q) → Prf (p ⇒ q);

symbol ⇒E p q : Prf (p ⇒ q) → Prf p → Prf q;

Defining Tableau rules in ND

rule Rax ,→ λ p h π, ¬E p π h;

rule R¬∧ ,→ λ p q h1 h2 h3 ,

h1 (¬I p (λ h5, h2 (¬I q (λ h6,

¬E (p ∧ q) h3 (∧I p q h5 h6)))));

rule R¬⇒ ,→ λ p q h1 h2 ,

¬E (p ⇒ q) h2 (⇒I p q (λ h3 , ⊥E (h1 h3

(¬I q (λ h4 , ¬E (p ⇒ q) h2 (⇒I p q (λ _, h4))))) q));

correctness follows from subject reduction
which is checked automatically by Lambdapi!

compute goal;

assert ⊢ goal ≡ λ h2 , ¬E (p ⇒ (p ∧ p)) h2 (⇒I p (p ∧ p)

(λ h3, ⊥E (¬E (p ⇒ (p ∧ p)) h2

(⇒I p (p ∧ p) (λ _, ∧I p p h3 h3))) (p ∧ p)));

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

rule ⇒I ,→ λ p q π, π;
rule ⇒E ,→ λ p q π, π;

rule ∧I ,→ λ p q πp πq r πp⇒q⇒r, πp⇒q⇒r πp πq;
rule ∧El ,→ λ p q πp∧q, πp∧q p (λ x _, x);

rule ∧Er ,→ λ p q πp∧q, πp∧q q (λ _ x, x);

compute goal;

assert ⊢ goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));

Limits of instrumentation

Provers can be hard to instrument to produce Dedukti proofs

• large piece of software

• developers not expert in λΠ-calculus modulo theory

• non stable and quite big proof calculus

Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). �

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or
– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

�

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u ̸≃v ∨R

σ(R)

if σ = mgu(u, v) and σ(u ��
v) is eligible for resolution.

8

• Superposition into negative literals :

(SN)
s≃ t ∨ S u ̸≃v ∨R

σ(u[p ← t] ̸≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s≃ t ∨ S u≃v ∨R

σ(u[p ← t]≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u�v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s≃ t ∨ S u ̸≃v ∨R

σ(S ∨ (u ̸≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s≃ t ∨ S u≃v ∨R

σ(S ∨ (u≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) �<
σ(t), σ(u) �< σ(v), σ(s� t)
is eligible for paramodula-
tion, σ(u ��v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s≃ t ∨ u≃v ∨R

σ(t ̸≃v ∨ u≃v ∨R)

if σ = mgu(s,u), σ(t) �>
σ(s) and σ(s� t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s≃ t u ̸≃v ∨R

s≃ t u[p ← σ(t)] ̸≃v ∨R
if u|p = σ(s) and σ(s) > σ(t).

9

• Rewriting of positive literals2:

(RP)
s≃ t u≃v ∨R

s≃ t u[p ← σ(t)]≃v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u� v is not eligible for
paramodulation or v > u or
p �= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s≃ t u[p ← σ(s)]≃u[p ← σ(t)] ∨R

s≃ t

• Positive simplify-reflect3:

(PS)
s≃ t u[p ← σ(s)] ̸≃u[p ← σ(t)] ∨R

s≃ t R

• Negative simplify-reflect

(NS)
s ̸≃ t σ(s) ̸≃σ(t) ∨R

s ̸≃ t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s� t u�v ∨R

s� t u[p ← σ(t)]�v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u�
v is not eligible for paramdulation or
u �> v or p �= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

• Deletion of duplicate literals :

(DD)
s≃ t ∨ s≃ t ∨R

s≃ t ∨R

• Deletion of resolved literals :

(DR)
s ̸≃s ∨R

R

• Destructive equality resolution:

(DE)
x ̸≃y ∨R

σ(R)
if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s≃̇t) C ∨ s≃̇t

σ(C ∨R) C ∨ s≃̇t

where s�̇t is the negation of
s�̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R

σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S

σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11

Proof trace

But often, provers produce at least a proof trace:

• list of formulas that were derived to obtain the proof

• sometimes with more information

– premises
– name of the inference rules
– theory
– . . .

