2.10 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge
Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will make use of the concept of
well-founded orderings.

Partial Orderings

A (strict) partial ordering = on a set M is a transitive and irreflexive binary relation
on M.

An a € M is called minimal, if there is no b in M such that a > b.
An a € M is called smallest, if b = a for all b € M different from a.

Notation:
< for the inverse relation >="!
> for the reflexive closure (> U =) of >

Well-Foundedness

A (strict) partial ordering > is called well-founded (Noetherian), if there is no infinite
descending chain ag > a; > ag > ... with a; € M.

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M, 1), (M, >=2) be well-founded orderings. Then let
their lexicographic combination

- = (>'17 >'2)lex
on M; x M, be defined as
(a1,a2) = (by,by) &= ay =1 by, orelse a; = by & ag =2 by

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).
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Length-based ordering on words. For alphabets ¥ with a well-founded ordering >y, the
relation >, defined as
w=w = a)|w| > |w|or
B) |w] = |w'| and w >y je, W',
is a well-founded ordering on ¥* (proof below).

Counterexamples:
(Z,>);
(N, <);
the lexicographic ordering on ¥*

Basic Properties of Well-Founded Orderings

Lemma 2.16 (M, ) is well-founded if and only if every ) C M’ C M has a minimal
element.

Lemma 2.17 (M;, ;) is well-founded for i = 1,2 if and only if (My x My, ») with
= = (™1, =2)iex 18 well-founded.

Proof. (i) “=": Suppose (M; x Ms, >) is not well-founded. Then there is an infinite
sequence (ag, by) = (a1,b1) = (ag,by) = .. ..

Let A= {a; | i > 0} C M;. Since (M, >1) is well-founded, A has a minimal element
a,. But then B = {b; | i > n} C M, can not have a minimal element, contradicting the
well-foundedness of (Ma, >2).

(ii) “«<=": obvious. O

Noetherian Induction

Theorem 2.18 (Noetherian Induction) Let (M, >) be a well-founded ordering, let
@ be a property of elements of M.

If for all m € M the implication

if Q(m'), for allm’ € M such that m = m/',!
then Q(m).?

is satisfied, then the property Q(m) holds for all m € M.

linduction hypothesis
2induction step
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Proof. Let X = {m € M | Q(m) false}. Suppose, X # (). Since (M, ) is well-founded,
X has a minimal element m;. Hence for all m’ € M with m’ < m; the property Q(m')
holds. On the other hand, the implication which is presupposed for this theorem holds
in particular also for m;j, hence Q(m;) must be true so that m; can not be in X.
Contradiction. O

Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M — N. Hereby S(m) specifies
the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.

We use set notation (€, C, C, U, N, etc.) with analogous meaning also for multi-sets,

e.g.,

(Sl U SQ)(TR) = Sl (m) + SQ(TR)
(S1NS)(m) = min{S;(m), Sa(m)}

A multi-set is called finite, if
[{m € M| s(m) > 0}| < oo,
for each m in M.

From now on we only consider finite multi-sets.

Example. S = {a,a,a,b,b} is a multi-set over {a,b,c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

Multi-Set Orderings

Lemma 2.19 (Konig’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Let (M, ) be a partial ordering. The multi-set extension of > to multi-sets over M is

defined by

Sl > mul SZ = Sl # SQ
and Vm € M : [Sy(m) > Si(m)
= 3JIm' € M : (m' > m and S;(m’) > Sy(m'))]
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Theorem 2.20

(a) >=mul is a partial ordering.

(b) = well-founded = >, well-founded.
(c) = total = > total.

Proof. see Baader and Nipkow, page 22-24. O

2.11 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

e We have to show: N = 1L = N kg L, or equivalently: If N /ges L, then N
has a model.

e Idea: Suppose that we have computed sufficiently many inferences (and not derived
1).

e Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

e The limit interpretation can be shown to be a model of N.

Clause Orderings

1. We assume that > is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e.g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend > to an ordering > on ground literals:
[-]A >, [-|B ,if A>B
-A L A

3. Extend > to an ordering >¢ on ground clauses:
>=c = (>1)mul, the multi-set extension of > .

Notation: > also for »=; and >¢.
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Example

Suppose As = Ay = Az = Ay = Ay = Ap. Then:

AO V Al
A1V Ay
-A; V Ay
—A; VALV As
—A; VALV As
-As V As

AL A A A

Properties of the Clause Ordering

Proposition 2.21
1. The orderings on literals and clauses are total and well-founded.

2. Let C' and D be clauses with A = max(C'), B = max(D), where max(C') denotes
the maximal atom in C.

(i) If A > B then C >~ D.
(ii)) If A = B, A occurs negatively in C' but only positively in D, then C' >~ D.

Stratified Structure of Clause Sets

Let A = B. Clause sets are then stratified in this form:

B ..'."VB all D where max(D) = B
...VBVB
-BV...
<
..VA
LY all C where max(C) = A
A ...VAVA
_\Av...
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Closure of Clause Sets under Res

Res(N) ={C | C is concl. of a rule in Res w/ premises in N}
Res’(N) =N
Res"™(N) = Res(Res"(N)) U Res™(N), forn >0

Res*(N) =, Res"(N)
N is called saturated (w.r.t. resolution), if Res(N) C N.

Proposition 2.22
(i) Res*(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

NEL1 & 1€ Res*(N)

Construction of Interpretations

Given: set N of ground clauses, atom ordering .
Wanted: Herbrand interpretation I such that

e “many” clauses from N are valid in I;
e [ =N, if N is saturated and 1. ¢ N.

