EF EuroProofNet
 Introduction to Proof System Interoperability

Frédéric Blanqui

Deduc \vdash eam

September 2022

Summary of first lecture

Introduction to:

- logical frameworks
- λ-calculus
- simple types
- dependent types
- rewriting
- $\lambda \Pi$-calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$
- Dedukti language
- Lambdapi proof assistant

Outline

Introduction
Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting
Dedukti language
Lambdapi proof assistant

Encoding logics in $\lambda \Pi / \mathcal{R}$
Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

Encoding logics in $\lambda \Pi / \mathcal{R}$
we have seen what is a theory in the $\lambda \Pi$-calculus modulo rewriting we are now going to see how to encode logics as $\lambda \Pi / \mathcal{R}$ theories

First-order logic

- the set of terms
- built from a set of function symbols equipped with an arity
- the set of propositions
- built from a set of predicate symbols equipped with an arity
- and the logical connectives $T, \perp, \neg, \Rightarrow, \wedge, \vee, \Leftrightarrow, \forall, \exists$
- the set of axioms (the actual theory)
- the subset of provable propositions
- using deduction rules (e.g. natural deduction)

Natural deduction

provability, \vdash, is a relation between a sequence of propositions Γ (the assumptions) and a proposition B (the conclusion) inductively defined from introduction and elimination rules for each connective:

$$
\begin{aligned}
(\Rightarrow \text {-intro }) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \quad(\Rightarrow \text {-elim }) \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \\
& (\forall \text {-intro }) \frac{\Gamma \vdash A \quad x \notin \Gamma}{\Gamma \vdash \forall x, A} \quad(\forall \text {-elim }) \frac{\Gamma \vdash \forall x, A}{\Gamma \vdash A\{(x, u)\}}
\end{aligned}
$$

Encoding of first-order logic

- the set of terms $\quad I:$ TYPE
- built from a set of function symbols equipped with an arity

$$
\text { function symbol: } I \rightarrow \ldots \rightarrow I \rightarrow I
$$

Encoding of first-order logic

- the set of terms

I : TYPE

- built from a set of function symbols equipped with an arity

$$
\text { function symbol: } I \rightarrow \ldots \rightarrow I \rightarrow I
$$

- the set of propositions

Prop: TYPE

- built from a set of predicate symbols equipped with an arity predicate symbol: $I \rightarrow \ldots \rightarrow I \rightarrow$ Prop

Encoding of first-order logic

- the set of terms

I : TYPE

- built from a set of function symbols equipped with an arity

$$
\text { function symbol: } I \rightarrow \ldots \rightarrow I \rightarrow I
$$

- the set of propositions

Prop: TYPE

- built from a set of predicate symbols equipped with an arity predicate symbol: $I \rightarrow \ldots \rightarrow I \rightarrow$ Prop
- and the logical connectives $T, \perp, \neg, \Rightarrow, \wedge, \vee, \Leftrightarrow, \forall, \exists$
$\top:$ Prop, $\neg:$ Prop \rightarrow Prop, $\forall:(I \rightarrow$ Prop $) \rightarrow$ Prop, ...
we use λ-calculus to encode quantifiers: we encode $\forall x, A$ as $\forall(\lambda x: I, A)$

Encoding of first-order logic

- the set of terms

I: TYPE

- built from a set of function symbols equipped with an arity

$$
\text { function symbol: } I \rightarrow \ldots \rightarrow I \rightarrow I
$$

- the set of propositions

Prop: TYPE

- built from a set of predicate symbols equipped with an arity predicate symbol: $I \rightarrow \ldots \rightarrow I \rightarrow$ Prop
- and the logical connectives $\top, \perp, \neg, \Rightarrow, \wedge, \vee, \Leftrightarrow, \forall, \exists$
$\top:$ Prop, $\neg:$ Prop \rightarrow Prop, $\forall:(I \rightarrow$ Prop $) \rightarrow$ Prop,... we use λ-calculus to encode quantifiers: we encode $\forall x, A$ as $\forall(\lambda x: I, A)$
- the set of axioms (the actual theory)
- the subset of provable propositions
- using deduction rules (e.g. natural deduction)

Using λ-terms to represent proofs (Curry-de Bruijn-Howard isomorphism)

logic	λ-calculus
proposition proof assumption	type λ-term variable \Rightarrow
\Rightarrow-intro	\rightarrow
\Rightarrow abstraction	
\forall	application
\ldots	Π

the Curry-de Bruijn-Howard isomorphism reduces:

- proof-checking to type-checking
- provability to type inhabitation

Using λ-terms to represent proofs (Curry-de Bruijn-Howard isomorphism)
take the rules of natural deduction

$$
\begin{gathered}
(\Rightarrow \text {-intro }) \frac{\Gamma, \quad A \vdash \quad B}{\Gamma \vdash} \begin{array}{c}
\quad(\Rightarrow \text {-elim }) \frac{\Gamma \vdash B \Rightarrow B \quad \Gamma \vdash \quad A}{\Gamma \vdash} B \\
(\forall \text {-intro }) \frac{\Gamma \vdash \quad A \quad x \notin \Gamma}{\Gamma \vdash} \quad \forall x, A \\
(\forall \text {-elim }) \frac{\Gamma \vdash \quad \forall x, A}{\Gamma \vdash} A\{(x, u)\}
\end{array}
\end{gathered}
$$

