2.10 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: *Term rewriting and all that*, Cambridge Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will make use of the concept of well-founded orderings.

Partial Orderings

A (strict) partial ordering \succ on a set M is a transitive and irreflexive binary relation on M.

An $a \in M$ is called *minimal*, if there is no b in M such that $a \succ b$.

An $a \in M$ is called *smallest*, if $b \succ a$ for all $b \in M$ different from a.

Notation:

 \prec for the inverse relation \succ^{-1}

 \succeq for the reflexive closure ($\succ \cup =$) of \succ

Well-Foundedness

A (strict) partial ordering \succ is called *well-founded* (Noetherian), if there is no infinite descending chain $a_0 \succ a_1 \succ a_2 \succ \ldots$ with $a_i \in M$.

Well-Founded Orderings: Examples

Natural numbers. $(\mathbb{N}, >)$

Lexicographic orderings. Let $(M_1, \succ_1), (M_2, \succ_2)$ be well-founded orderings. Then let their lexicographic combination

$$\succ = (\succ_1, \succ_2)_{lex}$$

on $M_1 \times M_2$ be defined as

 $(a_1, a_2) \succ (b_1, b_2) \quad :\Leftrightarrow \quad a_1 \succ_1 b_1, \text{ or else } a_1 = b_1 \& a_2 \succ_2 b_2$

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets Σ with a well-founded ordering $>_{\Sigma}$, the relation \succ , defined as

 $w \succ w' := \alpha$ |w| > |w'| or β |w| = |w'| and $w >_{\Sigma,lex} w'$, is a well-founded ordering on Σ^* (proof below).

Counterexamples:

 $(\mathbb{Z}, >);$ $(\mathbb{N}, <);$ the lexicographic ordering on Σ^*

Basic Properties of Well-Founded Orderings

Lemma 2.16 (M, \succ) is well-founded if and only if every $\emptyset \subset M' \subseteq M$ has a minimal element.

Lemma 2.17 (M_i, \succ_i) is well-founded for i = 1, 2 if and only if $(M_1 \times M_2, \succ)$ with $\succ = (\succ_1, \succ_2)_{lex}$ is well-founded.

Proof. (i) " \Rightarrow ": Suppose $(M_1 \times M_2, \succ)$ is not well-founded. Then there is an infinite sequence $(a_0, b_0) \succ (a_1, b_1) \succ (a_2, b_2) \succ \ldots$

Let $A = \{a_i \mid i \geq 0\} \subseteq M_1$. Since (M_1, \succ_1) is well-founded, A has a minimal element a_n . But then $B = \{b_i \mid i \geq n\} \subseteq M_2$ can not have a minimal element, contradicting the well-foundedness of (M_2, \succ_2) .

(ii) " \Leftarrow ": obvious.

Noetherian Induction

Theorem 2.18 (Noetherian Induction) Let (M, \succ) be a well-founded ordering, let Q be a property of elements of M.

If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ such that $m \succ m'$,¹ then Q(m).²

is satisfied, then the property Q(m) holds for all $m \in M$.

 $^{^{1}}$ induction hypothesis

²induction step

Proof. Let $X = \{m \in M \mid Q(m) \text{ false}\}$. Suppose, $X \neq \emptyset$. Since (M, \succ) is well-founded, X has a minimal element m_1 . Hence for all $m' \in M$ with $m' \prec m_1$ the property Q(m') holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_1 , hence $Q(m_1)$ must be true so that m_1 can not be in X. Contradiction.

Multi-Sets

Let M be a set. A multi-set S over M is a mapping $S: M \to \mathbb{N}$. Hereby S(m) specifies the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.

We use set notation $(\in, \subset, \subseteq, \cup, \cap, \text{ etc.})$ with analogous meaning also for multi-sets, e.g.,

$$(S_1 \cup S_2)(m) = S_1(m) + S_2(m) (S_1 \cap S_2)(m) = \min\{S_1(m), S_2(m)\}$$

A multi-set is called *finite*, if

 $|\{m \in M | s(m) > 0\}| < \infty,$

for each m in M.

From now on we only consider finite multi-sets.

Example. $S = \{a, a, a, b, b\}$ is a multi-set over $\{a, b, c\}$, where S(a) = 3, S(b) = 2, S(c) = 0.

