
2 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical symbols (domain-independent)
⇒ Boolean combinations, quantifiers

Signature

A signature

Σ = (Ω, Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols p with arity m ≥ 0, written arity(p) = m.

If n = 0 then f is also called a constant (symbol).
If m = 0 then p is also called a propositional variable.
We use letters P , Q, R, S, to denote propositional variables.

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
not so interesting from a logical point of view.

21

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.

Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T)∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f ∈ Ω, arity(f) = n (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may
also view as marked, ordered trees. The markings are function symbols or variables. The
nodes correspond to the subterms of the term. A node v that is marked with a function
symbol f of arity n has exactly n subtrees representing the n immediate subterms of
v.

22

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A,B ::= p(s1, ..., sm) , p ∈ Π, arity(p) = m
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order logic
with equality . Admitting equality does not really increase the expressiveness of first-
order logic, (cf. exercises). But deductive systems where equality is treated specifically
can be much more efficient.

Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)
| > (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

23

Positions in terms, formulas

Positions of a term s (formula F):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n

i=1
{ ip | p ∈ pos(si) }.

pos(∀xF) = {ε} ∪ { 1p | p ∈ pos(F) }
Analogously for all other formulas.

Prefix order for p, q ∈ pos(s):

p above q: p ≤ q if pp′ = q for some p′,
p strictly above q: p < q if p ≤ q and not q ≤ p,
p and q parallel: p ‖ q if neither p ≤ q nor q ≤ p.

Subterm of s (F) at a position p ∈ pos(s):

s/ε = s,
f(s1, . . . , sn)/ip = si/p.

Analougously for formulas (F/p).

Replacement of the subterm at position p ∈ pos(s) by t:

s[t]ε = t,
f(s1, . . . , sn)[t]ip = f(s1, . . . , si[t]p, . . . , sn).

Analougously for formulas (F [G]p).

Size of a term s:

|s| = cardinality of pos(s).

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∨ >p ∧ >p → >p ↔
(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

24

Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))
−s for −(s)
0 for 0()

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {≤ /2, < /2}
+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x, y(x ≤ y ↔ ∃z(x + z ≈ y))
∃x∀y(x + y ≈ y)
∀x, y(x ∗ s(y) ≈ x ∗ y + x)
∀x, y(s(x) ≈ s(y) → x ≈ y)
∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be defined in first-
order logic with equality just with the help of +. The first formula defines ≤, while the
second defines zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces the
“redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification structure
and the complexity of the signature.

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of
a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other
occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

25

Example:

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) → q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise distinct, and then
denote the mapping

[s1/x1, . . . , sn/xn](y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

26

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations depicted on the next
page.

In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of σ are not captured upon placing them into the
scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

Why this definition of substitution is well-defined will be discussed below.

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

>σ = >

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(QxF)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

Structural Induction

Proposition 2.1 Let G = (N, T, P, S) be a context-free grammar (possibly infinite)
and let q be a property of T ∗ (the words over the alphabet T of terminal symbols of G).

q holds for all words w ∈ L(G), whenever one can prove the following two properties:

1. (base cases)
q(w′) holds for each w′ ∈ T ∗ such that X ::= w′ is a rule in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N , wi ∈ T ∗, n ≥ 0, then for all
w′

i ∈ L(G,Xi), whenever q(w′
i) holds for 0 ≤ i ≤ n, then also q(w0w

′
0w1 . . . wnw

′
nwn+1)

holds.

27

Here L(G,Xi) ⊆ T ∗ denotes the language generated by the grammar G from the non-
terminal Xi.

Structural Recursion

Proposition 2.2 Let G = (N, T, P, S) be a unambiguous (why?) context-free gram-
mar. A function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w′ ∈ T ∗ for each rule X ::= w′ in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then f(w0w

′
0w1 . . . wnw

′
nwn+1) is

well-defined, assuming that each of the f(w′
i) is well-defined.

Substitution Revisited

Q: Does Proposition 2.2 justify that our homomorphic extension

apply : FΣ(X) × (X → TΣ(X)) → FΣ(X),

with apply(F, σ) denoted by Fσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is (deliberately) left unspecified.
That can be easily fixed by adding an extra variable counter argument to the apply
function.

The second problem is that Proposition 2.2 applies to unary functions only. The standard
solution to this problem is to curryfy, that is, to consider the binary function as a unary
function producing a unary (residual) function as a result:

apply : FΣ(X) → ((X → TΣ(X)) → FΣ(X))

where we have denoted (apply(F))(σ) as Fσ.

E: Convince yourself that this does the trick.

2.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

28

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un → U)f∈Ω, (pA ⊆ Um
A)p∈Π)

where arity(f) = n, arity(p) = m, UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a map
β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)),

f ∈ Ω, arity(f) = n

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ A, denote the
assignment

β[x 7→ a](y) :=

{

a if x = y

β(y) otherwise

29

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(>) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n + m

∗N : (n,m) 7→ n ∗ m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x + y ≈ s(y)) = 1
N(β)(∀x, y(x + y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

30

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F, for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 2.3 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 2.4 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

Corollary 2.5 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

31

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all A ∈ Σ-Alg

and β ∈ X → UA, whenever A, β |= F , then A, β |= G.

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg und β ∈ X → UA

we have A, β |= F ⇔ A, β |= G.

Proposition 2.6 F entails G iff (F → G) is valid

Proposition 2.7 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= G, for all G ∈ N , then A, β |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 2.8 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

32

Two Interesting Theories

Let ΣPres = ({0/0, s/1, +/2}, ∅) and Z+ = (Z, 0, s, +) its standard interpretation on the
integers. Th(Z+) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn

)).

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of ΣPA = ({0/0, s/1, +/2, ∗/2}, ∅),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.

2.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A, β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (One can easily
encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is not recursively enu-
merable.

33

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in time polynomial in the size of the structure
and the formula.

34