Using λ-terms to represent proofs (Curry-de Bruijn-Howard isomorphism)
take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

$$
\begin{gathered}
A_{1}, \ldots, A_{n} \quad \leadsto \quad x_{1}: A_{1}, \ldots, x_{n}: A_{n} \\
(\Rightarrow-\text { intro }) \frac{\Gamma, \quad A \vdash \quad B}{\Gamma \vdash} \\
(\Rightarrow-\text { elim }) \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash} \quad A \Rightarrow \quad A \\
(\forall \text {-intro }) \frac{\Gamma \vdash \quad A \quad x \notin \Gamma}{\Gamma \vdash} \\
(\forall \text {-elim }) \frac{\Gamma \vdash \quad \forall x, A}{\Gamma \vdash} A\{(x, u)\}
\end{gathered}
$$

Using λ-terms to represent proofs (Curry-de Bruijn-Howard isomorphism)
take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

$$
A_{1}, \ldots, A_{n} \quad \leadsto \quad x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

by mapping every deduction rule to a λ-term construction
the typing rules of $\lambda \Pi$ correspond to natural deduction rules!

$$
\begin{gathered}
\left(\Rightarrow \text {-intro) } \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A, t: A \Rightarrow B}\right. \\
(\Rightarrow \text {-elim }) \frac{\Gamma \vdash t: A \Rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B} \\
(\forall \text {-intro }) \frac{\Gamma \vdash t: A \quad x \notin \Gamma}{\Gamma \vdash \lambda x, t: \forall x, A} \\
(\forall \text {-elim }) \frac{\Gamma \vdash t: \forall x, A}{\Gamma \vdash t u: A\{(x, u)\}}
\end{gathered}
$$

Encoding the Curry-de Bruijn-Howard isomorphism
terms of type Prop are not types. . .
but we can interpret a proposition as a type by taking:

$$
\text { Prf : Prop } \rightarrow \text { TYPE }
$$

$\operatorname{Prf} A$ is the type of proofs of proposition A

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. .
but we can interpret a proposition as a type by taking:

$$
\text { Prf : Prop } \rightarrow \text { TYPE }
$$

$\operatorname{Prf} A$ is the type of proofs of proposition A
but

$$
\begin{array}{ll}
\lambda x: \operatorname{Prf} A, x & : \quad \operatorname{Prf} A \rightarrow \operatorname{Prf} A \\
\lambda x: \operatorname{Prf} A, x & \nsim \quad \operatorname{Prf}(A \Rightarrow A)
\end{array}
$$

and

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .
but we can interpret a proposition as a type by taking:

$$
\text { Prf : Prop } \rightarrow \text { TYPE }
$$

$\operatorname{Prf} A$ is the type of proofs of proposition A
but

$$
\begin{array}{ll}
\lambda x: \operatorname{Prf} A, x & : \quad \operatorname{Prf} A \rightarrow \operatorname{Prf} A \\
\lambda x: \operatorname{Prf} A, x & \neq \operatorname{Prf}(A \Rightarrow A)
\end{array}
$$

and
unless we add the rewrite rule

$$
\operatorname{Prf}(A \Rightarrow B) \quad \hookrightarrow \quad \operatorname{Prf} A \rightarrow \operatorname{Prf} B
$$

Encoding \forall

we can do something similar for $\forall:(I \rightarrow$ Prop $) \rightarrow$ Prop by taking:

$$
\operatorname{Prf}(\forall A) \quad \hookrightarrow \quad \Pi x: I, \operatorname{Prf}(A x)
$$

Encoding the other connectives
the other connectives can be defined by using a meta-level quantification on propositions:

$$
\operatorname{Prf}(A \wedge B) \quad \hookrightarrow \quad \Pi b: \operatorname{Prop},(\operatorname{Prf} A \rightarrow \operatorname{Prf} B \rightarrow \operatorname{Prf} b) \rightarrow \operatorname{Prf} b
$$

note that introduction and elimination rules can be derived:
(\wedge-intro):
$\lambda a: \operatorname{Prf} A, \lambda b: \operatorname{Prf} B, \lambda b: \operatorname{Prop}, \lambda h: \operatorname{Prf} A \rightarrow \operatorname{Prf} B \rightarrow \operatorname{Prf} b, h a b$ is of type

$$
\operatorname{Prf} A \rightarrow \operatorname{Prf} B \rightarrow \operatorname{Prf}(A \wedge B)
$$

(\wedge-elim1):

$$
\lambda c: \operatorname{Prf}(A \wedge B), c A(\lambda a: \operatorname{Prf} A, \lambda b: \operatorname{Prf} B, a)
$$

is of type
$\operatorname{Prf}(A \wedge B) \rightarrow \operatorname{Prf} A$

To summarize: $\lambda \Pi / \mathcal{R}$-theory $F O L$ for first-order logic signature $\Sigma_{\text {FOL }}$:

```
I:TYPE
```

