Lecture “Automated Reasoning”
(Summer Term 2008)

Midterm Examination

Name: ...

Student Number: ..

Some notes:

- Things to do at the beginning:
 Put your student card and identity card (or passport) on the table.
 Switch off mobile phones.
 Whenever you use a new sheet of paper (including scratch paper), first
 write your name and student number on it.

- Things to do at the end:
 Mark every problem that you have solved in the table below.
 Stay at your seat and wait until a supervisor staples and takes your
 examination text.
 Note: Sheets that are accidentally taken out of the lecture room are
 invalid.

Sign here: ..

Good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>3</th>
<th>4</th>
<th>5a</th>
<th>5b</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answered?</td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (DPLL) (10 points)

Consider the propositional clause set

\[N' = N \cup \{ \neg A_1 \lor \neg A_4 \lor A_6, \neg A_1 \lor \neg A_4 \lor \neg A_6 \} \]

During a DPLL-derivation, we have reached the state \(A_1^d \land A_2^d \land \neg A_3 \land A_4^d \land A_6 \| N' \).

Give two different backjump clauses that can be used in this situation and give the successor state with respect to \(\Rightarrow_{\text{DPLL}} \) for each of these backjump clauses.

Problem 2 (Algebras) (6 + 6 = 12 points)

Let \(\Sigma = (\Omega, \Pi) \), where \(\Omega = \{a, b, c\} \) and \(\Pi = \{P\} \). Let \(N \) be the set of formulas \(\{ \forall x \exists y P(x, y), \neg P(a, b), \neg P(a, c) \} \).

Part (a) Give a \(\Sigma \)-algebra that is a model of \(N \).

Part (b) Does \(N \) have a model over the universe \(\{1, 2\} \)? If yes, present the appropriate \(\Sigma \)-algebra. If no, prove why such a model cannot exist.

Problem 3 (CNF) (10 points)

Transform the formula

\[\forall x \exists y \forall z (R(x, x) \lor (P(y) \land R(x, y) \land Q(z))) \]

into CNF using miniscoping.

Problem 4 (Unification) (10 points)

Transform the following unification problem into solved form using either \(\Rightarrow_{SU} \) or \(\Rightarrow_{PU} \):

\[E = \{ f(x, g(h(y, z))), g(g(b))) = f(g(h(a, g(y))), x, g(z)) \} \].
Problem 5 (Model Construction) \hspace{1cm} (6 + 6 = 12 points)

Consider the following ground clause set N

\begin{align*}
P(a, a) \\
\neg Q(a) \lor \neg P(a, a) \\
R(a) \\
\neg R(a) \lor Q(g(a)) \\
\neg P(a, g(a)) \lor P(g(a), a)
\end{align*}

with atom ordering $R(a) \succ P(g(a), a) \succ P(a, g(a)) \succ P(a, a) \succ Q(g(a)) \succ Q(a)$.

Part (a) Construct I_N.

Part (b) Determine the minimal clause not satisfied by I_N and perform one ordered ground resolution step with that clause generating a smaller clause not satisfied by I_N.

Problem 6 (Resolution) \hspace{1cm} (10 points)

Refute the following clause set via general resolution.

\begin{align*}
P(a, b) & \hspace{1cm} (1) \\
\neg P(x, y) \lor P(y, x) & \hspace{1cm} (2) \\
\neg P(x, y) \lor P(f(x), y) & \hspace{1cm} (3) \\
\neg P(b, f(f(a))) & \hspace{1cm} (4)
\end{align*}

For each inference give the parent clause numbers and the resulting clause.

Problem 7 (Clause Sets) \hspace{1cm} (10 points)

A clause is called positive if it consists of positive literals only, i.e., atoms. Let N be a first-order clause set that does not contain a positive clause. Prove that N is satisfiable.
Problem 8 (Terms) (10 points)

Let \(\# : T_\Sigma \rightarrow \mathbb{N} \) be a function mapping ground terms to the number of symbols occurring in the term, e.g., \(\#(g(a)) = 2 \), \(\#(h(a, g(b))) = 4 \). Furthermore, let \(\triangleright\triangleright \) be a total ordering on \(\Omega \). Now consider the binary relation \(\triangleright \subset T_\Sigma \times T_\Sigma \) defined by \(t \triangleright s \) where \(t = f(t_1, \ldots, t_n), s = g(s_1, \ldots, s_m) \) iff

1. \(\#(t) > \#(s) \) or
2. \(\#(t) = \#(s) \) and \(f \triangleright\triangleright g \) or
3. \(\#(t) = \#(s), f = g \) and \((t_1, \ldots, t_n) \triangleright_{\text{lex}} (s_1, \ldots, s_m) \)

Prove by structural induction on the ground terms that \(\triangleright \) is total.