
2.10 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge
Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will make use of the concept of
well-founded orderings.

Partial Orderings

A (strict) partial ordering � on a set M is a transitive and irreflexive binary relation
on M .

An a ∈M is called minimal, if there is no b in M such that a � b.

An a ∈M is called smallest, if b � a for all b ∈M different from a.

Notation:
≺ for the inverse relation �−1

� for the reflexive closure (� ∪ =) of �

Well-Foundedness

A (strict) partial ordering � is called well-founded (Noetherian), if there is no infinite
descending chain a0 � a1 � a2 � . . . with ai ∈M .

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M1,�1), (M2,�2) be well-founded orderings. Then let
their lexicographic combination

� = (�1,�2)lex

on M1 ×M2 be defined as

(a1, a2) � (b1, b2) :⇔ a1 �1 b1, or else a1 = b1 & a2 �2 b2

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).
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Length-based ordering on words. For alphabets Σ with a well-founded ordering >Σ, the
relation �, defined as
w � w′ := α) |w| > |w′| or

β) |w| = |w′| and w >Σ,lex w′,
is a well-founded ordering on Σ∗ (proof below).

Counterexamples:
(Z, >);
(N, <);
the lexicographic ordering on Σ∗

Basic Properties of Well-Founded Orderings

Lemma 2.16 (M,�) is well-founded if and only if every ∅ ⊂ M ′ ⊆ M has a minimal
element.

Lemma 2.17 (Mi,�i) is well-founded for i = 1, 2 if and only if (M1 ×M2, �) with
� = (�1,�2)lex is well-founded.

Proof. (i) “⇒”: Suppose (M1 ×M2, �) is not well-founded. Then there is an infinite
sequence (a0, b0) � (a1, b1) � (a2, b2) � . . . .

Let A = {ai | i ≥ 0} ⊆ M1. Since (M1,�1) is well-founded, A has a minimal element
an. But then B = {bi | i ≥ n} ⊆M2 can not have a minimal element, contradicting the
well-foundedness of (M2,�2).

(ii) “⇐”: obvious. 2

Noetherian Induction

Theorem 2.18 (Noetherian Induction) Let (M,�) be a well-founded ordering, let
Q be a property of elements of M .

If for all m ∈M the implication

if Q(m′), for all m′ ∈M such that m � m′,1

then Q(m).2

is satisfied, then the property Q(m) holds for all m ∈M .

1induction hypothesis
2induction step
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Proof. Let X = {m ∈M | Q(m) false}. Suppose, X 6= ∅. Since (M,�) is well-founded,
X has a minimal element m1. Hence for all m′ ∈ M with m′ ≺ m1 the property Q(m′)
holds. On the other hand, the implication which is presupposed for this theorem holds
in particular also for m1, hence Q(m1) must be true so that m1 can not be in X.
Contradiction. 2

Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M → N. Hereby S(m) specifies
the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.

We use set notation (∈, ⊂, ⊆, ∪, ∩, etc.) with analogous meaning also for multi-sets,
e. g.,

(S1 ∪ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m), S2(m)}

A multi-set is called finite, if

|{m ∈ M | s(m) > 0}| <∞,

for each m in M .

From now on we only consider finite multi-sets.

Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

Multi-Set Orderings

Lemma 2.19 (König’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Let (M,�) be a partial ordering. The multi-set extension of � to multi-sets over M is
defined by

S1 �mul S2 :⇔ S1 6= S2

and ∀m ∈M : [S2(m) > S1(m)

⇒ ∃m′ ∈M : (m′ � m and S1(m
′) > S2(m

′))]
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Theorem 2.20
(a) �mul is a partial ordering.
(b) � well-founded ⇒ �mul well-founded.
(c) � total ⇒ �mul total.

Proof. see Baader and Nipkow, page 22–24. 2

2.11 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N `Res ⊥, or equivalently: If N 6`Res ⊥, then N
has a model.

• Idea: Suppose that we have computed sufficiently many inferences (and not derived
⊥).

• Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N .

Clause Orderings

1. We assume that � is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e. g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend � to an ordering �L on ground literals:

[¬]A �L [¬]B , if A � B
¬A �L A

3. Extend �L to an ordering �C on ground clauses:
�C = (�L)mul, the multi-set extension of �L.

Notation: � also for �L and �C .
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Example

Suppose A5 � A4 � A3 � A2 � A1 � A0. Then:

A0 ∨ A1

≺ A1 ∨ A2

≺ ¬A1 ∨ A2

≺ ¬A1 ∨ A4 ∨ A3

≺ ¬A1 ∨ ¬A4 ∨ A3

≺ ¬A5 ∨ A5

Properties of the Clause Ordering

Proposition 2.21

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = max(C), B = max(D), where max(C) denotes
the maximal atom in C.