$f: I \rightarrow \ldots \rightarrow I \rightarrow I \quad$ for each function symbol f of arity n Prop: TYPE
$P: I \rightarrow \ldots \rightarrow I \rightarrow$ Prop \quad for each predicate symbol P of arity n T: Prop, \neg : Prop \rightarrow Prop, $\forall:(I \rightarrow$ Prop $) \rightarrow$ Prop, \ldots
Prf : Prop \rightarrow TYPE
$a: \operatorname{Prf} A \quad$ for each axiom A
rules $\mathcal{R}_{\text {FOL }}$:

$$
\begin{aligned}
\operatorname{Prf}(A \Rightarrow B) & \hookrightarrow \operatorname{Prf} A \rightarrow \operatorname{Prf} B \\
\operatorname{Prf}(\forall A) & \hookrightarrow \Pi x: I, \operatorname{Prf}(A x) \\
\operatorname{Prf}(A \wedge B) & \hookrightarrow \Pi b: \operatorname{Prop},(\operatorname{Prf} A \rightarrow \operatorname{Prf} B \rightarrow \operatorname{Prf} b) \rightarrow \operatorname{Prf} b \\
\operatorname{Prf} \perp & \hookrightarrow \Pi b: \operatorname{Prop}, \operatorname{Prf} b \\
\operatorname{Prf}(\neg A) & \hookrightarrow \operatorname{Prf} A \rightarrow \operatorname{Prf} \perp
\end{aligned}
$$

Encoding of first-order logic in $\lambda \Pi / F O L$

$$
\begin{array}{ll}
& \text { encoding of propositions: } \\
& \left|P t_{1} \ldots t_{n}\right|=P\left|t_{1}\right| \ldots\left|t_{n}\right| \\
\text { encoding of terms: } & |T|=T \\
|x|=x & |A \wedge B|=|A| \wedge|B| \\
\left|f t_{1} \ldots t_{n}\right|=f\left|t_{1}\right| \ldots\left|t_{n}\right| \mid & |\forall x, A|=\forall(\lambda x: I,|A|) \\
& \ldots \\
& |\Gamma, A|=|\Gamma|, x_{||\Gamma|+1}: A
\end{array}
$$

encoding of proofs:

$$
\begin{aligned}
& \left|\frac{\pi_{\Gamma, A \vdash B}}{\Gamma \vdash A \Rightarrow B}\left(\Rightarrow_{i}\right)\right|=\lambda x_{\|\Gamma\|+1}: \operatorname{Prf}|A|,\left|\pi_{\Gamma, A \vdash B}\right| \\
& \left|\frac{\pi_{\Gamma \vdash A \Rightarrow B} \pi_{\Gamma \vdash A}}{\Gamma \vdash B}\left(\Rightarrow_{e}\right)\right|=\left|\pi_{\Gamma \vdash A \Rightarrow B}\right|\left|\pi_{\Gamma \vdash A}\right|
\end{aligned}
$$

Properties of the encoding in $\lambda \Pi / F O L$

- a term is mapped to a term of type I
- a proposition is mapped to a term of type Prop
- a proof of A is mapped to a term of type $\operatorname{Prf}|A|$

Properties of the encoding in $\lambda \Pi / F O L$

- a term is mapped to a term of type I
- a proposition is mapped to a term of type Prop
- a proof of A is mapped to a term of type $\operatorname{Prf}|A|$
but, if we find a term t of type $\operatorname{Prf}|A|$, can we deduce that A is provable?

Properties of the encoding in $\lambda \Pi / F O L$

- a term is mapped to a term of type I
- a proposition is mapped to a term of type Prop
- a proof of A is mapped to a term of type $\operatorname{Prf}|A|$
but, if we find a term t of type $\operatorname{Prf}|A|$, can we deduce that A is provable?
- yes, the encoding is conservative: if $\operatorname{Prf}|A|$ is inhabited then A is provable
proof sketch: because \hookrightarrow_{β} terminates and is confluent, t has a normal form, and terms in normal form can be easily translated back in first-order logic and natural deduction

Multi-sorted first-order logic
for each sort I_{k} (e.g. point, line, circle), add:
I_{k} : TYPE

$$
\hat{\forall}_{k}:\left(I_{k} \rightarrow \text { Prop }\right) \rightarrow \text { Prop }
$$

$$
\operatorname{Prf}\left(\forall_{k} A\right) \hookrightarrow \Pi x: I_{k}, \operatorname{Prf}(A x)
$$

Polymorphic first-order logic
same trick as Curry-de Bruijn-Howard
Set $:$ TYPE
$E \prime: \operatorname{Set} \rightarrow$ TYPE
$\iota: \operatorname{Set}$
$\forall: \Pi a: \operatorname{Set},(E \prime a \rightarrow \operatorname{Prop}) \rightarrow \operatorname{Prop}$
$\operatorname{Prf}(\forall a p) \hookrightarrow \Pi x: E \prime a, \operatorname{Prf}(p x)$

Higher-order logic

order	quantification on
1	elements
2	sets of elements
3	sets of sets of elements
\ldots	\ldots
ω	any set

Higher-order logic

order	quantification on
1	elements
2	sets of elements
3	sets of sets of elements
\ldots	\ldots
ω	any set

quantification on functions:

$$
\begin{aligned}
& \leadsto: \text { Set } \rightarrow \text { Set } \rightarrow \text { Set } \\
& E I(a \sim b) \hookrightarrow E I a \rightarrow E I b
\end{aligned}
$$

Higher-order logic

order	quantification on
1	elements
2	sets of elements
3	sets of sets of elements
\ldots	\ldots
ω	any set

quantification on functions:

$$
\begin{aligned}
& \sim: \text { Set } \rightarrow \text { Set } \rightarrow \text { Set } \\
& E I(a \sim b) \hookrightarrow E I a \rightarrow E I b
\end{aligned}
$$

quantification on propositions/impredicativity (e.g. $\forall p, p \Rightarrow p$):
o : Set
El o \hookrightarrow Prop

