
Automated Reasoning∗

Uwe Waldmann

Christoph Weidenbach

Summer Term 2006

Topics of the Course

Propositional logic

syntax, semantics
calculi: DPLL-procedure, . . .

First-order predicate logic

syntax, semantics, model theory, . . .
resolution, tableaux

First-order predicate logic with equality

term rewriting systems
Knuth-Bendix completion, superposition

Implementation techniques

indexing data structures, . . .

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a reseaech paper – neither stylistically
nor typographically.

1

1 Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e. g., model checking)

1.1 Syntax

• propositional variables

• logical symbols
⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S, to denote propositional variables.

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F, G, H ::= ⊥ (falsum)
| > (verum)
| P , P ∈ Π (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

2

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔ (binding precedences)

– ∨ and ∧ are associative

– → is right-associative,
i. e., F → G → H means F → (G → H).

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is defined inductively
over the structure of F as follows:

A∗(⊥) = 0

A∗(>) = 1

A∗(P) = A(P)

A∗(¬F) = B¬(A∗(F))

A∗(FρG) = Bρ(A
∗(F),A∗(G))

where Bρ is the Boolean function associated with ρ defined by the usual truth table.

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation for a logical symbol and
for its meaning (but remember that formally these are different things.)

3

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all Π-valuations
A, whenever A |= F then A |= G.

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have
A |= F ⇔ A |= G.

Proposition 1.1 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = 1. Otherwise A(F) = 0, then A(F → G) = B→(0,A(G)) = 1 independently of
A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = B→(A(F),A(G)) = B→(1, 0) = 0,
so (F → G) does not hold in A. 2

Proposition 1.2 F |=| G if and only if |= (F ↔ G).

Proof. Follows from Prop. 1.1. 2

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

4

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 1.3 F is valid if and only if ¬F is unsatisfiable.

Proof. (⇒) If F is valid, then A(F) = 1 for every valuation A. Hence A(¬F) =
B¬(A(F)) = B¬(1) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. 2

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 1.4 N |= F if and only if N ∪ {¬F} is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F)
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not.
⇒ truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

Substitution Theorem

Proposition 1.5 Let F and G be equivalent formulas, let H be a formula in which F

occurs as a subformula.

Then H is equivalent to H ′ where H ′ is obtained from H by replacing the occurrence of
the subformula F by G. (Notation: H = H[F], H ′ = H[G].)

5

Proof. The proof proceeds by induction over the formula structure of H.

Each of the formulas ⊥, >, and P for P ∈ Π contains only one subformula, namely
itself. Hence, if H = H[F] equals ⊥, >, or P , then H = F , H ′ = G, and H and H ′ are
equivalent by assumption.

If H = H1 ∧ H2, then either F equals H (this case is treated as above), or F is a
subformula of H1 or H2. Without loss of generality, assume that F is a subformula of
H1, so H = H1[F] ∧ H2. By the induction hypothesis, H1[F] and H1[G] are equiva-
lent. Hence, for every valuation A, A(H ′) = A(H1[G] ∧ H2) = A(H1[G]) ∧ A(H2) =
A(H1[F]) ∧ A(H2) = A(H1[F] ∧ H2) = A(H).

The other boolean connectives are handled analogously. 2

Some Important Equivalences

Proposition 1.6 The following equivalences are valid for all formulas F, G, H:

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)
(F ∧ G) ↔ (G ∧ F)
(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)
(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)
(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)
¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology
(F ∨ G) ↔ >, if G is a tautology
(F ∧ G) ↔ ⊥, if G is unsatisfiable
(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

(F ↔ G) ↔ ((F → G) ∧ (G → F)) (Equivalence)
(F → G) ↔ (¬F ∨ G) (Implication)

6

1.4 Normal Forms

We define conjunctions of formulas as follows:
∧

0

i=1
Fi = >.

∧
1

i=1
Fi = F1.

∧n+1

i=1
Fi =

∧n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨n+1

i=1
Fi =

∨n

i=1
Fi ∨ Fn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

7

Conversion to CNF/DNF

Proposition 1.7 For every formula there is an equivalent formula in CNF (and also an
equivalent formula in DNF).

Proof. We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity
of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate > and ⊥:

(F ∧ >) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ >) ⇒K >

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K >

¬> ⇒K ⊥

8

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more
complicated.

For step 3, we can prove termination in the following way: We define a function µ from
formulas to positive integers such that µ(⊥) = µ(>) = µ(P) = 1, µ(¬F) = 2µ(F),
µ(F ∧ G) = µ(F ∨ G) = µ(F → G) = µ(F ↔ G) = µ(F) + µ(G) + 1. Whenever
a formula H ′ is the result of applying a rule of step 3 to a formula H, then µ(H) >

µ(H ′). Since µ takes only integer values and µ(H) ≥ 1 for all formulas H, step 3 must
terminate.

Termination of step 5 is proved similarly using a function ν from formulas to positive
integers such that ν(⊥) = ν(>) = ν(P) = 1, ν(¬F) = ν(F) + 1, ν(F ∧ G) = ν(F →
G) = ν(F ↔ G) = ν(F) + ν(G) + 1, and ν(F ∨ G) = 2ν(F)ν(G). Again, if a formula
H ′ is the result of applying a rule of step 5 to a formula H, then ν(H) > ν(H ′). Since
ν takes only integer values and Since ν(H) ≥ 1 for all formulas H, step 5 terminates,
too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions
have to be pushed downward in step 5. 2

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Idea: A formula F [F ′] is satisfiable if and only if F [P] ∧ (P ↔ F ′) is satisfiable (where
P is a new propositional variable that works as an abbreviation for F ′).

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

9

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P ↔ F ′ gives rise to at most one application of the distributivity
law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into
account.

Assume that F contains neither → nor ↔. A subformula F ′ of F has positive polarity
in F , if it occurs below an even number of negation signs; it has negative polarity in F ,
if it occurs below an odd number of negation signs.

Proposition 1.8 Let F [F ′] be a formula containing neither → nor ↔; let P be a
propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and only if F [P] ∧ (P → F ′)
is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and only if F [P] ∧ (F ′ → P)
is satisfiable.

Proof. Exercise. 2

10