(i) If A � B then C � D.

(ii) If A = B, A occurs negatively in C but only positively in D, then C � D.

Stratified Structure of Clause Sets

Let A � B. Clause sets are then stratified in this form:

{

{

PSfrag replacements

...
...

≺

A

B
. . . ∨ B

. . .
. . . ∨ B ∨ B

. . .
¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .
¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A
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Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪Resn(N), for n ≥ 0
Res∗(N) =

⋃
n≥0 Resn(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N .

Proposition 2.22

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)

Construction of Interpretations

Given: set N of ground clauses, atom ordering �.
Wanted: Herbrand interpretation I such that

• “many” clauses from N are valid in I;

• I |= N , if N is saturated and ⊥ 6∈ N .

Construction according to �, starting with the minimal clause.

Example

Let A5 � A4 � A3 � A2 � A1 � A0 (max. literals in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC

2 A0 ∨ A1 ∅ {A1} A1 maximal
3 A1 ∨ A2 {A1} ∅ true in IC

4 ¬A1 ∨ A2 {A1} {A2} A2 maximal
5 ¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4} A4 maximal
6 ¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ A3 not maximal;

min. counter-ex.
7 ¬A1 ∨ A5 {A1, A2, A4} {A5}

I = {A1, A2, A4, A5} is not a model of the clause set
⇒ there exists a counterexample.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C, one already has a partial interpretation IC (initially IC = ∅)
available.

• If C is true in the partial interpretation IC , nothing is done. (∆C = ∅).

• If C is false, one would like to change IC such that C becomes true.

• Changes should, however, be monotone. One never deletes anything from IC and
the truth value of clauses smaller than C should be maintained the way it was in
IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if A occurs positively
in C (adding A will make C become true) and if this occurrence in C is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses).

Resolution Reduces Counterexamples

¬A1 ∨ A4 ∨ A3 ∨ A0 ¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅
¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2} ∅ A3 occurs twice
minimal counter-ex.

¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4}
¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ counterexample

¬A1 ∨ A5 {A1, A2, A4} {A5}

The same I, but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

¬A1 ∨ ¬A1 ∨ A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅
¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨ A3 ∨ A0 {A1, A2} {A3}
¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2, A3} ∅ true in IC

¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2, A3} ∅
¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A3} ∅ true in IC

¬A3 ∨ A5 {A1, A2, A3} {A5}

The resulting I = {A1, A2, A3, A5} is a model of the clause set.

Construction of Candidate Interpretations

Let N,� be given. We define sets IC and ∆C for all ground clauses C over the given
signature inductively over �:

IC :=
⋃

C�D ∆D

∆C :=




{A}, if C ∈ N , C = C ′ ∨ A, A � C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate interpretation for N (w. r. t. �) is given as I�
N :=

⋃
C ∆C . (We also simply

write IN or I for I�
N if � is either irrelevant or known from the context.)

Structure of N,�

Let A � B; producing a new atom does not affect smaller clauses.
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{

{

PSfrag replacements

...
.
..

≺

possibly productive

A

B
. . . ∨ B. . .
. . . ∨ B ∨ B. . .
¬B ∨ . . .

. . . ∨ A. . .

. . . ∨ A ∨ A. . .
¬A ∨ . . .. . .

all D with max(D) = B

all C with max(C) = A

Some Properties of the Construction

Proposition 2.23

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C.

(iii) Let D′ � D � C. Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) � max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C.

(iv) Let D′ � D � C. Then

ID |= C ⇒ ID′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) � max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C.

(v) D = C ∨ A produces A ⇒ IN 6|= C.
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Model Existence Theorem

Theorem 2.24 (Bachmair & Ganzinger 1990) Let � be a clause ordering, let N
be saturated w. r. t. Res, and suppose that ⊥ 6∈ N . Then I�

N |= N .

Corollary 2.25 Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .

Proof of Theorem 2.24. Suppose ⊥ 6∈ N , but I�
N 6|= N . Let C ∈ N minimal (in �)

such that I�
N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there exists a

maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer that D′ ∨ C ′ ∈ N ,
and C � D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C.

Case 2: C = C ′ ∨ A ∨ A. Then C′∨A∨A
C′∨A

yields a smaller counterexample C ′ ∨ A ∈ N . ⇒
contradicts minimality of C. 2

Compactness of Propositional Logic

Theorem 2.26 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M ⊆ N is unsatisfiable.

Proof. “⇐”: trivial.

“⇒”: Let N be unsatisfiable.
⇒ Res∗(N) unsatisfiable
⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution
⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has a finite resolution proof P ;
choose M as the set of assumptions in P . 2
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