2.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

 $Q_1 x_1 \ldots Q_n x_n F$,

where F is quantifier-free and $Q_i \in \{\forall, \exists\}$; we call $Q_1 x_1 \dots Q_n x_n$ the quantifier prefix and F the matrix of the formula.

Computing prenex normal form by the rewrite relation \Rightarrow_P :

$$\begin{array}{ll} (F \leftrightarrow G) &\Rightarrow_{P} & (F \rightarrow G) \land (G \rightarrow F) \\ \neg QxF &\Rightarrow_{P} & \overline{Q}x \neg F \\ (QxF \ \rho \ G) &\Rightarrow_{P} & Qy(F[y/x] \ \rho \ G), \ y \ \text{fresh}, \ \rho \in \{\land,\lor\} \\ (QxF \rightarrow G) &\Rightarrow_{P} & \overline{Q}y(F[y/x] \rightarrow G), \ y \ \text{fresh} \\ (F \ \rho \ QxG) &\Rightarrow_{P} & Qy(F \ \rho \ G[y/x]), \ y \ \text{fresh}, \ \rho \in \{\land,\lor,\rightarrow\} \end{array}$$

Here \overline{Q} denotes the quantifier *dual* to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, *not* in subformulas):

$$\forall x_1, \dots, x_n \exists y F \Rightarrow_S \forall x_1, \dots, x_n F[f(x_1, \dots, x_n)/y]$$

where f, where $\operatorname{arity}(f) = n$, is a new function symbol (Skolem function).

Together: $F \Rightarrow^*_P \underbrace{G}_{\text{prenex}} \Rightarrow^*_S \underbrace{H}_{\text{prenex, no } \exists}$

Theorem 2.9 Let F, G, and H as defined above and closed. Then

- (i) F and G are equivalent.
- (ii) $H \models G$ but the converse is not true in general.
- (iii) G satisfiable (w.r.t. Σ -Alg) \Leftrightarrow H satisfiable (w.r.t. Σ' -Alg) where $\Sigma' = (\Omega \cup SKF, \Pi)$, if $\Sigma = (\Omega, \Pi)$.

Clausal Normal Form (Conjunctive Normal Form)

$$\begin{array}{rcl} (F \leftrightarrow G) & \Rightarrow_{K} & (F \rightarrow G) \land (G \rightarrow F) \\ (F \rightarrow G) & \Rightarrow_{K} & (\neg F \lor G) \\ \neg (F \lor G) & \Rightarrow_{K} & (\neg F \land \neg G) \\ \neg (F \land G) & \Rightarrow_{K} & (\neg F \lor \neg G) \\ \neg \neg F & \Rightarrow_{K} & F \\ (F \land G) \lor H & \Rightarrow_{K} & (F \lor H) \land (G \lor H) \\ (F \land \top) & \Rightarrow_{K} & F \\ (F \land \bot) & \Rightarrow_{K} & \bot \\ (F \lor \top) & \Rightarrow_{K} & T \\ (F \lor \bot) & \Rightarrow_{K} & F \end{array}$$

These rules are to be applied modulo associativity and commutativity of \wedge and \vee . The first five rules, plus the rule ($\neg Q$), compute the negation normal form (NNF) of a formula.

The Complete Picture

$$F \Rightarrow_{P}^{*} Q_{1}y_{1} \dots Q_{n}y_{n} G \qquad (G \text{ quantifier-free})$$

$$\Rightarrow_{S}^{*} \forall x_{1}, \dots, x_{m} H \qquad (m \leq n, H \text{ quantifier-free})$$

$$\Rightarrow_{K}^{*} \underbrace{\forall x_{1}, \dots, x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$$

 $N = \{C_1, \ldots, C_k\}$ is called the *clausal (normal)* form (CNF) of F. Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10 Let F be closed. Then $F' \models F$. (The converse is not true in general.)

