
Runtime Verification

Martin Leucker

Institute for Software Engineering

Universität zu Lübeck

VTSA 2023 - Runtime Verification

Martin Leucker VTSA, 2023 1/104

Runtime Verification (RV)

S1

S2

S3

S4

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

Martin Leucker VTSA, 2023 2/104

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

◮ Formal: w ∈ L(ϕ)

Martin Leucker VTSA, 2023 2/104

Model Checking

◮ Specification of System

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

Martin Leucker VTSA, 2023 3/104

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification
◮ L(S) ⊆ L(ϕ)

Martin Leucker VTSA, 2023 3/104

Model Checking versus RV

◮ Model Checking: infinite words

Martin Leucker VTSA, 2023 4/104

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words

Martin Leucker VTSA, 2023 4/104

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

Martin Leucker VTSA, 2023 4/104

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

Martin Leucker VTSA, 2023 4/104

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

Martin Leucker VTSA, 2023 4/104

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

◮ Runtime Verification: also Black-Box-Systems

Martin Leucker VTSA, 2023 4/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

Martin Leucker VTSA, 2023 5/104

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

◮ similar to runtime verification

Martin Leucker VTSA, 2023 5/104

Testing versus RV

◮ Test oracle manual

Martin Leucker VTSA, 2023 6/104

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

Martin Leucker VTSA, 2023 6/104

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

Martin Leucker VTSA, 2023 6/104

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

◮ Runtime Verification:
How to generate good monitors?

Martin Leucker VTSA, 2023 6/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 7/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 8/104

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Martin Leucker VTSA, 2023 9/104

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.

Martin Leucker VTSA, 2023 9/104

Taxonomy

runtime

verification

trace

finite

finite non-

completed

infinite

integration

inline

outline

stage

online

offline

interference

invasive

non-invasive

steering

activepassive

monitoring

input/

output

behavior

state se-

quence

event

sequence

application

area

safety

checking

security

information

collection

performance

evaluation

Martin Leucker VTSA, 2023 10/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 11/104

Runtime Verification for LTL

Observing executions/runs

Martin Leucker VTSA, 2023 12/104

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Martin Leucker VTSA, 2023 12/104

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Commercial

Specify correctness properties in Regular LTL

Martin Leucker VTSA, 2023 12/104

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker VTSA, 2023 13/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Abbreviation

Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Martin Leucker VTSA, 2023 14/104

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Abbreviation

Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Example

G¬(critic1 ∧ critic2), G(¬alive → Xalive)

Martin Leucker VTSA, 2023 14/104

LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = a0a1 . . . ∈ Σω , where

wi = aiai+1 . . .

w |= true

w |= p if p ∈ a0

w |= ¬p if p 6∈ a0

w |= ¬ϕ if not w |= ϕ

w |= ϕ ∨ ψ if w |= ϕ or w |= ψ

w |= ϕ ∧ ψ if w |= ϕ and w |= ψ

w |= Xϕ if w1 |= ϕ

w |= X̄ϕ if w1 |= ϕ

w |= ϕ U ψ if there is k with 0 ≤ k < |w|: wk |= ψ

and for all l with 0 ≤ l < k wl |= ϕ

w |= ϕ R ψ if for all k with 0 ≤ k < |w|: (wk |= ψ

or there is l with 0 ≤ l < k wl |= ϕ)

Martin Leucker VTSA, 2023 15/104

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

Martin Leucker VTSA, 2023 16/104

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic

“Syntactic Sugar for LTL” [Bauer, L., Streit@ICFEM’06]

Martin Leucker VTSA, 2023 16/104

SALT – http://www.isp.uni-luebeck.de/salt

Martin Leucker VTSA, 2023 17/104

http://www.isp.uni-luebeck.de/salt

Runtime Verification for LTL

Idea

Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker VTSA, 2023 18/104

Truth Domains

Lattice

◮ A lattice is a partially ordered set (L,⊑) where for each x, y ∈ L, there
exists

1. a unique greatest lower bound (glb), which is called the meet of x and y, and

is denoted with x ⊓ y, and

2. a unique least upper bound (lub), which is called the join of x and y, and is

denoted with x ⊔ y.