Encoding dependent types

$$
\begin{aligned}
& \text { dependent implication: } \\
& \Rightarrow_{d}: \Pi a: \operatorname{Prop},(\operatorname{Prf} a \rightarrow \operatorname{Prop}) \rightarrow \operatorname{Prop} \\
& \operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi x: \operatorname{Prf} a, \operatorname{Prf}(b x)
\end{aligned}
$$

Encoding dependent types

$$
\begin{aligned}
& \text { dependent implication: } \\
& \Rightarrow_{d}: \Pi a: \operatorname{Prop},(\operatorname{Prf} a \rightarrow \operatorname{Prop}) \rightarrow \operatorname{Prop} \\
& \operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi x: \operatorname{Prf} a, \operatorname{Prf}(b x) \\
& \text { dependent types: } \\
& \sim_{d}: \Pi a: \operatorname{Set},(E l a \rightarrow \operatorname{Set}) \rightarrow \text { Set } \\
& E I\left(a \sim_{d} b\right) \hookrightarrow \Pi x: E I a, E l(b x)
\end{aligned}
$$

Encoding dependent types

```
dependent implication:
\(\Rightarrow_{d}\) : Пa : Prop, (Prf a \(\rightarrow\) Prop \() \rightarrow\) Prop
\(\operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi x: \operatorname{Prf} a, \operatorname{Prf}(b x)\)
dependent types:
\(\sim_{d}: \Pi a: S e t,(E / a \rightarrow \operatorname{Set}) \rightarrow\) Set
\(E I\left(a \sim{ }_{d} b\right) \hookrightarrow \Pi x: E I a, E I(b x)\)
proofs in object-terms:
\(\pi: \Pi p: \operatorname{Prop},(\operatorname{Prf} p \rightarrow\) Set \() \rightarrow\) Set
\(E l(\pi p a) \hookrightarrow \Pi x: \operatorname{Prf} p, E l(a x)\)
    example: div: \(E l\left(\iota \sim \iota \sim d \lambda y: E l \iota, \pi(y>0)\left(\lambda_{-}, \iota\right)\right)\)
    takes 3 arguments: \(x: E l \iota, y: E l \iota, p: \operatorname{Prf}(y>0)\)
and returns a term of type \(E / \iota\)
```


Encoding the calculus of constructions

we now have all the ingredients to encode
the calculus of constructions:

system	PTS rule	$\lambda \Pi / \mathcal{R}$ rule
simple types	TYPE, TYPE	$\operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi x: \operatorname{Prf} a, \operatorname{Prf}(b x)$
polymorphic types	KIND, TYPE	$\operatorname{Prf}(\forall a b) \hookrightarrow \Pi x: E I a, \operatorname{Prf}(b x)$
dependent types	TYPE, KIND	$E I(\pi a b) \hookrightarrow \Pi x: \operatorname{Prf} a, E I(b x)$
type constructors	KIND, KIND	$E I\left(a \rightarrow_{d} b\right) \hookrightarrow \Pi x: E I a, E I(b x)$

Encoding Functional Pure Type Systems terms and types:

$$
t:=x|t t| \lambda x: t, t|\Pi x: t, t| s \in \mathcal{S}
$$

typing rules:

$$
\begin{gathered}
\overline{\emptyset \vdash \quad \frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash} \quad \frac{\Gamma \vdash(x, A) \in \Gamma}{\Gamma \vdash x: A}} \\
(\text { sort }) \frac{\Gamma \vdash\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Gamma \vdash s_{1}: s_{2}} \\
(\text { prod }) \frac{\Gamma \vdash A: s_{1} \quad \Gamma, x: A \vdash B: s_{2} \quad\left(\left(s_{1}, s_{2}\right), s_{3}\right) \in \mathcal{P}}{\Gamma \vdash \Pi x: A, B: s_{3}} \\
\frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash \Pi x: A, B: s}{\Gamma \vdash \lambda x: A, t: \Pi x: A, B} \frac{\Gamma \vdash t: \Pi x: A, B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B\{(x, u)\}} \\
\frac{\Gamma \vdash t: A \quad A \simeq_{\beta} A^{\prime} \quad \Gamma \vdash A^{\prime}: s}{\Gamma \vdash t: A^{\prime}}
\end{gathered}
$$

Encoding Functional Pure Type Systems

(Cousineau \& Dowek, 2007)

$$
\begin{aligned}
& \text { signature: } \\
& U_{s}: \text { TYPE } \quad \text { for each sort } s \in \mathcal{S} \\
& E I_{s}: U_{s} \rightarrow \text { TYPE } \\
& s_{1}: U_{s_{2}} \quad \text { for every }\left(s_{1}, s_{2}\right) \in \mathcal{A} \\
& \pi_{s_{1}, s_{2}}: \Pi a: U_{s_{1}},\left(E l_{s_{1}} a \rightarrow U_{s_{2}}\right) \rightarrow U_{s_{3}} \quad \text { for every }\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{P} \\
& E I_{s_{2}} s_{1} \hookrightarrow U_{s_{1}} \quad \text { for every }\left(s_{1}, s_{2}\right) \in \mathcal{A} \\
& E l_{s_{3}}\left(\pi_{s_{1}, s_{2}} \text { a } b\right) \hookrightarrow \Pi x: E l_{s_{1}} a, E l_{s_{2}}(b x) \quad \text { for every }\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{P} \\
& \text { encoding: } \\
& |x|_{\Gamma}=x \\
& |s|_{\Gamma}=s \\
& |\lambda x: A, t|_{\Gamma}=\lambda x: E l_{s}|A|_{\Gamma},|t|_{\Gamma, x: A} \quad \text { if } \Gamma \vdash A: s \\
& |t u|_{\Gamma}=|t|_{\Gamma}|u|_{\Gamma} \\
& |\Pi x: A, B|_{\Gamma}=\pi_{s_{1}, s_{2}}|A|_{\Gamma}\left(\lambda x:\left.E\right|_{s_{1}}|A|_{\Gamma},|B|_{\Gamma, x: A}\right) \\
& \text { if } \Gamma \vdash A: s_{1} \text { and } \Gamma, x: A \vdash B: s_{2}
\end{aligned}
$$

