=h|_ EuroProofNet

Introduction to Proof System Interoperability

Frédéric Blanqui

Deducleam

r école

normale
7 supérieure

September 2022

Summary of first lecture

Introduction to:

e logical frameworks

e)-calculus

e simple types

e dependent types

e rewriting

e Al-calculus modulo rewriting (AN/R)
e Dedukti language

e Lambdapi proof assistant

Outline

Encoding logics in AIT/R

Encoding logics in AI/R

we have seen what is a theory in the All-calculus modulo rewriting

we are now going to see how to encode logics as Al1/R theories

First-order logic

e the set of terms
— built from a set of function symbols equipped with an arity

e the set of propositions
— built from a set of predicate symbols equipped with an arity
— and the logical connectives T, L, =, =, A, V, &, V, 3

e the set of axioms (the actual theory)

e the subset of provable propositions
— using deduction rules (e.g. natural deduction)

Natural deduction

provability, -, is a relation between a sequence of propositions I
(the assumptions) and a proposition B (the conclusion) inductively
defined from introduction and elimination rules for each connective:

o TAFB i [FA=B THA
(S-intro) =g (Soelim) B
A xé¢rm N=Vx, A
Veintro) —— " (Veelim) ———
(veintro) =2~ (elim) m 2 oy

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [— |

Encoding of first-order logic

e the set of terms | : TYPE
— built from a set of function symbols equipped with an arity
function symbol: | — ... = [— |

e the set of propositions Prop : TYPE
— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [— |

e the set of propositions Prop : TYPE

— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

— and the logical connectives T, 1, =, =, A, V, &, V, 3
T : Prop, = Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [— |

e the set of propositions Prop : TYPE

— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

— and the logical connectives T, 1, =, =, A, V, &, V, 3
T : Prop, = Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)

e the set of axioms (the actual theory)

e the subset of provable propositions

— using deduction rules (e.g. natural deduction)
but how to encode proofs?

Using A-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

logic A-calculus
proposition type
proof A-term

assumption variable

= -
=-intro abstraction
=-elim application
A M

the Curry-de Bruijn-Howard isomorphism reduces:
e proof-checking to type-checking
e provability to type inhabitation

Using A-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction

r, A- B
M- A= B

N- A=B I'+ A
M+ B

- A xér
e Vx, A

M- vx, A
M A{(x,u)}

(=-intro)

(=-elim)

(V-intro)

(V-elim)

Using A-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)
take the rules of natural deduction
by giving a name to every assumption, we get a typing environment
A, ..., A ~ Xx1:A1L,....Xxn Ap

r, Ar B
M- A= B

N- A=B I'+ A
M+ B

- A xér
e Vx, A

M- vx, A
M A{(x,u)}

(=-intro)

(=-elim)

(V-intro)

(V-elim)

Using A-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

take the rules of natural deduction
by giving a name to every assumption, we get a typing environment

A, ..., A ~ Xx1:A1L,....Xxn Ap
by mapping every deduction rule to a A-term construction
the typing rules of Al correspond to natural deduction rules!
Mx:AFt:B

(=-intro) lN-Xx:At:A=B

lN-t:A=B IT+Fu:A

(=-elim) F- o B
. Nrt:A xé¢r
(intro) T vx A
, Mt:vx, A
(V-elim)

M tu @ A{(x,u)}

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. ..

but we can interpret a proposition as a type by taking:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. ..

but we can interpret a proposition as a type by taking:

Prf : Prop — TYPE
Prf A is the type of proofs of proposition A

but
M :PrfAx : PrfA— PrfA

and
Ax: PrfA;x [Prf(A = A)

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. ..

but we can interpret a proposition as a type by taking:

Prf : Prop — TYPE
Prf A is the type of proofs of proposition A

but
M :PrfAx : PrfA— PrfA

and
Ax: PrfA;x [Prf(A = A)

unless we add the rewrite rule

Prf(A=B) < PrfA— PrfB

Encoding V

we can do something similar for V : (/ — Prop) — Prop by taking:

Prf(VA) — MNx: I, Prf(Ax)

Encoding the other connectives

the other connectives can be defined by using a meta-level
quantification on propositions:

Prf(AANB) < Tlb: Prop,(Prf A— Prf B — Prfb) — Prfb

note that introduction and elimination rules can be derived:
(A-intro):

Aa: Prf AJAb: Prf B, b : Prop, \h: Prf A— Prf B — Prfb, hab
is of type
Prf A— Prf B — Prf(AA B)

(A-elim1):