◮ A lattice is called finite iff L is finite.

◮ Every finite lattice has a well-defined unique least element, called

bottom, denoted with ⊥,

◮ and analogously a greatest element, called top, denoted with ⊤.

Martin Leucker VTSA, 2023 19/104

Truth Domains (cont.)

Lattice (cont.)

◮ A lattice is distributive, iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z), and, dually,

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

◮ In a de Morgan lattice, every element x has a unique dual element x,

such that x = x and x ⊑ y implies y ⊑ x.

Definition (Truth domain)

We call L a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker VTSA, 2023 20/104

LTL’s semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = a0a1 . . . ∈ Σ∞

Boolean constants

[w |= true]
L

= ⊤

[w |= false]
L

= ⊥

Boolean combinations

[w |= ¬ϕ]
L

= [w |= ϕ]
L

[w |= ϕ ∨ ψ]
L

= [w |= ϕ]
L

⊔ [w |= ψ]
L

[w |= ϕ ∧ ψ]
L

= [w |= ϕ]
L

⊓ [w |= ψ]
L

atomic propositions

[w |= p]
L

=

⊤ if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]
L

=

⊤ if p /∈ a0

⊥ if p ∈ a0

next X/weak next X TBD

until/release

[w |= ϕ U ψ]
L

=

⊤ there is a k, 0 ≤ k < |w| : [wk |= ψ]
L

= ⊤ and

for all l with 0 ≤ l < k : [wl |= ϕ] = ⊤

TBD else

ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)

Martin Leucker VTSA, 2023 21/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 22/104

LTL on finite words

Application area: Specify properties of finite word

Martin Leucker VTSA, 2023 23/104

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊥ otherwise

weak next

[u |= X̄ϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊤ otherwise

Martin Leucker VTSA, 2023 24/104

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker VTSA, 2023 25/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 26/104

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

Martin Leucker VTSA, 2023 27/104

LTL on finite, but not completed words

Be Impartial!

◮ go for a final verdict (⊤ or ⊥) only if you really know

Martin Leucker VTSA, 2023 28/104

LTL on finite, but not completed words

Be Impartial!

◮ go for a final verdict (⊤ or ⊥) only if you really know

◮ stick to your word

Martin Leucker VTSA, 2023 28/104

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL4)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]4 =

[u1 |= ϕ]4 if u1 6= ǫ

⊥p otherwise

weak next

[u |= X̄ϕ]4 =

[u1 |= ϕ]4 if u1 6= ǫ

⊤p otherwise

Martin Leucker VTSA, 2023 29/104

Monitoring LTL on finite but expanding words

Left-to-right!

Martin Leucker VTSA, 2023 30/104

Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter

◮ evaluate atomic propositions

◮ evaluate next-formulas

◮ that’s it thanks to

ϕ U ψ ≡ ψ ∨ (ϕ ∧ Xϕ U ψ)

and

ϕ R ψ ≡ ψ ∧ (ϕ ∨ X̄ϕ R ψ)

◮ and remember what to evaluate for the next letter

Martin Leucker VTSA, 2023 31/104

Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥
p
,ϕ)

evalFLTL4 X̄ϕ a = (⊤
p
,ϕ)

Martin Leucker VTSA, 2023 32/104

Monitoring LTL on finite but expanding words

Automata-theoretic approach

◮ Synthesize automaton

◮ Monitoring = stepping through automaton

Martin Leucker VTSA, 2023 33/104

Rewriting vs. automata

Rewriting function defines transition function

evalFLTL4 true a = (⊤,true)

evalFLTL4 false a = (⊥,false)

evalFLTL4 p a = ((p in a),(p in a) ? true : false)

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥
p
,ϕ)

evalFLTL4 X̄ϕ a = (⊤
p
,ϕ)

Martin Leucker VTSA, 2023 34/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

Martin Leucker VTSA, 2023 35/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

Martin Leucker VTSA, 2023 35/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

Martin Leucker VTSA, 2023 35/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

Martin Leucker VTSA, 2023 35/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