Multi-Set Orderings

Lemma 2.19 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$S_1 \succ_{\text{mul}} S_2 :\Leftrightarrow S_1 \neq S_2$$

and $\forall m \in M : [S_2(m) > S_1(m)$
 $\Rightarrow \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))]$

Theorem 2.20

(a) \succ_{mul} is a partial ordering. (b) \succ well-founded $\Rightarrow \succ_{mul}$ well-founded. (c) \succ total $\Rightarrow \succ_{mul}$ total.

Proof. see Baader and Nipkow, page 22–24.

2.11 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived ⊥).
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on ground atoms that is *total* and *well-founded*. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
- 2. Extend \succ to an ordering \succ_L on ground literals:

$$[\neg]A \succ_L [\neg]B , \text{ if } A \succ B \neg A \succ_L A$$

3. Extend \succ_L to an ordering \succ_C on ground clauses: $\succ_C = (\succ_L)_{\text{mul}}$, the multi-set extension of \succ_L .

Notation: \succ also for \succ_L and \succ_C .

Example

Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$. Then:

$$\begin{array}{ccc} A_0 \lor A_1 \\ \prec & A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_4 \lor A_3 \\ \prec & \neg A_1 \lor \neg A_4 \lor A_3 \\ \prec & \neg A_5 \lor A_5 \end{array}$$

Properties of the Clause Ordering

Proposition 2.21

- 1. The orderings on literals and clauses are total and well-founded.
- 2. Let C and D be clauses with $A = \max(C)$, $B = \max(D)$, where $\max(C)$ denotes the maximal atom in C.
 - (i) If $A \succ B$ then $C \succ D$.
 - (ii) If A = B, A occurs negatively in C but only positively in D, then $C \succ D$.

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

$$B \left\{ \begin{array}{c|c} \dots \lor B \\ \dots \lor B \lor B \\ \neg B \lor \dots \\ A \left\{ \begin{array}{c|c} \dots \lor A \\ \dots \lor A \\ \dots \lor A \lor A \\ \dots \\ \neg A \lor \dots \\ \dots \\ \neg A \lor \dots \\ \end{array} \right. \text{all } C \text{ where } \max(C) = A$$

Closure of Clause Sets under Res

 $\begin{array}{l} Res(N) = \{C \mid C \text{ is concl. of a rule in } Res \text{ w/ premises in } N\} \\ Res^0(N) = N \\ Res^{n+1}(N) = Res(Res^n(N)) \cup Res^n(N), \text{ for } n \geq 0 \\ Res^*(N) = \bigcup_{n \geq 0} Res^n(N) \end{array}$

N is called saturated (w.r.t. resolution), if $Res(N) \subseteq N$.

Proposition 2.22

- (i) $Res^*(N)$ is saturated.
- (ii) Res is refutationally complete, iff for each set N of ground clauses:

$$N \models \bot \Leftrightarrow \bot \in Res^*(N)$$

Construction of Interpretations

Given: set N of ground clauses, atom ordering \succ . Wanted: Herbrand interpretation I such that

- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ , starting with the minimal clause.

Example

Let $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$ (max. literals in red)

	clauses C	I_C	Δ_C	Remarks
1	$\neg A_0$	Ø	Ø	true in I_C
2	$A_0 \lor A_1$	Ø	$\{A_1\}$	A_1 maximal
3	$A_1 \lor A_2$	$\{A_1\}$	Ø	true in I_C
4	$\neg A_1 \lor A_2$	$\{A_1\}$	$\{A_2\}$	A_2 maximal
5	$\neg A_1 \lor A_4 \lor A_3 \lor A_0$	$\{A_1, A_2\}$	$\{A_4\}$	A_4 maximal
6	$\neg A_1 \lor \neg A_4 \lor A_3$	$\{A_1, A_2, A_4\}$	Ø	A_3 not maximal;
				min. counter-ex.
7	$\neg A_1 \lor A_5$	$\{A_1, A_2, A_4\}$	$\{A_5\}$	

 $I = \{A_1, A_2, A_4, A_5\}$ is not a model of the clause set \Rightarrow there exists a *counterexample*.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset)$.
- If C is false, one would like to change I_C such that C becomes true.
- Changes should, however, be monotone. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C .
- Hence, one chooses $\Delta_C = \{A\}$ if, and only if, C is false in I_C , if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$\frac{\neg A_1 \lor A_4 \lor A_3 \lor A_0 \quad \neg A_1 \lor \neg A_4 \lor A_3}{\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0}$$