Construction according to >, starting with the minimal clause.

Example

Let A5 = Ay = A3 = Ay = Ay > Ap (max. literals in red)

‘ ‘ clauses C ‘ 1o ‘ Ac ‘ Remarks ‘

1 -Ap 0 0 | true in Io

2 AoV Ay 0 {A;} | A} maximal

3 AV Ay {A;} f | truein I¢

4 —A; VA {4} {A2} | Ay maximal

5| =A; VALV A3V Ay {A1, Ay} {A4} | A4 maximal

6 Ay VoAV As | {A A Ay} 0 Az not maximal;
min. counter-ex.

7 —A;V As | {Ar, A, Ag) | {A5)

I ={Ay, Ay, Ay, A5} is not a model of the clause set
= there exists a counterexample.
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Main ldeas of the Construction

e (Clauses are considered in the order given by <.

e When considering C', one already has a partial interpretation I (initially Io = 0)
available.

e If C is true in the partial interpretation I¢, nothing is done. (Ac = 0).

o [f C' is false, one would like to change I~ such that C' becomes true.

e Changes should, however, be monotone. One never deletes anything from I~ and
the truth value of clauses smaller than C should be maintained the way it was in
Ic.

e Hence, one chooses A¢c = {A} if, and only if, C'is false in I, if A occurs positively
in C (adding A will make C' become true) and if this occurrence in C' is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses).

Resolution Reduces Counterexamples

A VALVAIV Ay AV ALV Ag
—AL VAV A3V AV Ay

Construction of I for the extended clause set:

clauses C ‘ Ic ‘ Ac ‘ Remarks
-4 0 0
AgV A 0 {A;}
A1 vV A2 {Al} @

-A; V A, {A:} {Ay}
-A; VA VA3V A3V A, {A1, Ao} 0 Az occurs twice
minimal counter-ex.
_'Al V A4 V A3 V AO {A17 AQ} {A4}
_'Al V _|A4 V Ag {Al, AQ, A4} @
—A VA5 | {A, Ao, Ayt | {A5)

counterexample

The same I, but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

—AL VoA VAV A3V A
—A; VAV AV A

Construction of I for the extended clause set:

‘ clauses C ‘ Ic ‘ Ac ‘ Remarks
-4 0 0
AoV A, 0 {A}
ALV A,y {A} 0

SAV A | {AY | {49
_‘A1 V _|A1 V A3 vV AO {Al, AQ} {Ag}

_'Al V _|A1 V A3 V A3 V AO {Al, AQ, Ag} @ true in ]C
_'Al \/A4\/A3\/A0 {Al,AQ,Ag} @

—A; VALV Ag | {AL Ag, As) 0 | truein Io

—As VA5 | {Ay, Ag, A3} | {As)

The resulting I = {A;, As, A3, A5} is a model of the clause set.

Construction of Candidate Interpretations

Let N, > be given. We define sets I and Ag for all ground clauses C' over the given
signature inductively over >:

Ic = UC>D Ap

R (A}, fCEN,C=C'VA A" Ic}tC
c =

0, otherwise

We say that C' produces A, if Ac = {A}.

The candidate interpretation for N (w.r.t. =) is given as I := [, Ac. (We also simply
write Iy or I for Iy if > is either irrelevant or known from the context.)

Structure of N, >~

Let A > B; producing a new atom does not affect smaller clauses.
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pyibly productive
/
...VB
all D with max(D) = B
B { vBYB (D)
—BV../

[4
VA all ¢ with max(C) = A
A ...VAVA

Some Properties of the Construction

Proposition 2.23
(i) C =-AVvVC" = noD = C produces A.
(ii) C productive = Ic U A¢ = C.

(iii) Let D' = D > C. Then

IDUAD):C:>ID/UAD/):CaHdIN):C.

If, in addition, C € N or max(D) > max(C):
IDUAD %C#ID/UAD/ %Caﬂd]]v %C
(iv) Let D' = D = C. Then

ID):C:>ID/):CELHdIN):C.

If, in addition, C' € N or max(D) > max(C):

ID%C:>ID/ %Caﬂlel;éC

(v) D=CV A produces A = Iy [~ C.
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Model Existence Theorem

Theorem 2.24 (Bachmair & Ganzinger 1990) Let >~ be a clause ordering, let N
be saturated w.r.t. Res, and suppose that L ¢ N. Then I = N.

Corollary 2.25 Let N be saturated w.r.t. Res. Then N =1 < 1 € N.

Proof of Theorem 2.24. Suppose L & N, but I £ N. Let C' € N minimal (in >)
such that Iy = C. Since C' is false in Iy, C' is not productive. As C' # L there exists a
maximal atom A in C.

Case 1: C'=-AV (' (i.e., the maximal atom occurs negatively)

= Iy EAand Iy £ C'

= some D = D'V A € N produces A. As D'vA D/VCTAVC/, we infer that D'V C" € N,
and C'>= D'V " and Iy £ D' Vv ('

= contradicts minimality of C'

Case 2: C =C"V AV A. Then C'CV,C‘XA yields a smaller counterexample C'V A € N. =
contradicts minimality of C'. a

Compactness of Propositional Logic

Theorem 2.26 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M C N is unsatisfiable.

Proof. “<”: trivial.

“=": Let N be unsatisfiable.

= Res*(N) unsatisfiable

= 1 € Res*(N) by refutational completeness of resolution

= In>0: L1 € Res"(N)

= | has a finite resolution proof P;

choose M as the set of assumptions in P. O
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