Martin Leucker VTSA, 2023 35/104

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

◮ state sequence for an input word

Martin Leucker VTSA, 2023 35/104

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q,Σ,Γ, q0, δ) where

◮ Q is a finite set of states,

◮ Σ is the input alphabet,

◮ Γ is a finite, distributive lattice, the output lattice,

◮ q0 ∈ Q is the initial state and

◮ δ : Q × Σ → B+(Γ× Q) is the transition function

Martin Leucker VTSA, 2023 36/104

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q,Σ,Γ, q0, δ) where

◮ Q is a finite set of states,

◮ Σ is the input alphabet,

◮ Γ is a finite, distributive lattice, the output lattice,

◮ q0 ∈ Q is the initial state and

◮ δ : Q × Σ → B+(Γ× Q) is the transition function

Convention

Understand δ : Q × Σ → B+(Γ× Q) as a function δ : Q × Σ → Γ× B+(Q)

Martin Leucker VTSA, 2023 36/104

Supporting alternating finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q,Σ,Γ, q0, δ) on a finite word

u = a0 . . . an−1 ∈ Σ+ is a sequence t0
(a0,b0)→ t1

(a1,b1)→ . . . tn−1

(an−1,bn−1)→ tn such

that

◮ t0 = q0 and

◮ (ti, bi−1) = δ̂(ti−1, ai−1)

where δ̂ is inductively defined as follows

◮ δ̂(q, a) = δ(q, a),

◮ δ̂(q ∨ q′, a) = (δ̂(q, a)|1 ⊔ δ̂(q′, a)|1, δ̂(q, a)|2 ∨ δ̂(q′, a)|2), and

◮ δ̂(q ∧ q′, a) = (δ̂(q, a)|1 ⊓ δ̂(q′, a)|1, δ̂(q, a)|2 ∧ δ̂(q′, a)|2)
The output of the run is bn−1.

Martin Leucker VTSA, 2023 37/104

Transition function of an alternating Mealy machine

Transition function δa
4 : Q × Σ → B+(Γ× Q)

δa
4(true, a) = (⊤, true)

δa
4(false, a) = (⊥, false)

δa
4(p, a) = (p ∈ a, [p ∈ a])

δa
4(ϕ ∨ ψ, a) = δa

4(ϕ, a) ∨ δa
4(ψ, a)

δa
4(ϕ ∧ ψ, a) = δa

4(ϕ, a) ∧ δa
4(ψ, a)

δa
4(ϕ U ψ, a) = δa

4(ψ ∨ (ϕ ∧ X(ϕ U ψ)), a)

= δa
4(ψ, a) ∨ (δa

4(ϕ, a) ∧ (ϕ U ψ))

δa
4(ϕ R ψ, a) = δa

4(ψ ∧ (ϕ ∨ X̄(ϕ R ψ)), a)

= δa
4(ψ, a) ∧ (δa

4(ϕ, a) ∨ (ϕ R ψ))

δa
4(Xϕ, a) = (⊥p, ϕ)

δa
4(X̄ϕ, a) = (⊤p, ϕ)

Martin Leucker VTSA, 2023 38/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 39/104

Anticipatory Semantics

Consider possible extensions of the non-completed word

Martin Leucker VTSA, 2023 40/104

LTL for RV [BLS@FSTTCS’06]

Basic idea

◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

Martin Leucker VTSA, 2023 41/104

LTL for RV [BLS@FSTTCS’06]

Basic idea

◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

Martin Leucker VTSA, 2023 41/104

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Martin Leucker VTSA, 2023 42/104

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

Martin Leucker VTSA, 2023 42/104

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

Martin Leucker VTSA, 2023 42/104

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

Martin Leucker VTSA, 2023 42/104

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

aaa |= false

[ǫ |= XXXfalse] =

⊤ if ∀σ ∈ Σω : ǫσ |= XXXfalse

⊥ if ∀σ ∈ Σω : ǫσ 6|= XXXfalse

? else
Martin Leucker VTSA, 2023 42/104

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

a b

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a b a

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a b a

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b a b

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

Emptiness test:

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker VTSA, 2023 43/104

Büchi automata (BA)

Emptiness test: SCCC, Tarjan

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker VTSA, 2023 43/104

LTL to BA

[Vardi & Wolper ’86]

◮ Translation of an LTL formula ϕ into Büchi automata Aϕ with

L(Aϕ) = L(ϕ)

◮ Complexity: Exponential in the length of ϕ

Martin Leucker VTSA, 2023 44/104

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker VTSA, 2023 45/104

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker VTSA, 2023 45/104

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤

Martin Leucker VTSA, 2023 45/104

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤
?