Theorem 2.11 Let F be closed. Then F is satisfiable iff F' is satisfiable iff N is satisfiable

Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

- size of the CNF exponential when done naively; but see the transformations we introduced for propositional logic
- want to preserve the original formula structure;
- want small arity of Skolem functions (follows)

2.6 Getting small Skolem Functions

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize

Negation Normal Form (NNF)

Apply the rewrite relation \Rightarrow_{NNF} , F is the overall formula:

$$\begin{array}{ll} G \leftrightarrow H & \Rightarrow_{NNF} & (G \rightarrow H) \land (H \rightarrow G) \\ & \text{if } F/p = G \leftrightarrow H \text{ and } F/p \text{ has positive polarity} \\ G \leftrightarrow H & \Rightarrow_{NNF} & (G \land H) \lor (\neg H \land \neg G) \\ & \text{if } F/p = G \leftrightarrow H \text{ and } F/p \text{ has negative polarity} \\ \neg Qx G & \Rightarrow_{NNF} & \overline{Q}x \neg G \\ \neg (G \lor H) & \Rightarrow_{NNF} & \neg G \land \neg H \\ \neg (G \land H) & \Rightarrow_{NNF} & \neg G \lor \neg H \\ G & \rightarrow H & \Rightarrow_{NNF} & \neg G \lor H \\ & \neg \neg G & \Rightarrow_{NNF} & G \end{array}$$

Miniscoping

Apply the rewrite relation \Rightarrow_{MS} . For the below rules we assume that x occurs freely in G, H, but x does not occur freely in F:

$Qx\left(G\wedge F\right)$	\Rightarrow_{MS}	$Qx G \wedge F$
$Qx\left(G\vee F\right)$	\Rightarrow_{MS}	$QxG\vee F$
$\forall x \left(G \land H \right)$	\Rightarrow_{MS}	$\forall x G \land \forall x H$
$\exists x \left(G \lor H \right)$	\Rightarrow_{MS}	$\exists x G \lor \exists x H$

Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p = Qx G and F/q = Qx H.

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

 $\exists x \ H \Rightarrow_{SK} H[f(y_1, \dots, y_n)/x]$ if $F/p = \exists x \ H$ and p has minimal length, $\{y_1, \dots, y_n\}$ are the free variables in $\exists x \ H$, f is a new function symbol, $\operatorname{arity}(f) = n$

2.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = T_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \underline{PSfrag.replacements}_n), f \in \Omega, \operatorname{arity}(f) = n$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $p \in \Pi$, $\operatorname{arity}(p) = m$ may be freely interpreted as relations $p_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 2.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1, \ldots, s_n) \in p_\mathcal{A} \quad :\Leftrightarrow \quad p(s_1, \ldots, s_n) \in I$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Example: $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \{</2, \le/2\})$ \mathbb{N} as Herbrand interpretation over Σ_{Pres} : $I = \{ 0 \le 0, 0 \le s(0), 0 \le s(s(0)), \dots, 0+0 \le 0, 0+0 \le s(0), \dots, \dots, (s(0)+0) + s(0) \le s(0) + (s(0)+s(0)) \dots, (s(0)+0 < s(0)+0 + 0 + s(0) + (s(0)+s(0)) \dots, (s(0)+0 < s(0)+0 + 0 + s(0) + (s(0)+s(0)) \dots, (s(0)+0 < s(0)+0 + 0 + s(0) + (s(0)+s(0)) \dots \}$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 2.13 (Herbrand) Let N be a set of Σ -clauses.

 $N \text{ satisfiable } \Leftrightarrow N \text{ has a Herbrand model (over } \Sigma)$ $\Leftrightarrow G_{\Sigma}(N) \text{ has a Herbrand model (over } \Sigma)$

where $G_{\Sigma}(N) = \{C\sigma \text{ ground clause} \mid C \in N, \sigma : X \to T_{\Sigma}\}$ is the set of ground instances of N.

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a G_{Σ}

For Σ_{Pres} one obtains for

 $C = (x < y) \lor (y \le s(x))$

the following ground instances:

 $\begin{array}{l} (0 < 0) \lor (0 \le s(0)) \\ (s(0) < 0) \lor (0 \le s(s(0))) \\ \dots \\ (s(0) + s(0) < s(0) + 0) \lor (s(0) + 0 \le s(s(0) + s(0))) \\ \dots \end{array}$

2.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

$$(F_1, \ldots, F_n, F_{n+1}), n \ge 0,$$

called inferences or inference rules, and written

$$\underbrace{\frac{F_1 \dots F_n}{F_{n+1}}}_{\text{conclusion}}$$

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference

$$\frac{F_{i_1} \ldots F_{i_{n_i}}}{F_i}$$

in Γ , such that $0 \leq i_j < i$, for $1 \leq j \leq n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F$: \Leftrightarrow there exists a proof Γ of F from N.

