
2.12 General Resolution

Propositional resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

clearly inferior to the DPLL procedure (even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily extended to non-ground
clauses.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

PSfrag replacements

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

[a/z′, f(a, b)/z] [a/y] [b/y] [a/x′, b/x]

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea:

Do not instantiate more than necessary to get complementary literals.

Idea: do not instantiate more than necessary:

54

PSfrag replacements

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

[a/z′] [a/y] [b/y] [a/x′]

[f(a, x)/z]

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground)
instances of finitely many general clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general atoms;

• Only compute most general (minimal) unifiers.

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore
1960) is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A, B) [factorization]

55

General resolution RIF with implicit factorization:

D ∨ B1 ∨ . . . ∨Bn C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B1, . . . , Bn)

[RIF]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multi-set of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 2.27

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X.

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 2.28 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

56

Rule Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

x
.
= t, E ⇒SU x

.
= t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk, with xi pairwise distinct, xi 6∈ var(uj), then E is called an

(equational problem in) solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.29 If E is a solved form then σE is am mgu of E.

Theorem 2.30

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ [t/x] = σ[x 7→ tσ] =

σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u[t/x]σ = v[t/x]σ.

(2) and (3) follow by induction from (1) using Proposition 2.29. 2

Main Unification Theorem

Theorem 2.31 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Problem: exponential growth of terms possible

Proof of Theorem 2.31. • ⇒SU is Noetherian. A suitable lexicographic ordering
on the multisets E (with ⊥ minimal) shows this. Compare in this order:

57

1. the number of defined variables (d.h. variables x in equations x
.
= t with

x 6∈ var(t)), which also occur outside their definition elsewhere in E;

2. the multi-set ordering induced by (i) the size (number of symbols) in an
equation; (ii) if sizes are equal consider x

.
= t smaller than t

.
= x, if t 6∈ X.

2

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 2.30, Proposition 2.29).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

Rule Based Polynomial Unification

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

x
.
= y, E ⇒PU x

.
= y, E[y/x]

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with ti/pi = xi+1, tn/pn = x1 and some pi 6= ε

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 2.32

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒PU ⊥ then E is not unifiable.

3. If E
∗
⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.

58

The solved form of ⇒PU is different form the solved form obtained from ⇒SU . In
order to obtain a unifier, the substitutions generated by the single equations have to be
composed.

Lifting Lemma

Lemma 2.33 Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional resolution]

then there exists a substitution τ such that

D C

C ′′y τ

C ′ = C ′′τ

[general resolution]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 2.34 Let N be a set of general clauses saturated under Res, i. e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Other-
wise make them disjoint, and this renaming process changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground instances Dσ and Cρ
of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C ′′ with
C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption, we obtain that
C ′ ∈ GΣ(N).

Case (ii): Similar. 2

59

Herbrand’s Theorem

Lemma 2.35 Let N be a set of Σ-clauses, let A be an interpretation. Then A |= N
implies A |= GΣ(N).

Lemma 2.36 Let N be a set of Σ-clauses, let A be a Herbrand interpretation. Then
A |= GΣ(N) implies A |= N .

Theorem 2.37 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a
Herbrand model over Σ.

Proof. The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Thm. 2.24; Cor. 2.34)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 2.36)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N)) 2

The Theorem of Löwenheim-Skolem

Theorem 2.38 (Löwenheim–Skolem) Let Σ be a countable signature and let S be
a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable
universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at
most countably many new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′, the
universe of Herbrand-interpretations over Σ′. Now apply Theorem 2.37. 2

Refutational Completeness of General Resolution

Theorem 2.39 Let N be a set of general clauses where Res(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 2.34: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.35/2.36; Theorem 2.37)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N 2

60

Compactness of Predicate Logic

Theorem 2.40 (Compactness Theorem for First-Order Logic) Let Φ be a set of
first-order formulas. Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof. The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas
in Φ. Clearly Res∗(N) is unsatisfiable. By Theorem 2.39, ⊥ ∈ Res∗(N), and therefore
⊥ ∈ Resn(N) for some n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth
≤ n. Choose Ψ as the subset of formulas in Φ such that the corresponding clauses

contain the assumptions (leaves) of B. 2

2.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 2.24) one only needs to
resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
⇒ order restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
⇒ choose a negative literal don’t-care-nondeterministically
⇒ selection

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

61

Resolution Calculus Res�S

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances:

Let � be a total and well-founded ordering on ground atoms. A literal L is called
[strictly] maximal in a clause C if and only if there exists a ground substitution σ such
that for no other L′ in C: Lσ ≺ L′σ [Lσ � L′σ].

Let � be an atom ordering and S a selection function.

D ∨B C ∨ ¬A

(D ∨ C)σ
[ordered resolution with selection]

if σ = mgu(A, B) and

(i) Bσ strictly maximal w. r. t. Dσ;

(ii) nothing is selected in D by S;

(iii) either ¬A is selected, or else nothing is selected in C ∨ ¬A and ¬Aσ is maximal in
Cσ.

C ∨ A ∨B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A, B) and Aσ is maximal in Cσ and nothing is selected in C.

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

D ∨ A C ∨ ¬A

D ∨ C

if

(i) A � D;

(ii) nothing is selected in D by. S;

(iii) ¬A is selected in C ∨ ¬A, or else nothing is selected in C ∨ ¬A and ¬A � max(C).

Note: For positive literals, A � D is the same as A � max(D).

62

Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B
3 ¬A ∨B

4 ¬A ∨ ¬B
5 B ∨ B Res 1, 3
6 B Fact 5
7 ¬A Res 6, 4
8 A Res 6, 2
9 ⊥ Res 8, 7

we assume A � B and
S as indicated by X .
The maximal literal in
a clause is depicted in
red.