Martin Leucker VTSA, 2023 45/104

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker VTSA, 2023 46/104

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker VTSA, 2023 46/104

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

Martin Leucker VTSA, 2023 46/104

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

NFA

Fϕ : Qϕ → {⊤,⊥} Emptiness per state

Martin Leucker VTSA, 2023 46/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

Lemma

[u |= ϕ] =

⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker VTSA, 2023 47/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ

Lemma

[u |= ϕ] =

⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker VTSA, 2023 47/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

Lemma

[u |= ϕ] =

⊤ if u /∈ L(NFA¬ϕ)

⊥ if u /∈ L(NFAϕ)

? else

Martin Leucker VTSA, 2023 47/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ

Martin Leucker VTSA, 2023 47/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

Martin Leucker VTSA, 2023 47/104

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

M

Martin Leucker VTSA, 2023 47/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓
¬spawn true

init

¬init true

spawn ∧ ¬init

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓
¬spawn true

init

¬init true

spawn ∧ ¬init

↓ ↓

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓
¬spawn true

init

¬init true

spawn ∧ ¬init

↓ ↓
¬spawn

true

true
init

spawn

¬init
true

true
spawn ∧ ¬init

init

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓
¬spawn true

init

¬init true

spawn ∧ ¬init

↓ ↓
¬spawn

true

true
init

spawn

¬init
true

true
spawn ∧ ¬init

init

ց ւ

Martin Leucker VTSA, 2023 48/104

Static initialisation order fiasco

¬spawnUinit ¬(¬spawnUinit)

↓ ↓
¬spawn true

init

¬init true

spawn ∧ ¬init

↓ ↓
¬spawn

true

true
init

spawn

¬init
true

true
spawn ∧ ¬init

init

ց ւ

⊥ ? ⊤

true

¬spawn ∧ ¬init

true

spawn ∧ ¬init init

Martin Leucker VTSA, 2023 48/104

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker VTSA, 2023 49/104

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker VTSA, 2023 49/104

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker VTSA, 2023 49/104

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Martin Leucker VTSA, 2023 49/104

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Optimal result!

FSM can be minimised (Myhill-Nerode)

Martin Leucker VTSA, 2023 49/104

On-the-fly Construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker VTSA, 2023 50/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 51/104

Monitorability

When does anticipation help?

Martin Leucker VTSA, 2023 52/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

◮ Ugly prefixes
Martin Leucker VTSA, 2023 53/104

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

◮ Ugly prefixes
Martin Leucker VTSA, 2023 53/104

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

ϕ is non-monitorable after u, if u cannot be extended to a bad oder good

prefix.

Monitorable

ϕ is monitorable if there is no such u.

Martin Leucker VTSA, 2023 54/104

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

ϕ is non-monitorable after u, if u cannot be extended to a bad oder good

prefix.

Monitorable

ϕ is monitorable if there is no such u.

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤Martin Leucker VTSA, 2023 54/104

Monitorable Properties

Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker VTSA, 2023 55/104

Monitorable Properties

Safety Properties

Co-Safety Properties

Note

Safety and Co-Safety Properties are monitorable

Martin Leucker VTSA, 2023 55/104

Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties

◮ comprises safety- and co-safety properties, but

◮ is strictly larger than their union.

Proof

Consider ((p ∨ q)Ur) ∨ Gp

Martin Leucker VTSA, 2023 56/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 57/104

RV-LTL

Basic idea

◮ Use LTL3 for ⊤ and ⊥, use FLTL4 or FLTL to refine ?

Martin Leucker VTSA, 2023 58/104

RV-LTL

Basic idea

◮ Use LTL3 for ⊤ and ⊥, use FLTL4 or FLTL to refine ?