Ac: Prf(ANB),cA(Xa: Prf A,]\b: Prf B, a)
is of type
Prf(ANA B) — Prf A

To summarize: A\I1/R-theory FOL for first-order logic

signature X Foy:

| : TYPE
fol—...=>1—=1 for each function symbol f of arity n
Prop : TYPE

P:l—...— 11— Prop for each predicate symbol P of arity n
T : Prop, = : Prop — Prop, ¥ : (I — Prop) — Prop, ...
Prf : Prop — TYPE

a:PrfA for each axiom A
rules RFOL:
Prf(A=B) — Prf A— Prf B
Prf(VA) < Mx: I, Prf(Ax)
Prf(ANB) — Tlb: Prop,(Prf A— Prf B — Prfb) — Prfb
Prfl < Tlb: Prop, Prfb
Prf(=A) < PrfA— Prf L

Encoding of first-order logic in Al1/FOL

encoding of propositions:

|Pty...ta| = Plt1]...|tn]
encoding of terms: IT|=T

x| = x |ANB| =[A[A]B|
ftr .. tol = Flta]. . [ta] VXAl = V(A2 1, |A])

LA =Tl x4t A

encoding of proofs:

Tr,AFB (=)
r'FA=2B !

=)\X”r”_H_ : Prf ’A’, ‘WF,A!—B‘

Tr-A=B TTFA (=)
M- B €

= |mrra=8||mrral

Properties of the encoding in All/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|

Properties of the encoding in All/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|

but, if we find a term t of type Prf |A|, can we deduce that A is
provable ?

Properties of the encoding in All/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|

but, if we find a term t of type Prf |A|, can we deduce that A is
provable ?

e yes, the encoding is conservative: if Prf |A] is inhabited then A
is provable

proof sketch: because < 3 terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

I, : TYPE
Vi : (Ix = Prop) — Prop

Prf (VY A) < MNx : Iy, Prf(Ax)

Polymorphic first-order logic

same trick as Curry-de Bruijn-Howard

Set : TYPE
El : Set — TYPE

L Set for each sort ¢
V:MNa: Set,(El a — Prop) — Prop

Prf(Vap) < MNx : El a, Prf(px)

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements

w any set

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements
w any set

quantification on functions:
~ : Set — Set — Set
El(a~ b) — Ela — Elb

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements
w any set

quantification on functions:
~ : Set — Set — Set
El(a~ b) — Ela — Elb

quantification on propositions/impredicativity (e.g. Vp, p = p):
o : Set
El o — Prop

Encoding dependent types

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) — MNx : Prf a, Prf(bx)

Encoding dependent types

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) — MNx : Prf a, Prf(bx)

dependent types:
~q: Na: Set,(El a — Set) — Set
El(a~>4 b) — MNx : El a, EI(bx)

Encoding dependent types

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) — MNx : Prf a, Prf(bx)

dependent types:
~q: Na: Set,(El a — Set) — Set
El(a~>4 b) — MNx : El a, EI(bx)

proofs in object-terms:
7 : MNp: Prop, (Prf p — Set) — Set
El(mpa) — MNx : Prf p, El(ax)
example: div : El(t~t~g Ay : Elv,w(y > 0)(A 1))
takes 3 arguments: x: Elv, y : Elv, p: Prf(y > 0)
and returns a term of type E/¢

Encoding the calculus of constructions

we now have all the ingredients to encode
the calculus of constructions:

system PTS rule AM/R rule
simple types TYPE, TYPE | Prf(a=-4 b) — lx : Prf a, Prf(bx)
polymorphic types | KIND, TYPE Prf(Vab) < Mx : El a, Prf(bx)
dependent types | TYPE,KIND El(mab) — MNx : Prf a, EI(bx)
type constructors | KIND, KIND El(a~>4 b) — Nx : El a, EI(bx)

Encoding Functional Pure Type Systems

terms and types:

t=x|tt|Ax:t,t|Mx:t,t|seS

typing rules:
NM-A:s M= (x,A)er
0F T,x:AF TEx:A
N (s1,8)eA
(Sort) r|—51252
lFA:sy IMx:AFB:s ((51,52),53)673
(prod)

METNx:AB:s3
Mx:AFt:B THEMNx:AB:s THt:Mx:AB ITFu:A
N=Ax:At:Nx:AB M tu: B{(x,u)}
Frt:A Acg A THA s
Mr=t¢: A

Encoding Functional Pure Type Systems
(Cousineau & Dowek, 2007)

signature:

Us : TYPE foreachsort s € S
El, : Us — TYPE

s1: Us, for every (s1,5) € A
Te.s - Na: Us, (Els;a— Usy,) — Us, for every (s1,%,53) € P
rules:

