
Stream Runtime Verification
Martin Leucker

Together with the whole TeSSLa Team
(Lukas Convent, Hannes Kallwies, Martin Sachenbacher, Malte Schmitz,

Daniel Thoma, Volker Stolz, Cesar Sanchez, and many others)

Plan

• Stream Runtime Verification
• LOLA
• TeSSLa
• Language
• Eco-System

• Control
• Cyber-Physical Systems
• Controllers
• TeSSLa/ROS bridge

Motivation

Streams

Streams

Concurrency/Distribution

Streams

Streams

Time? Synchrony/Ticks

Equational specifications, data, time,
concurrency

LOLA
[D’Angelo et al.]

Example

t1

t2

t3

s1

s2

s3

s4

s5

Example

t1

t2

t3

s1

s2

s3

s4

s5

f

t

3

t

3

f

1

2

Example

t1

t2

t3

s6

s7

s8

s9

s10

f

t

3

t

t

0

t

Example – Reaching the end of the Trace

t1

t2

t3

s6

s7

s8

s9

s10

f

t

3

t

t

t

0

t

t

2

t

t

f

0

t

t

1

t

f

t

1

t

Defining new Streams

Defining new Streams

Runtime Verification as Stream Transformation

Streams

Time? Synchrony/Ticks

Streams

Time? Synchrony/Ticks

Time triggered systems

Streams

Time? Synchrony/Ticks

Time triggered systems

Event-triggered

Tessla’s Streams

Time? Events

Tessla’s Streams

Time? Events

x

Tessla’s Streams

Time? Events

x x

Tessla’s Streams

Time? Events

x

x x

Tessla’s Streams

Time? Events

x

x x

Tessla’s Streams

Time? Events

4

x

x x

Tessla’s Streams

Time? Events

4

x

x x

3

Tessla’s Streams

Time? Events

4

x

x x

3 45

Streams of Programs - After Discretization

Streams

Defining new StreamsStream-based Representation

Time

Value x 998 42 2012 1280 10 1404

Event i r q 4
Event (with value) f 17 98 0 23

x > 1023
changeOf(x)

f i nPa s t <=10ms

Observations
(Input streams)

Derived streams
(definable)

I compute information from observations

I formulate and monitor complex correctness properties

I define complex triggers

SMD 2015 7/20

Defining new StreamsStream-based Representation

Time

Value x 998 42 2012 1280 10 1404

Event i r q 4
Event (with value) f 17 98 0 23

x > 1023
changeOf(x)

f i nPa s t <=10ms

Observations
(Input streams)

Derived streams
(definable)

I compute information from observations

I formulate and monitor complex correctness properties

I define complex triggers

SMD 2015 7/20

Runtime Verification as Stream Transformation

Runtime Verification
with Uncertainties

Lola Example

Using Abstract Domains

Symbolic Evaluation

TeSSLa

TeSSLa

• Temporal
• Stream-based
• Specification
• Language

• Specifying the (expected) behavior of a system’s execution

Language - Overview

Core
Language

Type
System

Macro
System

Meta
Data

Module
System

Design Goals – Core Language

• Declarative style: Specification rather than implementation
• Modularity: Allowing abstractions based on few primitives

(6 operators: unit, nil, lift, last, delay, time)

• Time as first-class citizen
• Abstractions for both events and signals
• Recursion to reason about past
• Implementable with limited memory

(For a restricted fragment)

TeSSLa by example

TeSSLa operators: Last

Read last(x,y) as last of x when event on y

TeSSLa operators: Time

Create Events

in write: Events[Unit]

def timeout := const(5, write)

def error := delay(timeout, write)
out error

Data types in TeSSLa

• TeSSLa strongly typed, generic types
• TeSSLa agnostically wrt any time or data domain
• Different data structures can be used to represent time and data
• Monitoring in hardware:

atomic data types, e.g. int or float
• Monitoring in software:

complex data structures like lists, trees and maps

Macros in TeSSLa

• Few primitive operators
• Readable specifications via Macros
• TeSSLa Standard Library for common useful stuff
• Domain specific libraries for application areas/domains (anticipated)
• Timex/Autosar library
• PastLTL
• Petri nets (under development)

Macros in TeSSLa: EventCount

Modules in TeSSLa

• Sets of Macros can be grouped to modules/libraries
• TeSSLa Standard Library for common useful stuff
• Domain specific libraries for application areas/domains (anticipated)
• Timex/Autosar library
• PastLTL
• Petri nets (under development)