4-valued semantics for LTL over finite words

[u |= ϕ]RV =

⊤ if [u |= ϕ]3 = ⊤

⊥ if [u |= ϕ]3 = ⊥

⊤p if [u |= ϕ]3 =? and [u |= ϕ]4 = ⊤p

⊥p if [u |= ϕ]3 =? and [u |= ϕ]4 = ⊥p

Monitor: Combine corresponding Moore and Mealy machines...

Martin Leucker VTSA, 2023 58/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 59/104

Fusing model checking and runtime verification

LTL with a predictive semantics

Martin Leucker VTSA, 2023 60/104

Recall anticipatory LTL semantics

The truth value of a LTL3 formula ϕ wrt. u, denoted by [u |= ϕ], is an element

of B3 defined by

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

Martin Leucker VTSA, 2023 61/104

Assumptions about environment

Definition (Semantics of LTL with Assumptions)

Let P̂ be an assumption on possible runs of the underlying system. Let

u ∈ Σ∗ denote a finite trace. The truth value of u and an LTL3 formula ϕ wrt.

P̂ , denoted by [u |=
P̂
ϕ], is an element of B3 ⊎ {¿} and defined as follows:

[u |=
P̂
ϕ] =

¿ u 6∈ω P̂ , else,

⊤ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ |= ϕ

⊥ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ 6|= ϕ

? else

Martin Leucker VTSA, 2023 62/104

Assuming program is known, applied to the empty word

Empty word ǫ

[ǫ |= ϕ]
P
= ⊤

iff ∀σ ∈ Σω with ǫσ ∈ P : ǫσ |= ϕ

iff L(P) |= ϕ

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker VTSA, 2023 63/104

Abstraction

An over-abstraction or and over-approximation of a program P is a program

P̂ such that L(P) ⊆ L(P̂) ⊆ Σω .

Martin Leucker VTSA, 2023 64/104

Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P̂ be an over-approximation of P . Let u ∈ Σ∗

denote a finite trace. The truth value of u and an LTL3 formula ϕ wrt. P̂ ,

denoted by [u |=
P̂
ϕ], is an element of B3 and defined as follows:

[u |=
P̂
ϕ] =

¿ u 6∈ω P̂ , else,

⊤ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ |= ϕ

⊥ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ 6|= ϕ

? else

We write LTLP whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker VTSA, 2023 65/104

Properties of Predictive Semantics

Let P̂ be an over-approximation of a program P over Σ, u ∈ Σ∗, and

ϕ ∈ LTL.

◮ Model checking is more precise than RV with the predictive semantics:

P |= ϕ implies [u |=
P̂
ϕ] ∈ {⊤, ?}

◮ RV has no false negatives: [u |=
P̂
ϕ] = ⊥ implies P 6|= ϕ

◮ The predictive semantics of an LTL formula is more precise than LTL3:

[u |= ϕ] = ⊤ implies [u |=
P̂
ϕ] = ⊤

[u |= ϕ] = ⊥ implies [u |=
P̂
ϕ] = ⊥

The reverse directions are in general not true.

Martin Leucker VTSA, 2023 66/104

Monitor generation

The procedure for getting [u |=
P̂
ϕ] for a given ϕ and

over-approximation P̂

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness

per state
NFA DFA FSM

Martin Leucker VTSA, 2023 67/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 68/104

Intermediate Summary

Semantics

◮ completed traces

◮ two valued semantics

◮ non-completed traces
◮ Impartiality

◮ at least three values

◮ Anticipation

◮ finite traces
◮ infinite traces
◮ . . .

◮ monitorability

◮ Prediction

Monitors

◮ left-to-right

◮ time versus space trade-off

◮ rewriting
◮ alternating automata
◮ non-deterministic automata
◮ deterministic automata

Martin Leucker VTSA, 2023 69/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 70/104

Extensions

LTL is just half of the story

Martin Leucker VTSA, 2023 71/104

Extensions

LTL with data

◮ J-LO

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

◮ concurrency

Martin Leucker VTSA, 2023 72/104

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

◮ concurrency

◮ distribution

Martin Leucker VTSA, 2023 72/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 73/104

Monitoring Systems/Logging: Overview

monitoring systems

/logging
instru-

mentation

source code

byte code

binary code

logging APIs

trace tools

dedicated

tracing/-

monitoring

hardware

Martin Leucker VTSA, 2023 74/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 75/104

Monitoring Systems/Logging: Overview

monitoring results/

steering

print

exception

steer

manual

automatically

Martin Leucker VTSA, 2023 76/104

React!