Els, s1 — Uy, for every (s1,) € A

Els,(7s,,5, @ab) < Mx : Els, a, Els,(bx) for every (s1,s,53) € P

encoding:
IX|r = x
Islr =s
[Ax 1 A, tlr = Ax : EL|A|R, [tr xa flTrFA:s
|tulr = [t[r|ulr
“_lX . A, B|r = 7T51752|A’r()\x . E/51|A’r, |B’F,X:A)
flTFA:ssand i x:AFB:s

Encoding other features

e recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)

— different approaches, no general theory
— encoding in recursors (ongoing work by Felicissimo & Cockx)

e universe polymorphism (Genestier 2020)

— requires rewriting with matching modulo AC
or rewriting on AC canonical forms

e 7)-conversion on function types (Genestier 2020)
e predicate subtyping with proof irrelevance (Hondet 2020)

e co-inductive objects and co-recursion (Felicissimo 2021)

Outline

Automated Theorem Provers
Intrumenting provers for Dedukti proof production
Reconstructing proofs

from slides by Guillaume Burel at the Dedukti school (June 2022)

ITP vs ATP

Limitations of interactive theorem provers (ITP):
e lack of automation
e need for specially trained experts

e bottleneck for widespread use

Limitations of automated theorem provers (ATP):
e lack of confidence
e highly optimized tools

e code too complex to be certified

Cooperation

ITP:

e use ATPs to discharge some proof obligations
e.g. Sledgehammer, SMTCoq

ATP:
e Export proofs that can be independently checked

e |deally, checkable by a well known tool

|deal goal

translation call

reconstruction @ output

From Lambdapi to ATPs

Why3:

e platform for deductive program verification
e able to delegate proofs to many provers

e https://why3.1lri.fr/

Calling provers within Lambdapi:
e Tactic why3

goal admitted
as an axiom

Current why3 tactic

return

yes

Trusting ATPs

ATP:
e quite big piece of software
e complex proof calculi

e finely tuned, optimization hacks

Trust?
e Originally, only answer “yes” /“no” (more often, “maybe”)

e More and more, produce proof traces/big steps proofs

Trusting ATPs

To increase confidence:

e either build a certified proof checker for proof traces
e.g. Coq certified checker for DRAT proof traces of SAT solvers

e or directly produce a proof checkable by your favorite assistant

Problem Instrumented Proof
— —

P ATP .dk

Instrumenting a prover to produce proofs

Pros:
e Access to all needed informations

Cons:
e Needs to embed the calculus of the prover into Dedukti

e Needs to know precisely the code of the prover

more or less easy depending complexity of code/proof calculus
easier if proof output designed from the start (e.g. Zenon)

=- can only be done for a few provers

Provers outputing Dedukti proofs

e iProverModulo:
extension of iProver for Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

e ZenonModulo:
extension of Zenon for Deduction Modulo Theory + Arithmetic
https://github.com/Deducteam/zenon modulo.git

e ArchSAT:
SMT solver
https://github.com/Gbury/archsat

Translating proofs

First, need to carefully choose in which theory we are working
e.g. FOL

Then, two approaches:
e Directly translate proofs into Dedukti, e.g. iProverModulo

e Embedding the proof calculus into Dedukti, e.g. ZenonModulo

iProverModulo (Burel 2011)

Patch to iProver (Korovin 2008)

iProver: Combination of two proof procedures:
e Inst-Gen

o Ordered resolution

iProverModulo: add support for Deduction Modulo Theory

Resolution Calculus

Literal: atom A or negation of atom —A
Clause: set/disjunction of literals L1 V...V Ly (m > 0)
Problem: set/conjunction of clauses C; A ... A Cx

Derive new clauses using

A.C -B,D

Co.Do o = mgu(A, B)

until the empty clause is produced

Translation of clauses

we want to prove (GG A ... A Cy) = L

(GGN...NC)= Lisequivalentto (GG = L) V...V (G = 1)
(Liv...VLy) = Lisequivalent to (L; = L)A...A(Lp = 1)

C ={Ly,..., L} which corresponds to Vxi,...,Vxp, L1 V...V Lpy,
where xi, .., X, are the free variables of Ly, .., Ly, is translated as:

Mxy:/,...0x,: 1,16 Prop, [Li|y, — ... = [Lml|, — Prfb
with |A|, = PrfA — Prfb and |-A|, = (PrfA — Prfb) — Prfb

(remember that Prf L < b : Prop, Prfb)

Translation of propositional resolution

A7L17"'7Lm _‘A7Lm+17"'7l-n
L.....L,

given c: |A L1,..., Ly
=1I: Prop, ’A‘b — ’Lllb — ... ‘Lm|b — Prfb
and d: |[=A, Lmy1, ..., Ly
=Tb: Prop, (|Al, = Prfb) = |Lms1ly = ... = |Ln|, — Prfb

we obtain
e:|Ly, .., Lol =Mz Prop,|Lyly = ... = |Lal, — Prfb

by taking
e =M, A1,..., Ap,ch(Na,db(A\a,3a) Iyt Tn)T1. .. Im

Limits

Can handle various simplification rules, rewriting

Can be extended to superposition (E, Vampire, ...)