Meta Data / Annotations

• TeSSLa allows annotations similar like @interface in Java
• Several categories for annotations
• Documentation
• Correspondence to Source Code (C-Code)
• Graphical presentation of streams / dashboard support
• Directives for Example Generator
• Directives for bridging to frameworks (ROS)

TeSSLa by Example

TeSSLa by Example

TeSSLa by Example

TeSSLa by Example

TeSSLa compilers

Observation/Instrumentation

• Instrumenter for C code
integrated in compiler

• Accemic’s CEDARtools for non-
intrusive hardware monitoring

• Connection to other
instrumentation tools via generic
annotation system

Supporting Web IDE

Supporting Online Documentation

TeSSLa Ecosystem

• User Libraries
• Macro system allows definition of application-specific libraries
• E.g. AUTOSAR Timex, Past LTL libraries...

• Tutorials
• Extensive tutorials about the usage of the TeSSLa language and tools.

• Open-Source availability
• Free availability of most parts of the tool chain.
• Community-driven project.

TeSSLa for professional usage

• Clear definition of license
• Separation of
• Language,
• Compilers, and
• Tools

• Language specification
• TeSSLa and TeSSLa Core

• Reference Compiler (Interpreter)

Resources

• TeSSLa Website:

 https://www.tessla.io/

• TeSSLa Playground:

 https://play.tessla.io/

• TeSSLa Sourcecode:

 https://git.tessla.io/

• Contact:

 info@tessla.io

tessla.io

TeSSLa Installation and First-Steps

Installation – TeSSLa Bundle

• contains a compiler, interpreter and other useful tools for executing
TeSSLa specifications
• written in Scala and available as a single JAR archive.
• The TeSSLa bundle is licensed under Apache 2.0 license.

Run java -jar tessla.jar -h for information on the usage of the TeSSLa
command line tool.

https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/
scala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy

https://www.scala-lang.org/
https://www.tessla.io/tessla-license.txt
https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/scala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy
https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/scala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy

Logging Library

• For instrumenting C-Code

https://www.tessla.io/logging.zip

https://www.tessla.io/logging.zip

TeSSLa libraries

Futher libraries

https://www.tessla.io/usrLibs/overview/

https://www.tessla.io/usrLibs/overview/

A simple specification

• specification.tessla

 in x: Events[Int]
 in y: Events[Int]

 def diff = sum(x) - sum(y)

 liftable
 def abs(x: Int) = if x < 0 then -x else x
 def tooBig = abs(diff) >= 10

 out diff
 out tooBig

Input trace

• trace.input

10: x = 2
17: x = 1
19: y = 4
37: x = 7
45: x = 6
78: y = 9
98: x = 2

In the playground

 https://play.tessla.io

https://play.tessla.io/

Playground

@VisSTYLE

Running

• java -jar tessla.jar interpreter
specification.tessla trace.input

0: tooBig = false
0: diff = 0
10: tooBig = false
10: diff = 2
17: tooBig = false
17: diff = 3
19: tooBig = false
19: diff = -1

37: tooBig = false
37: diff = 6
45: tooBig = true
45: diff = 12
78: tooBig = false
78: diff = 3
98: tooBig = false
98: diff = 5

TeSSLa Scala/Rust Compiler

• Scala compiler
• allows compilation to Scala code or a JAR file executable on the Java JVM.

 java -jar tessla.jar compile-scala -j monitor.jar specification.tessla
• creates an executeable Jar-File monitor.jar which receives inputs and produces

outputs via stdio in the same format as the interpreter

• Rust compiler
 java -jar tessla.jar compile-rust -b monitor specification.tessla
• creates an executable monitor which receives inputs and produces outputs via

stdio in the same format as the interpreter

Instrumenting C-Code

• Instrument the C source code using the observation annotations
defined in the TeSSLa specification:

 java -jar tessla.jar instrumenter spec.tessla main.c
 /usr/lib/gcc/x86_64-linux-gnu/9/include/

• Instrumentation is done on the LLVM level and specific setup for your
machine is needed

For convenience

• As long as it works

docker run -v $(pwd):/wd -w /wd --rm registry.isp.uni-luebeck.de/
tessla/tessla-docker:2.0.0 rv spec.tessla main.c

TeSSLa Language in Detail

Let‘s work through the tutorial

 https://www.tessla.io/tutorial/

https://www.tessla.io/tutorial/

RV with TeSSLa

main.c spec.tessla

void foo() {
 int x = 42;
}

int main() {
 for (int i = 0; i < 5; i++) {
 foo();
 }
 return 0;
}

@InstFunctionCall("foo")
in foo: Events[Unit]
out foo
def num := count(foo)
out num