 Γ is called *sound* : \Leftrightarrow

$$\frac{F_1 \ \dots \ F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \dots, F_n \models F$$

 Γ is called *complete* : \Leftrightarrow

 $N \models F \quad \Rightarrow \quad N \vdash_{\Gamma} F$

 Γ is called *refutationally complete* : \Leftrightarrow

$$N \models \bot \quad \Rightarrow \quad N \vdash_{\Gamma} \bot$$

Proposition 2.14

- (i) Let Γ be sound. Then $N \vdash_{\Gamma} F \Rightarrow N \models F$
- (ii) $N \vdash_{\Gamma} F \Rightarrow$ there exist $F_1, \ldots, F_n \in N$ s.t. $F_1, \ldots, F_n \vdash_{\Gamma} F$ (resembles compactness).

Proofs as Trees

marking	gs	Ê	formulas			
leave	\mathbf{es}	$\hat{=}$	assumption	s and axioms	5	
other node	\mathbf{es}	$\widehat{=}$	inferences:	conclusion	$\widehat{=}$	ancestor
				premises	Ê	direct descendants
			$\underline{P(f(c)) \lor Q(c)}$	$(b) \neg P(f(c)) \lor \neg P$ $(f(c)) \lor (O(b)) \lor O(b) \lor O(b$	(f(c))	$\lor Q(b)$
	P(f	$(c)) \vee$	Q(b)	$\frac{P(f(c)) \lor Q(b) \lor Q(c)}{\neg P(f(c)) \lor Q(b)}$	0)	
			$Q(b) \lor Q(b)$	_		
			Q(b)			$\neg P(f(c)) \lor \neg Q(b)$
P(f(c))				٦.	P(f(c)))
			\perp			

2.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

 $\begin{array}{c} \text{Resolution inference rule:} \\ \underline{D \lor A \quad \neg A \lor C} \\ \overline{D \lor C} \\ \text{Terminology: } D \lor C \text{: resolvent; } A \text{: resolved atom} \end{array}$

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by ground clauses and ground atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.	$\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$	(given)
2.	$P(f(c)) \lor Q(b)$	(given)
3.	$\neg P(g(b,c)) \lor \neg Q(b)$	(given)
4.	P(g(b,c))	(given)
5.	$\neg P(f(c)) \lor Q(b) \lor Q(b)$	(Res. 2. into 1.)
6.	$\neg P(f(c)) \lor Q(b)$	(Fact. $5.$)
7.	$Q(b) \lor Q(b)$	(Res. 2. into 6.)
8.	Q(b)	(Fact. $7.$)
9.	$\neg P(g(b,c))$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

 $\frac{D \lor A \lor \ldots \lor A}{D \lor C}$ 1. $\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$ (given) 2. $P(f(c)) \lor Q(b)$ (given) 3. $\neg P(g(b,c)) \lor \neg Q(b)$ (given) 4. P(q(b, c))(given) $\neg P(f(c)) \lor Q(b) \lor Q(b)$ 5. (Res. 2. into 1.) 6. $Q(b) \lor Q(b) \lor Q(b)$ (Res. 2. into 5.) 7. $\neg P(g(b,c))$ (Res. 6. into 3.) 8. \bot (Res. 4. into 7.)

Soundness of Resolution

Theorem 2.15 Propositional resolution is sound.

Proof. Let $I \in \Sigma$ -Alg. To be shown:

- (i) for resolution: $I \models D \lor A$, $I \models C \lor \neg A \Rightarrow I \models D \lor C$
- (ii) for factorization: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$

(i): Assume premises are valid in I. Two cases need to be considered: If $I \models A$, then $I \models C$, hence $I \models D \lor C$. Otherwise, $I \models \neg A$, then $I \models D$, and again $I \models D \lor C$. (ii): even simpler.

Note: In propositional logic (ground clauses) we have:

- 1. $I \models L_1 \lor \ldots \lor L_n \iff$ there exists $i: I \models L_i$.
- 2. $I \models A$ or $I \models \neg A$.

This does not hold for formulas with variables!