
1.6 Splitting into Horn Clauses

• A Horn clause is a clause with at most one positive literal.

• They are typically denoted as implications: P1, . . . , Pn → Q.
(In general we can write P1, . . . , Pn → Q1, . . . , Qm for ¬P1 ∨ . . .∨¬Pn ∨Q1 ∨ . . .∨
Qm.)

• Compared to arbitrary clause sets, Horn clause sets enjoy further properties:

– Horn clause sets have unique minimal models.

– Checking satisfiability is often of lower complexity.

Propositional Horn Clause SAT is in P

boolean HornSAT(literal set M , Horn clause set N) {
if (all clauses in N are supported by M) return true;
elsif (a negative clause in N is not supported by M) return false;
elsif (N contains clause P1, . . . , Pn → Q where

{P1, . . . , Pn} ⊆ M and Q 6∈ M)
return HornSAT(M ∪ {Q}, N);

}

A clause P1, . . . , Pn → Q1, . . . , Qm is supported by M if {P1, . . . , Pn} 6⊆ M or some
Qi ∈ M . A negative clause consists of negative literals only.

Initially, HornSAT is called with an empty literal set M .

Lemma 1.13 Let N be a set of propositional Horn clauses.Then:

(1) HornSAT(∅, N)=true iff N is satisfiable

(2) HornSAT is in P

Proof. (1) (Idea) For example, by induction on the number of positive literals in N .

(2) (Scetch) For each recursive call M contains one more positive literal. Thus Horn-
SAT terminates after at most n recursive calls, where n is the number of propositional
variables in N . 2

18



SplitHornSAT

boolean SplitHornSAT(clause set N) {
if (N is Horn)

g return HornSAT(∅,N);
else {

select non Horn clause P1, . . . , Pn → Q1, . . . , Qm from N ;
N ′ = N \ {P1, . . . , Pn → Q1, . . . , Qm};
if (SplitHornSAT(N ′ ∪ {P1, . . . , Pn → Q1})) return true;
else return

SplitHornSAT(N ′ ∪ {→ Q2, . . . , Qm} ∪
⋃

i{→ Pi} ∪ {Q1 →});
}

}

Lemma 1.14 Let N be a set of propositional clauses. Then:

(1) SplitHornSAT(N)=true iff N is satisfiable

(2) SplitHornSAT(N) terminates

Proof. (1) (Idea) Show that N is satisfiable iff N ′ ∪ {P1, . . . , Pn → Q1} is satisfiable or
N ′ ∪ {→ Q2, . . . , Qm} ∪

⋃
i{→ Pi} ∪ {Q1 →} is satisfiable for some clause P1, . . . , Pn →

Q1, . . . , Qm from N .

(2) (Idea) Each recursive call reduces the number of positive literals in non Horn clauses.
2

1.7 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a fixed ordering on propo-
sitional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in Computer Science:
Modelling and Reasoning about Systems, Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

19



1.8 Example: SUDOKU

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 2
8 5 1
9 8 6

Idea: pd
i,j=true iff

the value of
square i, j is d

For example:
p8

3,5 = true

Coding SUDOKU by propositional clauses

• Concrete values result in units: pd
i,j

• For every value, column we generate: ¬pd
i,j ∨ ¬pd

i,j+k

Accordingly for all rows and 3 × 3 boxes

• For every square we generate: p1
i,j ∨ . . . ∨ p9

i,j

• For every two different values, square we generate: ¬pd
i,j ∨ ¬pd′

i,j

• For every value, column we generate: pd
i,0 ∨ . . . ∨ pd

i,9

Accordingly for all rows and 3 × 3 boxes

Constraint Propagation is Unit Propagation

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 7 2
8 5 1
9 8 6

From ¬p3
1,7 ∨ ¬p3

5,7 and p3
1,7 we obtain by unit propagating ¬p3

5,7 and further from p1
5,7 ∨

p2
5,7 ∨ p3

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7 we get p1
5,7 ∨ p2

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7.

20