But:
e works if the proof uses resolution only (i.e. no Inst-Gen)

e no translation of the transformation into clauses

ZenonModulo
(Delahaye, Doligez, Gilbert, Halmagrand, and Hermant, 2013)

e extension of Zenon to Deduction Modulo Theory
e tableau-based

e polymorphic first-order logic with equality

Tableau proofs

e proofs by contradiction

e roughly bottom-up sequent-calculus with metavariables

P,ﬂP —|(A:>B) s _|(A/\B)

© © A7—|B —A | -B /Bﬁ/\

Example of proof:

P —-=
~(PAP

- ()ﬁP 5.,

=0 ——0

Deep embedding of proof calculus

P,—P
©
symbol Rax p : Prf p — Prf (- p) — Prf 1;

-(A= B)
A —B

symbol R— a b
(Prf a —» Prf(—= b) — Prf 1) — Prf (—~(a = b)) — Prf 1;

Qs

(AN B) Bon :

~A | -B

symbol R-A a b : (Prf (- a) — Prf 1)
— (Prf (= b) — Prf 1) — Prf (=~(a A b)) — Prf 1;

Deep translation of the example

~(P = (PAP))

p A=
“(PAP
BE L
o © o ©

opaque symbol goal : Prf —(p = (p A p)) — Prf L =
R—=p (p Ap) (A 7w, R-A p p (Rax p) (Rax p m));

Making the embedding more shallow

by reducing it to Natural Deduction:

pFFATEB TEAAB THAAB
W) —rans VB Trea VB TR
NAFB £ rN-A=56 IT+HA
D rrass &6 rFB

Natural Deduction in Lambdapi:

symbol AI p q : Prf p — Prf q — Prf (p A q);
symbol AEl p q : Prf (p A q) — Prf p;
symbol AEr p q : Prf (p A q) — Prf q;

symbol =I p q : (Prf p — Prf q) — Prf (p = q);
symbol =E p q : Prf (p = q) — Prf p — Prf q;

Defining Tableau rules in ND

rule Rax <<+ A p h w1, —=E p 7 h;

rule R-A <= A p q hl h2 h3,
hi (=I p (A h5, h2 (=I q (A hé,
~E (p A @) h3 (AI p q h5 h6)))));

rule R=<— A p q hl h2,
—E (p=q) h2 =I p q (A h3, LE (hil h3
(-I g (A h4, =E (p = q) h2 &I p g (A _, h4))))) qd));
correctness follows from subject reduction
which is checked automatically by Lambdapi!

compute goal;
assert - goal = A h2, =E (p = (p A p)) h2 &I p (p A p)
(A h3, 1E (—-E (p = (p A p)) h2
&I p (p Ap) (M _, AT p p h3 h3))) (p A p)));

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

rule =1 <+ A p q m, T;
rule =E — A p q w, T;

rule AI <+ A p qQ Tp mq I Tp=>g=T, Tp=g=>T TP 7q;
rule AE1 < X p q mpAq, 7pAq p (A x _, x);
rule AEr < A p q 7pAq, 7pAq q (A _ x, x);

compute goal;
assert F goal =
A h2, h2 (A h3, h2 (A _ _ w, m h3 h3) (p A p));

Limits of instrumentation

Provers can be hard to instrument to produce Dedukti proofs
e large piece of software
e developers not expert in All-calculus modulo theory

e non stable and quite big proof calculus

Proof calculus of E

Proof trace

But often, provers produce at least a proof trace:

e list of formulas that were derived to obtain the proof
e sometimes with more information

— premises
— name of the inference rules
— theory

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

e list of formulas

e annotated by an inference tree whose leaves are other formulas

cnf (c_0_60,plain,
(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),
inference(rw, [status(thm)],
[inference(spm, [status(thm)], [c_0_30,c_0_18]),
c_0_301)).

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

e list of formulas

e annotated by an inference tree whose leaves are other formulas

cnf (c_0_60,plain,
(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),
inference(rw, [status(thm)],
[inference(spm, [status(thm)], [c_0_30,c_0_18]),
c_0_301)).