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

• list of formulas

• annotated by an inference tree whose leaves are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

• list of formulas

• annotated by an inference tree whose leaves are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

• Prove each step using a Dedukti producing tool

• Combine those proofs to get a proof of the original formula

Try to be agnostic:

• w.r.t. the prover that produces the trace

• w.r.t. the prover that reproves the steps

Ekstrakto (El Haddad 2021)

• Input: TSTP proof trace

• Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto

Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Experimental evaluation

Benchmark:

• CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

• E and Vampire

Step provers:

• ZenonModulo and ArchSat

Results

Percentage of reconstructed proof steps

Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of completely reconstructed proofs

Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%

Non provable steps

Problem:

• some steps are not provable
their conclusion is not a logical consequence of their premises

• OK because they preserve provability

• but Ekstrakto cannot work for them

Non provable steps

Problem:

• some steps are not provable
their conclusion is not a logical consequence of their premises

• OK because they preserve provability

• but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ∀⃗x , ∃y ,A[x⃗ , y] ⊢ B iff Γ, ∀⃗x ,A[x⃗ , f (x⃗)] ⊢ B for a fresh f

Present in the CNF transformation used by almost all ATPs

Skonverto (El Haddad 2021)

Inputs:

• an axiom and its Skolemized version

• a Lambdapi proof using the latter

Output:

• a Lambdapi proof using the non-Skolemized axiom

Content

Implementation of Dowek&Werner’s constructive proof of Skolem
theorem (2005) in the context of first-order natural deduction

Problem:

• the proof has to be in normal form

• also w.r.t. so-called commuting cuts

Commuting cuts

Γ ⊢ A ∨ B Γ,A ⊢ C ∧ D Γ,B ⊢ C ∧ D ∨E
Γ ⊢ C ∧ D ∧El
Γ ⊢ C

⇝

Γ ⊢ A ∨ B

Γ,A ⊢ C ∧ D ∧El
Γ,A ⊢ C

Γ,B ⊢ C ∧ D ∧El
Γ,B ⊢ C ∨E

Γ ⊢ C

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

⇒ we need to stay at the ND level
and add rules to reduce commuting cuts:

rule ∧El $c $d (∨E $a $b $paorb ($c ∧ $d) $pac $pbc)
,→ ∨E $a $b $paorb $c (λ pa , ∧El $c $d ($pac pa))

(λ pb , ∧El $c $d ($pbc pb));

Example proof with Skolem symbol

symbol goal

(ax_tran : Prf (∀ (λ X1 , ∀ (λ X2 , ∀ (λ X3 ,

(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

// skolemized version of

// (ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_step : Prf (∀ (λ X, (p X (s (f X))))))

(ax_congr : Prf (∀ (λ X1, ∀ (λ X2 ,

(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X, ((p a (s (s X))))))))

: Prf ⊥
:= ax_goal (∃I (λ X, p a (s (s X))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));

Example proof without Skolem symbol
generated by Skonverto

symbol goal

(ax_tran : Prf (∀ (λ X1 , ∀ (λ X2 , ∀ (λ X3 ,

(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1, ∀ (λ X2 ,

(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X4 , ((p a (s (s X4))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1 , ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2)))));

Conclusion

Instrumenting a prover to produce Dedukti proofs

• good if you start your prover from scratch

Reconstructing proofs

• more adapted for existing provers

• cannot reconstruct all proofs

• useful for proof assistants using provers internally
e.g. PVS, Atelier B

Putting everything together

Dedukti ATP

Ekstrakto
+ Skonverto

Formula

Pr
oo

f t
rac

e
Proof

