1.6 Splitting into Horn Clauses

e A Horn clause is a clause with at most one positive literal.

e They are typically denoted as implications: P, ..., P, — Q.
(In general we can write Py, ..., P, — Q1,...,Q, for =PLV...V=P,VQ{ V...V

Qm-)
e Compared to arbitrary clause sets, Horn clause sets enjoy further properties:
— Horn clause sets have unique minimal models.

— Checking satisfiability is often of lower complexity.

Propositional Horn Clause SAT is in P

boolean HornSAT (literal set M, Horn clause set N) {
if (all clauses in N are supported by M) return true;
elsif (a negative clause in N is not supported by M) return false;
elsif (N contains clause P, ..., P, — @ where
{P,....,P,} CMand Q ¢ M)
return HornSAT(M U {Q}, N);
}

A clause Py,..., P, — Q1,...,Q,, is supported by M if {Py,...,P,} € M or some
Q; € M. A negative clause consists of negative literals only.

Initially, HornSAT is called with an empty literal set M.

Lemma 1.13 Let N be a set of propositional Horn clauses. Then:
(1) HornSAT(D, N)=true iff N is satisfiable
(2) HornSAT is in P

Proof. (1) (Idea) For example, by induction on the number of positive literals in N.

(2) (Scetch) For each recursive call M contains one more positive literal. Thus Horn-
SAT terminates after at most n recursive calls, where n is the number of propositional
variables in N. a

18

SplitHornSAT

boolean SplitHornSAT (clause set V) {
if (N is Horn)
g return HornSAT(0,N);
else {
select non Horn clause Py, ..., P, — Q1,...,Q,, from N;

N/:N\{Pl,...,Pn—>Q1,...,Qm};
if (SplitHornSAT(N' U{ Py, ..., P, — @Q1})) return true;
else return

SplitHornSAT(N' U {— Q2,...,Qn} UU,{— P} U{Q:1 —});

Lemma 1.14 Let N be a set of propositional clauses. Then:
(1) SplitHornSAT(N)=true iff N is satisfiable
(2) SplitHornSAT(N) terminates

Proof. (1) (Idea) Show that N is satisfiable iff N’ U{Py,..., P, — @1} is satisfiable or
N U{—= Q2,...,Qn} U, {— B} U{Q1 —} is satisfiable for some clause P, ..., P, —
Q1,...,Q, from N.

(2) (Idea) Each recursive call reduces the number of positive literals in non Horn clauses.
(I

1.7 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a fixed ordering on propo-
sitional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in Computer Science:
Modelling and Reasoning about Systems, Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

19

1.8 Example: SUDOKU

1121314 |5]6[781]9
1 1
51 Idea: pﬁjztrue iff
3 5 the value of
1 5 1 - square %, j is d
5 8 3
0 1) For example:
T3 2 pg 5 = true
8 5 1 ’
9 6

Coding SUDOKU by propositional clauses

e Concrete values result in units: pf

e For every value, column we generate: ﬂpﬁj V ﬂpﬁ itk
Accordingly for all rows and 3 x 3 boxes

e For every square we generate: p;; V...V py;
. !
e For every two different values, square we generate: —p¢ iV —pe ;

e For every value, column we generate: p‘io V...V p‘f’g
Accordingly for all rows and 3 x 3 boxes

Constraint Propagation is Unit Propagation

11234567819
1 1
214

3 2

4) 4 7
) 3

6 1 9

73 7 2

8 5 1

9 6

From —p}; V =p2 ; and p}; we obtain by unit propagating —p3 ; and further from p} ; v
PV DRV pa V.V ploweget ploVpi Vs,V .. VDR

20

