2.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by
e reduction of logical concepts,
e cfficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

lel e ann F,

where F' is quantifier-free and Q; € {V,3}; we call Q21 ...Q,z, the quantifier prefix
and F' the matrix of the formula.

Computing prenex normal form by the rewrite relation = p:

(F—G) =p (F—>GNG—F)
-QvF =p Qu-F (—Q)
(QzF p G) =p Quy(Fly/z] pG), y fresh, p e {A,V}
(QeF — G) =p Qy(Fly/z] — G), y fresh
(F p QzG) =p Qy(F pGly/z]), y fresh, p € {A,V,—}

T

Here @ denotes the quantifier dual to @, i.e., V=3 and 3 =V.

Skolemization

Intuition: replacement of Jy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g (to be applied outermost, not in subformulas):
Vo, ..., x,yF =g Vai, ..., e, F[f(x1,...,2,)/Y]

where f, where arity(f) = n, is a new function symbol (Skolem function).

Together: F =p G =g H
—~— ~—
prenex prenex, no 3

Theorem 2.9 Let F, G, and H as defined above and closed. Then
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(i) F and G are equivalent.
(ii)) H = G but the converse is not true in general.

(iii) G satisfiable (w.r.t. 3-Alg) < H satisfiable (w.r.t. ¥'-Alg) where ¥/ = (Q U
SKF,), if ¥ = (9, 10).

Clausal Normal Form (Conjunctive Normal Form)

(Fe=G) =g (F=GNG—=F)
(F—G) =k (WFVG)
)

~(FVG) =g (=FA-G)
~(FAG) =g (~FV-G)
-——F =5 F
(FANG)VH =g (FVH)AN(GVH)
(FAT) =k F

These rules are to be applied modulo associativity and commutativity of A and V.
The first five rules, plus the rule (=Q)), compute the negation normal form (NNF) of a
formula.

The Complete Picture

F =p Q... .Quyn G (G quantifier-free)
s Vai,...,zm H (m <n, H quantifier-free)
k n;
:;K vxl, .y :Em /\ LZ]
leave i=1 j=1
eave out —
clauses ¢;
g

N ={C,...,Cy} is called the clausal (normal) form (CNF) of F.
Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10 Let F' be closed. Then F' |= F. (The converse is not true in general.)

Theorem 2.11 Let F' be closed. Then F' is satisfiable iff F' is satisfiable iff N is
satisfiable
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Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

e size of the CNF exponential when done naively;
but see the transformations we introduced for propositional logic

e want to preserve the original formula structure;

e want small arity of Skolem functions (follows)

2.6 Getting small Skolem Functions

e produce a negation normal form (NNF)
e apply miniscoping
e rename all variables

e skolemize

Negation Normal Form (NNF)

Apply the rewrite relation = yyp, I is the overall formula:

G— H =pyyr (G—>H)/\(H—>G>
if F'//p=G < H and F/p has positive polarity
G—H = NNF (G/\H)\/(_'H/\_'G)
if F//p =G < H and F/p has negative polarity
_'QI'G = NNF @IL‘_'G
—|<G \/H) =ynvre GA-H
—|<G /\H) =ynvre GV-H
G - H =ynr GVH
-G =Synr G

Miniscoping

Apply the rewrite relation = ;5. For the below rules we assume that x occurs freely in
G, H, but x does not occur freely in F"

( ) =ms QrGAF
Qr(GVF) =ys QrGVFEF
) =us VerGAVzH
) =wms JxGVIrH
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Variable Renaming

Rename all variables in F such that there are no two different positions p, ¢ with F/p =

QrGand F/q=QxH.

Standard Skolemization

Let F' be the overall formula, then apply the rewrite rule:

e H =sx H[f(yi, .., yn)/]
if F//p = Jx H and p has minimal length,

{y1,...,yn} are the free variables in dx H,
f is a new function symbol, arity(f) =n

2.7 Herbrand Interpretations

From now an we shall consider PL without equality. €2 shall contains at least one
constant symbol.

A Herbrand interpretation (over ¥) is a Y-algebra A such that

o Uy =Ty (= the set of ground terms over X))
o fui(st,.ooy8n)— f(s1,...,80), f € Qarity(f)=n

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols p € II, arity(p) = m may be freely interpreted as
relations py C T

Proposition 2.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(S1,...,8,) Epa = p(S1,...,8,) €1
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Thus we shall identify Herbrand interpretations (over X) with sets of 3-ground atoms.
Ezample: Yp.s = ({0/0,s/1,+/2}, {</2,</2})

N as Herbrand interpretation over Y p,.s:
I={ 0<0,0<s5(0), 0<s(s(0)), ...
0+0<0, 0+0<s(0), ...,
oy (s(0)+0) 4+ s(0) < s(0) + (s(0) + s(0))
s(0) +0 < s(0)+ 0+ 0+ s(0)

Existence of Herbrand Models

A Herbrand interpretation [ is called a Herbrand model of F, if I = F.