With this ordering and selection function the refutation proceeds strictly determinis-
tically in this example. Generally, proof search will still be non-deterministic but the
search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

C1 ∨ A C2 ∨ ¬A ∨ B
C1 ∨ C2 ∨B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A
C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are possible. However,
if A � B, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses �) no rota-
tions are possible. In other words, orderings identify exactly one representant in any
class of of rotation-equivalent proofs.

Lifting Lemma for Res�S

Lemma 2.41 Let D and C be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional inference in Res�S]

63

and if S(Dσ) ' S(D), S(Cρ) ' S(C) (that is, “corresponding” literals are selected),
then there exists a substitution τ such that

D C

C ′′y τ

C ′ = C ′′τ

[inference in Res�S]

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 2.42 Let N be a set of general clauses saturated under Res�S , i. e., Res�S (N) ⊆
N . Then there exists a selection function S ′ such that S|N = S ′|N and GΣ(N) is also
saturated, i. e.,

Res�S′(GΣ(N)) ⊆ GΣ(N).

Proof. We first define the selection function S ′ such that S ′(C) = S(C) for all clauses
C ∈ GΣ(N)∩N . For C ∈ GΣ(N) \N we choose a fixed but arbitrary clause D ∈ N with
C ∈ GΣ(D) and define S ′(C) to be those occurrences of literals that are ground instances
of the occurrences selected by S in D. Then proceed as in the proof of Corollary 2.34
using the above lifting lemma. 2

Soundness and Refutational Completeness

Theorem 2.43 Let� be an atom ordering and S a selection function such that Res�S (N) ⊆
N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. The “⇐” part is trivial. For the “⇒” part consider first the propositional
level: Construct a candidate interpretation IN as for unrestricted resolution, except
that clauses C in N that have selected literals are not productive, even when they are
false in IC and when their maximal atom occurs only once and positively. The result
for general clauses follows using Corollary 2.42. 2

64

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 2.44 (Craig 1957) Let F and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F |= G), such that H
contains only prop. variables occurring both in F and in G, and such that F |= H and
H |= G.

Proof. Translate F and ¬G into CNF. let N and M , resp., denote the resulting clause
set. Choose an atom ordering � for which the prop. variables that occur in F but not in
G are maximal. Saturate N into N ∗ w. r. t. Res�S with an empty selection function S .
Then saturate N ∗ ∪M w. r. t. Res�S to derive ⊥. As N ∗ is already saturated, due to the
ordering restrictions only inferences need to be considered where premises, if they are
from N∗, only contain symbols that also occur in G. The conjunction of these premises
is an interpolant H. The theorem also holds for first-order formulas. For universal
formulas the above proof can be easily extended. In the general case, a proof based on
resolution technology is more complicated because of Skolemization. 2

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other
clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering � is used for ordering restrictions and for redundancy (and
for the completeness proof).

65

Examples of Redundancy

Proposition 2.45 Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res�S)

:⇔ Res�S (N \Red(N)) ⊆ N ∪ Red(N)

Theorem 2.46 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch). (i) Ground case:

• consider the construction of the candidate interpretation I�
N for Res�S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I�
N

The premises of “essential” inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.43. 2

Monotonicity Properties of Redundancy

Theorem 2.47

(i) N ⊆M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)

Proof. Exercise. 2

We conclude that redundancy is preserved when, during a theorem proving process, one
adds (derives) new clauses or deletes redundant clauses.

66

A Resolution Prover

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain ⊥.

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 2.46 and 2.47 are the basis for the completeness proof of our prover RP .

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover states N :

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} . N

• Deletion of subsumed clauses

N ∪ {C, D} . N ∪ {C}

if Cσ ⊆ D (C subsumes D).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} . N ∪ {C ∨ L, D ∨ Cσ}

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents
P(rocessed) containing simplified resolvents
clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilities for simplifi-
cation

67

Transition Rules for RP (I)

Tautology elimination
NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if C is a tautology

Forward subsumption
NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption
NNN ∪ {C} | PPP ∪ {D} | OOO . NNN ∪ {C} | PPP | OOO
NNN ∪ {C} | PPP | OOO ∪ {D} . NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

Transition Rules for RP (II)

Forward reduction
NNN ∪ {C ∨ L} | PPP | OOO . NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO
such that L = L′σ and Dσ ⊆ C

Backward reduction
NNN | PPP ∪ {C ∨ L} | OOO . NNN | PPP ∪ {C} | OOO
NNN | PPP |OOO ∪ {C ∨ L} . NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN
such that L = L′σ and Dσ ⊆ C

Transition Rules for RP (III)

Clause processing
NNN ∪ {C} | PPP | OOO . NNN | PPP ∪ {C} |OOO

Inference computation
∅ | PPP ∪ {C} | OOO . NNN | PPP | OOO ∪ {C},

with NNN = Res�S (OOO ∪ {C})

Soundness and Completeness

Theorem 2.48

N |= ⊥ ⇔ N | ∅ | ∅
∗
. N ′ ∪ {⊥} | |

68

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving (on H. Ganzinger’s
Web page under Publications/Journals; appeared in the Handbook on Automated The-
orem Proving, 2001)

Fairness

Problem:

If N is inconsistent, then N | ∅ | ∅
∗
. N ′ ∪ {⊥} | | .

Does this imply that every derivation starting from an inconsistent set N eventually
produces ⊥ ?

No: a clause could be kept in PPP without ever being used for an inference.

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is ever deleted), then
it must be computed eventually.

One possible way to guarantee fairness: Implement PPP as a queue (there are other
techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then
every fair derivation will eventually produce ⊥.

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger: Resolution
Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res�S , the
calculus is parameterized by an atom ordering � and a selection function S.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

69

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by S, or else
nothing is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factoring infer-
ence.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

70

