
2.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . . Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . . Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G→ F )
¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}
(QxF → G) ⇒P Qy(F [y/x]→ G), y fresh
(F ρ QxG) ⇒P Qy(F ρ G[y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.

Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f(x1, . . . , xn)/y]

where f , where arity(f) = n, is a new function symbol (Skolem function).

Together: F
∗
⇒P G︸︷︷︸

prenex

∗
⇒S H︸︷︷︸

prenex, no ∃

Theorem 2.9 Let F , G, and H as defined above and closed. Then
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(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg) ⇔ H satisfiable (w. r. t. Σ′-Alg) where Σ′ = (Ω ∪
SKF, Π), if Σ = (Ω, Π).

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G→ F )
(F → G) ⇒K (¬F ∨G)
¬(F ∨G) ⇒K (¬F ∧ ¬G)
¬(F ∧G) ⇒K (¬F ∨ ¬G)
¬¬F ⇒K F

(F ∧G) ∨H ⇒K (F ∨H) ∧ (G ∨H)
(F ∧ >) ⇒K F
(F ∧ ⊥) ⇒K ⊥
(F ∨ >) ⇒K >
(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity of ∧ and ∨.
The first five rules, plus the rule (¬Q), compute the negation normal form (NNF) of a
formula.

The Complete Picture

F
∗
⇒P Q1y1 . . . Qnyn G (G quantifier-free)
∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .
Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10 Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 2.11 Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is
satisfiable
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Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

• size of the CNF exponential when done naively;
but see the transformations we introduced for propositional logic

• want to preserve the original formula structure;

• want small arity of Skolem functions (follows)

2.6 Getting small Skolem Functions

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• skolemize

Negation Normal Form (NNF)

Apply the rewrite relation ⇒NNF , F is the overall formula:

G↔ H ⇒NNF (G→ H) ∧ (H → G)
if F/p = G↔ H and F/p has positive polarity

G↔ H ⇒NNF (G ∧H) ∨ (¬H ∧ ¬G)
if F/p = G↔ H and F/p has negative polarity

¬Qx G ⇒NNF Qx¬G
¬(G ∨H) ⇒NNF ¬G ∧ ¬H
¬(G ∧H) ⇒NNF ¬G ∨ ¬H

G → H ⇒NNF ¬G ∨H
¬¬G ⇒NNF G

Miniscoping

Apply the rewrite relation ⇒MS. For the below rules we assume that x occurs freely in
G, H, but x does not occur freely in F :

Qx (G ∧ F ) ⇒MS Qx G ∧ F
Qx (G ∨ F ) ⇒MS Qx G ∨ F
∀x (G ∧H) ⇒MS ∀x G ∧ ∀x H
∃x (G ∨H) ⇒MS ∃x G ∨ ∃x H
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Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p =
Qx G and F/q = Qx H.

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

∃x H ⇒SK H[f(y1, . . . , yn)/x]
if F/p = ∃x H and p has minimal length,
{y1, . . . , yn} are the free variables in ∃x H,
f is a new function symbol, arity(f) = n

2.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one
constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f ∈ Ω, arity(f) = nPSfrag replacements

f
fA(4, . . . ,4) =

4 . . . 4

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols p ∈ Π, arity(p) = m may be freely interpreted as
relations pA ⊆ Tm

Σ .

Proposition 2.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I
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Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Example: ΣPres = ({0/0, s/1, +/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres:
I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,
. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))
. . .
s(0) + 0 < s(0) + 0 + 0 + s(0)
. . .}

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F , if I |= F .

Theorem 2.13 (Herbrand) Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)
⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set of ground
instances of N .

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))
(s(0) < 0) ∨ (0 ≤ s(s(0)))
. . .
(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))
. . .
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2.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence
F1, . . . , Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N , or else there exists an inference

Fi1 . . . Fini

Fi

in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.

Soundness and Completeness

Provability `Γ of F from N in Γ: N `Γ F :⇔ there exists a proof Γ of F from N .

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N `Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N `Γ ⊥
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Proposition 2.14

(i) Let Γ be sound. Then N `Γ F ⇒ N |= F

(ii) N `Γ F ⇒ there exist F1, . . . , Fn ∈ N s.t. F1, . . . , Fn `Γ F (resembles compact-
ness).

Proofs as Trees

markings =̂ formulas
leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor
premises =̂ direct descendants

P (f(c))

P (f(c)) ∨ Q(b)

P (f(c)) ∨ Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨ Q(b)

¬P (f(c)) ∨ Q(b) ∨ Q(b)

¬P (f(c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

2.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:
D ∨ A ¬A ∨ C

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, respectively, by ground clauses and ground atoms we obtain an inference
rule.

As “∨” is considered associative and commutative, we assume that A and ¬A can occur
anywhere in their respective clauses.
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Sample Refutation

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. ¬P (f(c)) ∨Q(b) (Fact. 5.)
7. Q(b) ∨Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P (g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

Resolution with Implicit Factorization RIF

D ∨ A ∨ . . . ∨ A ¬A ∨ C

D ∨ C

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. Q(b) ∨Q(b) ∨Q(b) (Res. 2. into 5.)
7. ¬P (g(b, c)) (Res. 6. into 3.)
8. ⊥ (Res. 4. into 7.)

Soundness of Resolution

Theorem 2.15 Propositional resolution is sound.

Proof. Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= D ∨ A, I |= C ∨ ¬A ⇒ I |= D ∨ C

(ii) for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

(i): Assume premises are valid in I. Two cases need to be considered:
If I |= A, then I |= C, hence I |= D ∨ C.
Otherwise, I |= ¬A, then I |= D, and again I |= D ∨ C.
(ii): even simpler. 2

Note: In propositional logic (ground clauses) we have:
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1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i: I |= Li.

2. I |= A or I |= ¬A.

This does not hold for formulas with variables!
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