Theorem 2.13 (Herbrand) Let N be a set of ¥-clauses.

N satisfiable < N has a Herbrand model (over %)
< Gx(N) has a Herbrand model (over %)

where Gx,(N) = {Co ground clause | C € N, 0 : X — Ty} is the set of ground
instances of N.

[The proof will be given below in the context of the completeness proof for resolution. |

Example of a Gy,

For ¥p,., one obtains for
C=(r<y)V(y<s())

the following ground instances:

(0 < 0) V(0 < 5(0))
(s(0) <0) V(0 < s(s(0)))

(5(0) + 5(0) < 5(0) +0) V (5(0) + 0 < 5(s(0) + 5(0))
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2.8 Inference Systems and Proofs

Inference systems I' (proof calculi) are sets of tuples
(Fl, ey Fn, Fn+1), n Z 0,
called inferences or inference rules, and written

premises
——
... F,

Fn+1
~—~—

conclusion

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures (cf. below).

Proofs

A proof in I of a formula F from a a set of formulas N (called assumptions) is a sequence
Fy, ..., F} of formulas where

(i) Fp = F,
(i) for all 1 <i < k: F; € N, or else there exists an inference
E;

in I', such that 0 <14; <, for 1 <j <n,.

Soundness and Completeness

Provability tr of F from N in I': N Fr F' & there exists a proof I' of F' from .
I' is called sound :&
F

TGP = Fl,...,Fn):F

I is called complete &

NEF = Nt F

I' is called refutationally complete :<

NEL = Nipl
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Proposition 2.14
(i) Let I be sound. Then N Fr F = N = F

(ii) N Fr F = there exist Fy,..., F, € N s.t. Fy,..., F, br F (resembles compact-
ness).

Proofs as Trees

markings formulas
leaves

other nodes

assumptions and axioms
inferences: conclusion = ancestor
premises = direct descendants

(110

P(f(e)) vV Q) —P(f(c))V-P(f(e)) VvV QD)
—P(f(c)) VQ(®) VR®)
P(f(e)) v Q(b) —P(f(e)) vV Q(b)
QL) v Q(b)
Q) —P(f(c)) vV ~Q(b)
P(f(e) —P(f(c)
1

2.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:

DV A —AvC
DvcC

Terminology: D V C': resolvent; A: resolved atom

(Positive) factorisation inference rule:
CVAVA
CVvA

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, respectively, by ground clauses and ground atoms we obtain an inference
rule.

As “V” is considered associative and commutative, we assume that A and —A can occur
anywhere in their respective clauses.
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Sample Refutation

L. =P(f(c)) V=P(f(c) VQ(b)

2. P(f(c))vQ(b)

3. =2P(g(b,c)) vV -Q(b)

4. P(g(b,c))

5. ~P(f(c) VQ(b) vV Q(b) (Res

6. —P(f(c)VQ(b)

7. Q(b) Vv Q() (Res

8. Q(b)

9. =P(g(b,c)) (Res
10. L (Res

(Fact. 5.
. 2. into 6.
(Fact. 7.
. 8. into 3.
. 4. into 9.

Resolution with Implicit Factorization RIF

DVAV...VA -AvVC
DvC

L =P(f(c)) VP(f(c) VQ(b)
2. P(f(c)) vQ(b)
3. —P(g(b,c)) V-Q(b)
4. P(g(b,c))
5. =P(f(c)) vQ(b)VQ(Db) (Res.
6. Q(b)V QD) VD) (Res.
7. =P(g(b,0)) (Res.
8. L (Res

Soundness of Resolution

oo

Theorem 2.15 Propositional resolution is sound.

Proof. Let I € ¥-Alg. To be shown:

(i) for resolution: I =DV A, I = CV-A = IE=DVC

(i) for factorization: I ECV AV A =

(i): Assume premises are valid in I. Two
If I = A, then I |=C, hence I =DV C.

Otherwise, I = —A, then I = D, and again I =D Vv C.

(ii): even simpler.

[=CVA

cases need to be considered:

Note: In propositional logic (ground clauses) we have:
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1. IELiV...VL, & thereexists i: [ = L;.
2. TEAorlE—A

This does not hold for formulas with variables!
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