Encoding other features

- recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)
- different approaches, no general theory
- encoding in recursors (ongoing work by Felicissimo \& Cockx)
- universe polymorphism (Genestier 2020)
- requires rewriting with matching modulo AC or rewriting on AC canonical forms
- η-conversion on function types (Genestier 2020)
- predicate subtyping with proof irrelevance (Hondet 2020)
- co-inductive objects and co-recursion (Felicissimo 2021)

Outline

Introduction
Lambda-Pi-calculus modulo rewriting
Lambda-calculus
Simple types
Dependent types
Pure Type Systems
Rewriting
Dedukti language
Lambdapi proof assistant
Encoding logics in $\lambda \Pi / \mathcal{R}$

Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

ITP vs ATP

Limitations of interactive theorem provers (ITP)

- lack of automation
- need for specially trained experts
- bottleneck for widespread use

Limitations of automated theorem provers (ATP):

- lack of confidence
- highly optimized tools
- code too complex to be certified

Cooperation

ITP:

- use ATPs to discharge some proof obligations
e.g. Sledgehammer, SMTCoq

ATP:

- Export proofs that can be independently checked
- Ideally, checkable by a well known tool

Ideal goal

From Lambdapi to ATPs

Why3:

- platform for deductive program verification
- able to delegate proofs to many provers
- https://why3.lri.fr/

Calling provers within Lambdapi:

- Tactic why3

Current why3 tactic

Trusting ATPs

ATP:

- quite big piece of software
- complex proof calculi
- finely tuned, optimization hacks

Trust?

- Originally, only answer "yes" / "no" (more often, "maybe")
- More and more, produce proof traces/big steps proofs

Trusting ATPs

To increase confidence:

- either build a certified proof checker for proof traces
e.g. Coq certified checker for DRAT proof traces of SAT solvers
- or directly produce a proof checkable by your favorite assistant
Problem

$\cdot \mathrm{p}$ | Instrumented |
| :---: |
| ATP |\longrightarrow| Proof |
| :---: |
| . dk |

Instrumenting a prover to produce proofs

Pros:

- Access to all needed informations

Cons:

- Needs to embed the calculus of the prover into Dedukti
- Needs to know precisely the code of the prover
more or less easy depending complexity of code/proof calculus easier if proof output designed from the start (e.g. Zenon)
\Rightarrow can only be done for a few provers

Provers outputing Dedukti proofs

- iProverModulo:
extension of iProver for Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git
- ZenonModulo:
extension of Zenon for Deduction Modulo Theory + Arithmetic
https://github.com/Deducteam/zenon_modulo.git
- ArchSAT:

SMT solver
https://github.com/Gbury/archsat

Translating proofs

First, need to carefully choose in which theory we are working e.g. FOL

Then, two approaches:

- Directly translate proofs into Dedukti, e.g. iProverModulo
- Embedding the proof calculus into Dedukti, e.g. ZenonModulo

iProverModulo (Burel 2011)

Patch to iProver (Korovin 2008)
iProver: Combination of two proof procedures:

- Inst-Gen
- Ordered resolution
iProverModulo: add support for Deduction Modulo Theory

Resolution Calculus

Literal: atom A or negation of atom $\neg A$
Clause: set/disjunction of literals $L_{1} \vee \ldots \vee L_{m}(m \geq 0)$
Problem: set/conjunction of clauses $C_{1} \wedge \ldots \wedge C_{k}$
Derive new clauses using

$$
\frac{A, C \quad \neg B, D}{C \sigma, D \sigma} \quad \sigma=\operatorname{mgu}(A, B)
$$

until the empty clause is produced

Translation of clauses

we want to prove $\left(C_{1} \wedge \ldots \wedge C_{k}\right) \Rightarrow \perp$
$\left(C_{1} \wedge \ldots \wedge C_{k}\right) \Rightarrow \perp$ is equivalent to $\left(C_{1} \Rightarrow \perp\right) \vee \ldots \vee\left(C_{k} \Rightarrow \perp\right)$
$\left(L_{1} \vee \ldots \vee L_{m}\right) \Rightarrow \perp$ is equivalent to $\left(L_{1} \Rightarrow \perp\right) \wedge \ldots \wedge\left(L_{m} \Rightarrow \perp\right)$
$C=\left\{L_{1}, \ldots, L_{m}\right\}$ which corresponds to $\forall x_{1}, \ldots, \forall x_{p}, L_{1} \vee \ldots \vee L_{m}$, where $x_{1}, . ., x_{p}$ are the free variables of $L_{1}, . ., L_{m}$, is translated as:
$\Pi x_{1}: I, \ldots \Pi x_{p}: I, \Pi b: \operatorname{Prop},\left|L_{1}\right|_{b} \rightarrow \ldots \rightarrow\left|L_{m}\right|_{b} \rightarrow \operatorname{Prfb}$
with $|A|_{b}=\operatorname{Prf} A \rightarrow \operatorname{Prfb}$ and $|\neg A|_{b}=(\operatorname{Prf} A \rightarrow \operatorname{Prfb}) \rightarrow \operatorname{Prfb}$
(remember that $\operatorname{Prf} \perp \hookrightarrow \Pi b: \operatorname{Prop}, \operatorname{Prfb}$)