Runtime Verification

Observe—do not react

Realising dynamic systems

◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

Martin Leucker VTSA, 2023 77/104

React!

Runtime Verification

Observe—do not react

Realising dynamic systems

◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

◮ use monitors for observation—then react

Martin Leucker VTSA, 2023 77/104

jMOP [Rosu et al.]

Java Implementation

Martin Leucker VTSA, 2023 78/104

Runtime Reflection [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern

Martin Leucker VTSA, 2023 79/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 80/104

Monitoring Systems/Logging: Overview

RV

frameworks

Eagle

J-LO

Larva

LogScope

LoLa

MACMOP

RulerR

Temporal

Rover

TraceContract

TraceMatches

Martin Leucker VTSA, 2023 81/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 82/104

Martin Leucker VTSA, 2023 83/104

1

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRVMartin Leucker VTSA, 2023 83/104

Example Application

◮ Some application for data entry

◮ Connects to a server

◮ Data can be read, modified and committed

Martin Leucker VTSA, 2023 84/104

Example Application

◮ Frontend handles GUI

◮ Backend handles communication to the server

◮ Frontend and backend communicate via the following interface:

Example

public interface DataService {

void connect(String userID) throws UnknownUserException;

void disconnect();

Data readData(String field);

void modifyData(String field, Data data);

void commit() throws CommitException;

}

Martin Leucker VTSA, 2023 85/104

A “simple” Test

◮ Frontend has to use backend correctly

◮ Data has to be committed before disconnecting

Example

@Test

public void test1() {

DataService service = new MyDataService("http://myserver.net");

MyDataClient client = new MyDataClient(service);

client.authenticate("daniel");

client.addPatient("Mr. Smith");

client.switchToUser("ruth");

assertTrue(service.debug_committed()); // switching means logout

client.getPatientFile("miller-2143-1");

client.setPhone("miller-2143-1", "012345678");

client.exit();

assertTrue(service.debug_committed());

}

Martin Leucker VTSA, 2023 86/104

Observations

◮ Test inputs are interleaved with assertions

◮ Requires internal knowledge about the class under scrutiny

◮ Requires refactoring of interfaces between components

◮ Components might need additional logic to track temporal properties

◮ Production code is polluted by test code

◮ Program logic for temporal properties can be complicated

⇒ Classical unit testing is not suitable to assure temporal properties on

internal interfaces

Martin Leucker VTSA, 2023 87/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 88/104

Main Ideas

◮ seperate test as sequence of actions to do be carried out during test

execution

◮ and monitor specification in FLTL4

◮ false can be used to abort a test immediately
◮ true can be used to abort monitoring
◮ truep/falsep determines the verdict for completed test runs

Martin Leucker VTSA, 2023 89/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 90/104

Events and Propositions

◮ Formal runs consist of discrete steps in time

◮ When does a program perform a step?

◮ Explicitly specify events triggering time steps

◮ Only one event occurs at a point of time

◮ Propositions may be evaluated in the current state

Martin Leucker VTSA, 2023 91/104

Events and Propositions

Example (Specifying Events)

String dataService = "myPackage.DataService";

private static Event modify = called(dataService, "modify");

private static Event committed = returned(dataService, "commit");

private static Event disconnect = called(dataService, "disconnect");

Example (Specifying Propositions)

private static Proposition auth

= new Proposition(eq(invoke($this, "getStatus"),AUTH);

Martin Leucker VTSA, 2023 92/104

Temporal Assertion

◮ LTL is used to specify temporal properties

◮ Generated monitors only observe the specified events

◮ G(modify→ ¬disconnectUcommitted)

Example (Specifying Monitors)

private static Monitor commitBeforeDisconnect = new FLTL4Monitor(

Always(implies(

modify,

Until(not(disconnect), committed)

)

));