Explore

• Instrument the C source
 java -jar tessla.jar instrumenter spec.tessla main.c /
usr/lib/gcc/x86_64-linux-gnu/9/include/
• Compile the instrumented C code
 gcc main.c.instrumented.c -llogging -pthread -ldl -o main
• Execute the compiled program, creating the file trace.log
 ./main
• Monitor the trace
 java -jar tessla.jar interpreter --base-time 1ns spec.tessla trace.log
• Alternatively
 docker run -v $(pwd):/wd -w /wd --rm registry.isp.uni-luebeck.de/tessla/tessla-
docker:2.0.0 rv spec.tessla main.c

Measuring a Function's Runtime

Checking Correctness of Values

Multiple Threads

Checking Correct Locking

Checking Correct Locking (2)

Cyber-Physical Systems

Cyber-Physical System

• Communicating hybrid systems
• Communicating embedded systems interacting with the physical world

• Discrete Math, Events, Propositions
• Continuous Math, Signals

Damped Harmonic Oscillator

m · y´´ = − D · y − d · y´

y’

d·y’

y
D·y

y(
t)

Solving of ODE – Numerical Approximations

• Euler’s method

Solving of ODE – A Variety of Methods

By Svchbderivative work:
tobi (talk) - RK Verfahren,
CC BY-SA 3.0, https://
commons.wikimedia.org/
w/index.php?
curid=32717385

ODEs in TeSSLa

Damped Harmonic Oscillator

m · y´´ = − D · y − d · y´

y’

d·y’

y
D·y

y(
t)

The Spring Example

Plot of the Damped Spring

Control

Runtime Verification

Runtime Verification
• Partial Verification

Runtime Verification
• Partial Verification
• Testing Temporal

Assertions

Runtime Verification
• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors

Runtime Verification
• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors
• Debugging

Runtime Verification
• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors
• Debugging
• Control?

Control from an RV Point of View

Control from an RV Point of View
• Monitor Output as

Feedback/
Intervention to
System

Control from an RV Point of View
• Monitor Output as

Feedback/
Intervention to
System

Control from an RV Point of View
• Monitor Output as

Feedback/
Intervention to
System
• Monitor has to give

more specific Output

Control from an RV Point of View
• Monitor Output as

Feedback/
Intervention to
System
• Monitor has to give

more specific Output
• Here: Monitor

actually computes
control values

Self-Healing System (FDIR with RV)

Self-Healing System (FDIR with RV)

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Monitor

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Monitor

Control

PID-Controller

By Arturo Urquizo - http://commons.wikimedia.org/wiki/File:PID.svg, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=17633925

Controller Combinations

P
Proportional controller to reduce

the transient period.
Changes the magnitude only.

I
Integral controller to reduce the

time invariant error
Lags the output phase.

D
Derivative controller to minimize

the transient errors like overshoot,
oscillatory response.

Leads the output phase.

PI
Reduces rise time and steady state

errors
Changes the magnitude as well as

lags the output.

PD
Reduces rise time and transient

errors such as overshoot,
oscillations in output.

Changes both the magnitude as
well as adds a leading phase to the

output.

PID
General case of a controller. Can be
used to control the magnitude and

lead/ lag phase problems.
Changes the magnitude and can
add positive or negative phase to

the output as per the requirements.

https://medium.com/@svm161265/when-and-why-to-use-p-pi-pd-and-pid-controller-73729a708bb5

Code of Controller in TeSSLa

• See tessla.io

Controlling Robots

TeSSLa/ROS Bridge

include "TesslaROSBridge.tessla“
@RosSubscription("/reduced_scan_to_tessla", "int64", "10")
in scan: Events[Int]

Stop if there are short rays detected
def stop = scan < 20

@RosPublisher("/result_from_tessla_to_ros", "bool", "10")
out stop

Example

Example

Example

Conclusions

Conclusions

• Stream-based Runtime Verification makes sense
• TeSSLa one approach in this setting
• Supports handling of data

• Monitoring CPS makes sense
• Controlling using RV techniques makes sense
• Separation of concerns

Future Work

• Controller module in TeSSLa?
• More concrete examples?
• Gain more experiences?
• Programming (safety aspects) of robots?
• Better use Modellica and FMUs?
• Add continuous functions symbolically to perform algebraic

simplifications?