Translation of propositional resolution

$$
\begin{gathered}
\frac{A, L_{1}, \ldots, L_{m} \neg A, L_{m+1}, \ldots, L_{n}}{L_{1}, \ldots, L_{n}} \\
\text { given } c:\left|A, L_{1}, \ldots, L_{m}\right| \\
=\Pi b: \operatorname{Prop},|A|_{b} \rightarrow\left|L_{1}\right|_{b} \rightarrow \ldots \rightarrow\left|L_{m}\right|_{b} \rightarrow \operatorname{Prfb} \\
\text { and } d:\left|\neg A, L_{m+1}, \ldots, L_{n}\right| \\
=\Pi b: \operatorname{Prop},\left(|A|_{b} \rightarrow \operatorname{Prf} b\right) \rightarrow\left|L_{m+1}\right|_{b} \rightarrow \ldots \rightarrow\left|L_{n}\right|_{b} \rightarrow \operatorname{Prfb} \\
\text { we obtain } \\
\text { by taking } e:\left|L_{1}, \ldots, L_{n}\right|=\Pi b: \operatorname{Prop},\left|L_{1}\right|_{b} \rightarrow \ldots \rightarrow\left|L_{n}\right|_{b} \rightarrow \operatorname{Prfb} \\
\quad e=\lambda b, \lambda \bar{I}_{1}, \ldots, \lambda \bar{I}_{n}, c b\left(\lambda a, d b(\lambda \bar{a}, \bar{a} a) \bar{I}_{m+1} \ldots \bar{I}_{n}\right) \bar{I}_{1} \ldots \bar{I}_{m}
\end{gathered}
$$

Limits

Can handle various simplification rules, rewriting
Can be extended to superposition (E, Vampire, ...)
But:

- works if the proof uses resolution only (i.e. no Inst-Gen)
- no translation of the transformation into clauses

ZenonModulo

(Delahaye, Doligez, Gilbert, Halmagrand, and Hermant, 2013)

- extension of Zenon to Deduction Modulo Theory
- tableau-based
- polymorphic first-order logic with equality

Tableau proofs

- proofs by contradiction
- roughly bottom-up sequent-calculus with metavariables

$$
\frac{P, \neg P}{\odot} \odot \quad \frac{\neg(A \Rightarrow B)}{A, \neg B} \alpha_{\neg \Rightarrow} \quad \frac{\neg(A \wedge B)}{\neg A \quad \mid \quad \neg B} \beta_{\neg \wedge}
$$

Example of proof:

$$
\begin{aligned}
& \frac{\neg(P \Rightarrow(P \wedge P))}{\frac{P}{\neg(P \wedge P)}} \alpha_{\neg \Rightarrow} \\
& \frac{\neg P}{\frac{\neg P}{\odot} \odot \frac{\neg P}{\odot}} \beta_{\neg \wedge}
\end{aligned}
$$

Deep embedding of proof calculus

$$
\begin{aligned}
& \frac{P, \neg P}{\odot} \odot: \\
& \text { symbol Rax } p: \operatorname{Prf} p \rightarrow \operatorname{Prf}(\neg \mathrm{p}) \rightarrow \operatorname{Prf} \perp \text {; } \\
& \frac{\neg(A \Rightarrow B)}{A, \neg B} \alpha_{\neg \Rightarrow} \text { : } \\
& \begin{array}{l}
\text { symbol } \mathrm{R} \rightarrow \mathrm{a} \text { b : } \\
\quad(\operatorname{Prf} \mathrm{a} \rightarrow \operatorname{Prf}(\neg \mathrm{~b}) \rightarrow \operatorname{Prf} \perp) \rightarrow \operatorname{Prf}(\neg(\mathrm{a} \Rightarrow \mathrm{~b})) \rightarrow \operatorname{Prf} \perp \text {; }
\end{array} \\
& \frac{\neg(A \wedge B)}{\neg A \mid \neg B} \beta_{\neg \wedge}: \\
& \text { symbol } R \neg \wedge \text { a b : (Prf }(\neg \text { a) } \rightarrow \operatorname{Prf} \perp) \\
& \rightarrow(\operatorname{Prf}(\neg \mathrm{b}) \rightarrow \operatorname{Prf} \perp) \rightarrow \operatorname{Prf}(\neg(\mathrm{a} \wedge \mathrm{~b})) \rightarrow \operatorname{Prf} \perp \text {; }
\end{aligned}
$$

Deep translation of the example

$$
\begin{aligned}
& \frac{\neg(P \Rightarrow(P \wedge P))}{\frac{P}{\neg(P \wedge P)}} \alpha_{\neg \Rightarrow} \\
& \frac{\neg P}{\frac{\neg P}{\odot} \odot} \frac{\neg P}{\odot}{ }^{\beta \rightarrow \lambda}
\end{aligned}
$$

opaque symbol goal : $\operatorname{Prf} \neg(p \Rightarrow(p \wedge p)) \rightarrow \operatorname{Prf} \perp:=$
$\mathrm{R} \Rightarrow \mathrm{p}(\mathrm{p} \wedge \mathrm{p})(\lambda \pi, \mathrm{R} \neg \wedge \mathrm{p} \mathrm{p}(\operatorname{Rax} \mathrm{p} \pi)(\operatorname{Rax} \mathrm{p} \pi)) ;$