Construction of I for the extended clause set:

clauses C	I_C	Δ_C	Remarks
$\neg A_0$	Ø	Ø	
$A_0 \lor A_1$	Ø	$\{A_1\}$	
$A_1 \lor A_2$	$\{A_1\}$	Ø	
$\neg A_1 \lor A_2$	$\{A_1\}$	$\{A_2\}$	
$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$	$\{A_1, A_2\}$	Ø	A_3 occurs twice
			minimal counter-ex.
$\neg A_1 \lor A_4 \lor A_3 \lor A_0$	$\{A_1, A_2\}$	$\{A_4\}$	
$\neg A_1 \lor \neg A_4 \lor A_3$	$\{A_1, A_2, A_4\}$	Ø	counterexample
$\neg A_1 \lor A_5$	$\{A_1, A_2, A_4\}$	$\{A_5\}$	

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$\frac{\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0}{\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0}$$

Construction of I for the extended clause set:

clauses C	I_C	Δ_C	Remarks
$\neg A_0$	Ø	Ø	
$A_0 \lor A_1$	Ø	$\{A_1\}$	
$A_1 \lor A_2$	$\{A_1\}$	Ø	
$\neg A_1 \lor A_2$	$\{A_1\}$	$\{A_2\}$	
$\neg A_1 \lor \neg A_1 \lor \mathbf{A_3} \lor A_0$	$\{A_1, A_2\}$	$\{A_3\}$	
$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$	$\{A_1, A_2, A_3\}$	Ø	true in I_C
$\neg A_1 \lor A_4 \lor A_3 \lor A_0$	$\{A_1, A_2, A_3\}$	Ø	
$\neg A_1 \lor \neg A_4 \lor A_3$	$\{A_1, A_2, A_3\}$	Ø	true in I_C
$\neg A_3 \lor A_5$	$\{A_1, A_2, A_3\}$	$\{A_5\}$	

The resulting $I = \{A_1, A_2, A_3, A_5\}$ is a model of the clause set.

Construction of Candidate Interpretations

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$I_C := \bigcup_{C \succ D} \Delta_D$$

$$\Delta_C := \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ \emptyset, & \text{otherwise} \end{cases}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate interpretation for N (w.r.t. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$. (We also simply write I_N or I for I_N^{\succ} if \succ is either irrelevant or known from the context.)

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

Some Properties of the Construction

Proposition 2.23

- (i) $C = \neg A \lor C' \Rightarrow \text{ no } D \succeq C \text{ produces } A.$
- (ii) C productive $\Rightarrow I_C \cup \Delta_C \models C$.
- (iii) Let $D' \succ D \succeq C$. Then

$$I_D \cup \Delta_D \models C \Rightarrow I_{D'} \cup \Delta_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $\max(D) \succ \max(C)$:

$$I_D \cup \Delta_D \not\models C \Rightarrow I_{D'} \cup \Delta_{D'} \not\models C \text{ and } I_N \not\models C.$$

(iv) Let $D' \succ D \succ C$. Then

$$I_D \models C \Rightarrow I_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $\max(D) \succ \max(C)$:

 $I_D \not\models C \Rightarrow I_{D'} \not\models C \text{ and } I_N \not\models C.$

(v) $D = C \lor A$ produces $A \Rightarrow I_N \not\models C$.

Model Existence Theorem

Theorem 2.24 (Bachmair & Ganzinger 1990) Let \succ be a clause ordering, let N be saturated w.r.t. Res, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 2.25 Let N be saturated w.r.t. Res. Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof of Theorem 2.24. Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i. e., the maximal atom occurs negatively) $\Rightarrow I_N \models A \text{ and } I_N \not\models C'$ $\Rightarrow \text{ some } D = D' \lor A \in N \text{ produces A. As } \frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ $\Rightarrow \text{ contradicts minimality of } C.$

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Compactness of Propositional Logic

Theorem 2.26 (Compactness) Let N be a set of propositional formulas. Then N is unsatisfiable, if and only if some finite subset $M \subseteq N$ is unsatisfiable.

Proof. " \Leftarrow ": trivial.

" \Rightarrow ": Let N be unsatisfiable. $\Rightarrow Res^*(N)$ unsatisfiable $\Rightarrow \perp \in Res^*(N)$ by refutational completeness of resolution $\Rightarrow \exists n \geq 0 : \perp \in Res^n(N)$ $\Rightarrow \perp$ has a finite resolution proof P; choose M as the set of assumptions in P.