Independent of the proof calculus

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:
e Prove each step using a Dedukti producing tool

e Combine those proofs to get a proof of the original formula

Try to be agnostic:
e w.r.t. the prover that produces the trace

e w.r.t. the prover that reproves the steps

Ekstrakto (El Haddad 2021)

e Input: TSTP proof trace
e Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto

Ekstrakto architecture

Problem signature

Ip
Proof step Cambdapi producing ATP|___[Lambdapi proof]
P e.g. Zenon modulo

Ip

Proof step Cambdapi producing A
P

TP, [Lambdapi proof]
e.g. Zenon modulo

Ip

‘ Proof step Lambdapi producing A
P

TP [Lambdapi proof]
e.g. Zenon modulo

Ip

(Global Lambdapi proof
Ip

Experimental evaluation

Benchmark:
e CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

e E and Vampire

Step provers:
e ZenonModulo and ArchSat

Results

Percentage of reconstructed proof steps

Prover % E | % VAMPIRE
ZenonModulo 87% 60%
ArchSAT 92% 81%
ZenonModulo U ArchSAT | 95% 85%

Percentage of completely reconstructed proofs

Prover % E TSTP | % VAMPIRE TSTP
ZenonModulo 45% 54%
ArchSAT 56% 74%
ZenonModulo U ArchSAT 69% 83%

Non provable steps

Problem:

e some steps are not provable
their conclusion is not a logical consequence of their premises

e OK because they preserve provability

e but Ekstrakto cannot work for them

Non provable steps

Problem:

e some steps are not provable
their conclusion is not a logical consequence of their premises

e OK because they preserve provability

e but Ekstrakto cannot work for them

Main instance: Skolemization
[,Vx, 3y, A%, y] F B iff T,Vx, A[X, f(X)] I B for a fresh f

Present in the CNF transformation used by almost all ATPs

Skonverto (El Haddad 2021)

Inputs:
e an axiom and its Skolemized version

e a Lambdapi proof using the latter

Output:

e a Lambdapi proof using the non-Skolemized axiom

Content

Implementation of Dowek & Werner's constructive proof of Skolem
theorem (2005) in the context of first-order natural deduction

Problem:
e the proof has to be in normal form

e also w.r.t. so-called commuting cuts

Commuting cuts

FAvB T[AECAD T,BECAD |,

E

[FCAD .
r-cC El
AFCAD BFCAD
>~ /\El — 5 ~ /\El
r-AvVB FAFC rBrc
E

N=¢C

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

= we need to stay at the ND level
and add rules to reduce commuting cuts:
rule AE1l $c $d (VE $a $b $paorb ($c A $d) $pac $pbc)

— VE $a $b $paorb $c (M pa, AELlL $c $d ($pac pa))
(X pb, AELl $c $d ($pbc pb));

Example proof with Skolem symbol

symbol goal

(ax_tran : Prf (V (X X1, V (X X2, V (X X3,
(p X1 X2) = ((p X2 X3) = (p X1 X3)))))))
// skolemized version of
// (az_step : Prf (Vv (A X, 3 (ANY, (p X (s Y))))))
(ax_step : Prf (VW (A X, (p X (s (£ X))))))
(ax_congr : Prf (V (XA X1, V (X X2,
(p X1 X2) = (p (s X1) (s X2))))))
(ax_goal : Prf (= (3 (A X, ((p a (s (s X))))))))
Prf 1|
= ax_goal (IdI (A X, p a (s (s X))) (£ (f a))
(ax_tran a (s (f a)) (s (s (f (£ a))))
(ax_step a)
(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));

Example proof without Skolem symbol
generated by Skonverto

symbol goal
(ax_tran : Prf (V (A X1, V (X X2, V (X X3,

(p X1 X2) = ((p X2 X3) = (p X1 X3)))))))
(ax_step : Prf (VW (A X, 3 (A Y, (p X (s Y))))))
(ax_congr : Prf (V (XA X1, V (X X2,

(p X1 X2) = (p (s X1) (s X2))))))

(ax_goal : Prf (= (3 (X X4, ((p a (s (s X4))))))))
: Prf |
= ax_goal (A r h, JE (A z, p a (s z)) (ax_step a) r
(A z alt, JE (A 20, p z (s z0)) (ax_step z) r
(A z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1l
(ax_congr z (s z0) a2)))));

Conclusion

Instrumenting a prover to produce Dedukti proofs

e good if you start your prover from scratch

Reconstructing proofs
e more adapted for existing provers
e cannot reconstruct all proofs

e useful for proof assistants using provers internally
e.g. PVS, Atelier B

Putting everything together

Formula

Dedukti

[Ekstrakto J
+ Skonverto