Making the embedding more shallow
by reducing it to Natural Deduction:

$$
\begin{aligned}
& (\wedge I) \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge E I) \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}(\wedge E r) \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \\
& (\Rightarrow I) \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}(\Rightarrow E) \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}
\end{aligned}
$$

Natural Deduction in Lambdapi:

$$
\begin{aligned}
& \text { symbol } \wedge I \mathrm{pq}: \operatorname{Prf} p \rightarrow \operatorname{Prf} q \rightarrow \operatorname{Prf}(p \wedge q) ; \\
& \text { symbol } \wedge E l p q: \operatorname{Prf}(p \wedge q) \rightarrow \operatorname{Prf} p ; \\
& \text { symbol } \wedge E r p q: \operatorname{Prf}(p \wedge q) \rightarrow \operatorname{Prf} q ; \\
& \text { symbol } \Rightarrow \mathrm{I} p \mathrm{q}:(\operatorname{Prf} p \rightarrow \operatorname{Prf} q) \rightarrow \operatorname{Prf}(p \Rightarrow q) ; \\
& \text { symbol } \Rightarrow E p q: \operatorname{Prf}(p \Rightarrow q) \rightarrow \operatorname{Prf} p \rightarrow \operatorname{Prf} q ;
\end{aligned}
$$

Defining Tableau rules in ND

```
rule Rax }\hookrightarrow\lambda p h \pi, \negE p \pi h;
rule R}\neg\wedge\hookrightarrow\lambda p q h1 h2 h3
    h1 ( }\neg\textrm{I}p\textrm{p}(\lambda\textrm{h}5,\textrm{h}2 (\neg\textrm{I q ( }\lambda\textrm{h}6
    \negE (p ^ q) h3 (^I p q h5 h6)))));
rule R}\leftrightarrows\hookrightarrow\lambda p q h1 h2
    \negE (p g q) h2 (}=>I p q ( \lambda h3, \perpE (h1 h3
    (\negI q ( }\lambda\textrm{h}4,\neg\textrm{E}(\textrm{p}=>q) h2 (\LeftrightarrowI p q (\lambda_, h4))))) q))
```

correctness follows from subject reduction
which is checked automatically by Lambdapi!

```
compute goal;
```



```
    (\lambda h3, \perpE ( ᄀE (p=> (p\wedge p)) h2
    (=>I p (p ^ p) (\lambda _, ^I p p h3 h3))) (p ^ p)));
```

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL
rule $\Rightarrow I \hookrightarrow \lambda$ p q π, π;
rule $\Rightarrow \mathrm{E} \hookrightarrow \lambda \mathrm{p}$ q π, π;
rule $\wedge \mathrm{I} \hookrightarrow \lambda \mathrm{p} q \pi \mathrm{p} \pi \mathrm{q} \mathrm{r} \pi \mathrm{p} \Rightarrow \mathrm{q} \Rightarrow \mathrm{r}, \pi \mathrm{p} \Rightarrow \mathrm{q} \Rightarrow \mathrm{r} \pi \mathrm{p} \pi \mathrm{q}$;
rule $\wedge E l \hookrightarrow \lambda$ p q $\pi \mathrm{p} \wedge \mathrm{q}, \pi \mathrm{p} \wedge \mathrm{q} p(\lambda \mathrm{x},, \mathrm{x})$;
rule $\wedge E r \hookrightarrow \lambda$ p q $\pi p \wedge q, \pi p \wedge q q(\lambda, x, x)$;
compute goal;
assert \vdash goal \equiv
$\lambda \mathrm{h} 2, \mathrm{~h} 2(\lambda \mathrm{~h} 3, \mathrm{~h} 2(\lambda \ldots, \pi, \pi \mathrm{~h} 3 \mathrm{~h} 3)(\mathrm{p} \wedge \mathrm{p})) ;$

Limits of instrumentation

Provers can be hard to instrument to produce Dedukti proofs

- large piece of software
- developers not expert in $\lambda \Pi$-calculus modulo theory
- non stable and quite big proof calculus

Proof calculus of E

:	.	-	,
	(2n $=$	\%	
-	- 5	0	-
	\cdots	\square	\cdots
.2nem	$=2$		asemex
	-	\%	\cdots
		(10)	0 mm
5-umay			5
\cdots			$\xrightarrow{\text { a }}$

Proof trace

But often, provers produce at least a proof trace:

- list of formulas that were derived to obtain the proof
- sometimes with more information
- premises
- name of the inference rules
- theory

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

- list of formulas
- annotated by an inference tree whose leaves are other formulas
cnf(c_0_60,plain,
(join(X1,join(X2,X3)) = join(X2,join(X1,X3))), inference(rw, [status(thm)],
[inference(spm, [status(thm)],[c_0_30, c_0_18]), c_0_30])).

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

- list of formulas
- annotated by an inference tree whose leaves are other formulas
cnf(c_0_60,plain,
(join(X1,join(X2,X3)) = join(X2,join(X1,X3))), inference(rw, [status(thm)],
[inference(spm, [status(thm)],[c_0_30, c_0_18]), c_0_30])).