Martin Leucker VTSA, 2023 93/104

Testcase

Example

@Test

@Monitors({"commitBeforeDisconnect"})

public void test1() {

DataService service = new MyDataService("http://myserver.net");

MyDataClient client = new MyDataClient(service);

client.authenticate("daniel");

client.addPatient("Mr. Smith");

client.switchToUser("ruth");

client.getPatientFile("miller-2143-1");

client.setPhone("miller-2143-1", "012345678");

client.exit();

}

Martin Leucker VTSA, 2023 94/104

The Complete Picture

@RunWith(RVRunner.class)

public class MyDataClientTest {

private static final String dataServiceQname = "junitrvexamples.DataService";

private static Event modify = called(dataServiceQname, "modifyData");

private static Event committed = returned(dataServiceQname, "commit");

private static Event disconnect = invoke(dataServiceQname, "disconnect");

// create a monitor for LTL4 property G(modify -> !close U commit)

private static Monitor commitBeforeClose = new FLTL4Monitor(

Always(

implies(

modify,

Until(not(disconnect), committed))));

@Test

@Monitors({"commitBeforeClose", "authWhenModify"})

public void test1() {

...

}

}

Martin Leucker VTSA, 2023 95/104

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 96/104

Architecture

�✁✂✄✁☎✆

✝✞✟✠✡☛☞✌✡

✍✞✟✠✡

✎✏✑✠✒
✓✔☞✟✡✕✟✍☞✖✡✠✂✟

✝☎✔☎✌✌✠✌✡

✑☛✑✗

✘✘✘

Martin Leucker VTSA, 2023 97/104

Runners and Classloaders

◮ jUnit uses test runners to execute tests

◮ jUnit provides a default implementation

◮ jUnitRV provides RVRunner extending the

default implementation

◮ jUnitRV provides a custom Classloader

◮ Class loading by program under scrutiny is

intercepted

◮ Bytecode is manipulated to intercept events

�✁✂✄✁☎✆

✝✞✟✠✡☛☞✌✡

✍✞✟✠✡

✎✏✑✠✒
✓✔☞✟✡✕✟✍☞✖✡✠✂✟

✝☎✔☎✌✌✠✌✡

✑☛✑✗

✘✘✘

Martin Leucker VTSA, 2023 98/104

Features

◮ jUnitRV is provided as single class jar file that has to be made available

on the Java class path

◮ It can easily integrated into build systems and IDEs

◮ It may be used to test third party components where no byte code is

available

◮ It may be extended with custom specification formalisms

◮ Test failures are reported as soon as a monitor fails

◮ Stack traces show the exact location of the failure in the program under

scrutiny

Martin Leucker VTSA, 2023 99/104

jUnitRV Running in Netbeans

Martin Leucker VTSA, 2023 100/104

jUnitRV – Summary

◮ Unit testing and runtime verification are combined

◮ jUnit is extended by temporal assertions

◮ Testing temporal properties is less cumbersome

◮ jUnitRV integrates easily in existing projects and environments

Martin Leucker VTSA, 2023 101/104

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

Monitorable Properties

RV-LTL

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

RV frameworks

jUnitRV– Testing Temporal Properties

Motivating Example

jUnitRV– Idea

Using jUnitRV

Implementation of jUnitRVMartin Leucker VTSA, 2023 102/104

Conclusion

Summary

◮ RV needs similar temporal logics as model checking, but adaptions for
◮ finite runs
◮ impartiality
◮ anticipation
◮ prediction

◮ Application jUnitRV

Martin Leucker VTSA, 2023 103/104

That’s it!

Thanks! - Questions?

Martin Leucker VTSA, 2023 104/104

	Runtime Verification
	Runtime Verification for LTL
	LTL over Finite, Completed Words
	LTL over Finite, Non-Completed Words: Impartiality
	LTL over Non-Completed Words: Anticipation
	Monitorable Properties
	RV-LTL
	LTL with a Predictive Semantics
	LTL wrap-up

	Extensions
	Monitoring Systems/Logging
	Steering
	RV frameworks
	jUnitRV– Testing Temporal Properties
	Motivating Example
	jUnitRV– Idea
	Using jUnitRV
	Implementation of jUnitRV

	Conclusion