Independent of the proof calculus

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

- Prove each step using a Dedukti producing tool
- Combine those proofs to get a proof of the original formula

Try to be agnostic:

- w.r.t. the prover that produces the trace
- w.r.t. the prover that reproves the steps

Ekstrakto (El Haddad 2021)

- Input: TSTP proof trace
- Output: Reconstructed Lambdapi proof
https://github.com/Deducteam/ekstrakto

Ekstrakto architecture

Experimental evaluation

Benchmark:

- CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

- E and Vampire

Step provers:

- ZenonModulo and ArchSat

Results

Percentage of reconstructed proof steps

Prover	\% E	\% VAMPIRE
ZenonModulo	87%	60%
ArchSAT	92%	81%
ZenonModulo \cup ArchSAT	95%	85%

Percentage of completely reconstructed proofs

Prover	\% E TSTP	\% VamPIRE TSTP
ZenonModulo	45%	54%
ArchSAT	56%	74%
ZenonModulo \cup ArchSAT	69%	83%

Non provable steps

Problem:

- some steps are not provable
their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Non provable steps

Problem:

- some steps are not provable
their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Main instance: Skolemization
$\Gamma, \forall x, \exists y, A[\vec{x}, y] \vdash B$ iff $\Gamma, \forall \vec{x}, A[\vec{x}, f(\vec{x})] \vdash B$ for a fresh f
Present in the CNF transformation used by almost all ATPs

Skonverto (El Haddad 2021)

Inputs:

- an axiom and its Skolemized version
- a Lambdapi proof using the latter

Output:

- a Lambdapi proof using the non-Skolemized axiom

Content

Implementation of Dowek \& Werner's constructive proof of Skolem
theorem (2005) in the context of first-order natural deduction

Problem:

- the proof has to be in normal form
- also w.r.t. so-called commuting cuts

Commuting cuts

$$
\begin{aligned}
& \frac{\Gamma \vdash A \vee B \quad \Gamma, A \vdash C \wedge D \quad \Gamma, B \vdash C \wedge D}{\frac{\Gamma \vdash C \wedge D}{\Gamma \vdash C} \wedge_{E I}} \vee_{E} \\
& \frac{\Gamma \vdash A \vee B \quad \frac{\Gamma, A \vdash C \wedge D}{\Gamma, A \vdash C} \wedge_{E l} \quad \frac{\Gamma, B \vdash C \wedge D}{\Gamma, B \vdash C} \wedge_{E I}}{\Gamma \vdash C}
\end{aligned}
$$

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible
\Rightarrow we need to stay at the ND level
and add rules to reduce commuting cuts:
rule $\wedge E l$ \$c \$d (VE \$a \$b \$paorb (\$c \wedge \$d) \$pac \$pbc) $\hookrightarrow \vee E$ \$a \$b \$paorb \$c (λ pa, $\wedge E l \$ c$ \$d (\$pac pa))
($\lambda \mathrm{pb}, \wedge \mathrm{El}$ \$c \$d (\$pbc pb));

Example proof with Skolem symbol

symbol goal

(ax_tran : Prf $(\forall$ ($\lambda 1, \forall(\lambda$ x $2, \forall(\lambda$ X3, $(\mathrm{p}$ X1 X2) $\Rightarrow((\mathrm{p}$ X2 X3) $\Rightarrow(\mathrm{p}$ X1 X3))))))
// skolemized version of
// (ax_step : $\operatorname{Prf}(\forall(\lambda X, \exists(\lambda Y,(p X \quad(s Y))))))$
(ax_step : $\operatorname{Prf}(\forall(\lambda X, \quad(\mathrm{X} X(\mathrm{~S}(\mathrm{f} X))))))$
(ax_congr : Prf (\forall (λ X1, $\forall(\lambda X 2$,
(p X1 X2) $\Rightarrow(\mathrm{p}(\mathrm{s}$ X1) (s X2))))))
(ax_goal : $\operatorname{Prf}(\neg(\exists(\lambda X,((\operatorname{pa}(s \quad(s X)))))))$
: Prf \perp
$:=a x _$goal ($\exists \mathrm{I}(\lambda \mathrm{X}, \mathrm{p}$ a (s (s X))) (f (f a))
(ax_tran a (s (f a)) (s (s (f (f a))))
(ax_step a)
(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));

Example proof without Skolem symbol generated by Skonverto

```
symbol goal
    (ax_tran : Prf ( }\forall\mathrm{ ( }\lambda\mathrm{ X1, }\forall (\lambda X2, \forall (\lambda X3,
        (p X1 X2) }=>((p X2 X3) =>(p X1 X3)))))))
    (ax_step : Prf ( }\forall\mathrm{ ( }\lambda\mathrm{ X, ヨ ( }\lambda\mathrm{ Y, (p X (s Y))))))
    (ax_congr : Prf ( }\forall\mathrm{ ( }\lambda\mathrm{ X X , }\forall(\lambda X2,
        (p X1 X2) }=>(p (s X1) (s X2))))))
    (ax_goal : Prf (\neg (\exists (\lambda X4, ((p a (s (s X4))))))))
    : Prf \perp
= ax_goal ( }\lambda\mathrm{ r h, ヨE ( }\lambda\textrm{z},\textrm{p}=\textrm{a}(\textrm{s}z)) (ax_step a) r
            (\lambda z a1, \existsE (\lambda z0, p z (s z0)) (ax_step z) r
            (\lambda z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1
                (ax_congr z (s z0) a2)))));
```


Conclusion

Instrumenting a prover to produce Dedukti proofs

- good if you start your prover from scratch

Reconstructing proofs

- more adapted for existing provers
- cannot reconstruct all proofs
- useful for proof assistants using provers internally e.g. PVS, Atelier B

Putting everything together

