DPLL(T) Rules from DPLL

Unit Propagate:
M| Nu{CVL} =ppry ML|NU{CVL}
if C is false under M and L is undefined under M.
Decide:
M| N =ppymy M LY N
if L is undefined under M.
Fail:
M || NU{C} =ppLrr) fail

if C' is false under M and M contains no decision literals.

Specific DPLL(T) Rules

T-Backjump:
M L3 M’ ” NU {C} = DPLL(T) ML H N U {C}
if M LY M’ = -C

there is some “backjump clause” C’V L’ such that
NU{C} Er C'"V L and M |= =’

L' is undefined under M’, and

L' or I occurs in N or in M LY M'.

T'-Learn:

M || N =ppryr M || NU{C}

if N =7 C and each atom of C' occurs in N or M.
T-Forget:

M || Nu{C} =ppLLr) M [N

if N =r C.
T-Propagate:

M| N =ppryry M L|| N

if M =1 L where L is undefined in M and
L or L occurs in N.
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DPLL(T) Properties

The DPPL modulo theories system DPLL(T) consists of the rules Decide, Fail, Unit-
Propagate, T-Propagate, T-Backjump, T-Learn and T-Forget.

The Lemma 1.9 and the Lemma 1.10 from DPLL hold accordingly for DPLL(T). Again
we will reconsider termination when the needed notions on orderings are established.

Lemma 2.2 If) | N =4p; ;) M || N" and there is some conflicting clause in M || N,

that is, M |= —C for some clause C' in N, then either Fail or T-Backjump applies to
M || N'.

Proof. As in Lemma 1.11. |

Lemma 2.3 If0) || N ={p ;) M || N and M is T-inconsistent, then either there is a
conflicting clause in M || N’, or else T-Learn applies to M || N', generating a conflicting
clause.

Proof. If M is T-inconsistent, then there exists a subsequence (Ly, ..., L) of M such
that ) =7 L1 V...V L,,. Hence the conflicting clause Ly V ...V L, is either in M || N’
or else it can be learned by one T-Learn step. O

3 First-Order Logic

First-order logic
e formalizes fundamental mathematical concepts
e is expressive (Turing-complete)
e is not too expressive (e.g. not axiomatizable: natural numbers, uncountable sets)
e has a rich structure of decidable fragments
e has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.
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3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical symbols (domain-independent)
= Boolean combinations, quantifiers

Signature

A signature
Y= (Q,10),

fixes an alphabet of non-logical symbols, where
e ) is a set of function symbols f with arity n > 0, written arity(f) = n,
e Il is a set of predicate symbols p with arity m > 0, written arity(p) = m.

If n =0 then f is also called a constant (symbol).
If m = 0 then p is also called a propositional variable.
We use letters P, @, R, S, to denote propositional variables.

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
not so interesting from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that
X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.
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Context-Free Grammars
We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

e a set of non-terminal symbols N

e a set of terminal symbols T

e aset P of rules A ::=w where A€ N and we (NUT)*

e a start symbol S where S € N

For rules A ::= wy, A == wy we write A == w; | wy

Terms

Terms over ¥ (resp., Y-terms) are formed according to these syntactic rules:

s,t,u,v = x ,r€X (variable)
| f(s1,.y8n)  f €8, arity(f) =n (functional term)

By Tx(X) we denote the set of 3-terms (over X). A term not containing any variable
is called a ground term. By Ty, we denote the set of ¥-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may
also view as marked, ordered trees. The markings are function symbols or variables. The
nodes correspond to the subterms of the term. A node v that is marked with a function
symbol f of arity n has exactly n subtrees representing the n immediate subterms of
v.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:

A, B = p(s1,..,S$m) ,p€ll arity(p) =m
| (s=1t) (equation)
Whenever we admit equations as atomic formulas we are in the realm of first-order logic
with equality. Admitting equality does not really increase the expressiveness of first-

order logic, (cf. exercises). But deductive systems where equality is treated specifically
can be much more efficient.
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Literals

L == A (positive literal)
| —A  (negative literal)

Clauses

c,D == 1 (empty clause)
|  LyV...VLg k>1 (non-empty clause)

General First-Order Formulas

Fyx(X) is the set of first-order formulas over ¥ defined as follows:

F.GH == L1 (falsum)
| T (verum)
| A (atomic formula)
|  —F (negation)
|  (FAG) (conjunction)
|  (FVGQG) (disjunction)
| (F—G) (implication)
| (F<G) (equivalence)
|  VzF (universal quantification)
|  JaF (existential quantification)

Positions in terms, formulas

Positions of a term s (formula F):

pos(z) = {e},
pos(f(s1,---,sn)) = {e} UU {ip | p € pos(si) }-

pos(VaF) = {e} U {1p|p € pos(F) }
Analogously for all other formulas.

Prefix order for p,q € pos(s):

p above ¢: p < q if pp’ = ¢ for some p’,
p strictly above ¢: p < ¢ if p < ¢ and not ¢ < p,
p and ¢ parallel: p || ¢ if neither p < ¢ nor g < p.

Subterm of s (F') at a position p € pos(s):

sfe =s,

f(s1,..0y80)/ip = si/p.
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Analougously for formulas (F/p).

Replacement of the subterm at position p € pos(s) by t:

f(s1so oy 8u)[tlip = f(s15- -, Siltlps - -+, Sn)-
Analougously for formulas (F[G],).
Size of a term s:

|s| = cardinality of pos(s).

Notational Conventions

We omit brackets according to the following rules:

e >, V>, A >, >, o
(binding precedences)

e V and A are associative and commutative
e — is right-associative
Qxy,...,x, ' abbreviates Qxy...Qx, F
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s,*(t,u))
sku<t+uv for < (x(s,u),
—$ for —(s)

0 for 0()

Example: Peano Arithmetic

Ypa = (Qpa, Hpa)

Qpa = {0/0, +/2, x/2, s/1}

lpy = {S/Qa </2}
+,%, <, <infix; *x >, + >, < >, <

Examples of formulas over this signature are:
Va,y(z <y < Jz(z + 2= y))

daxVy(x +y =~ y)

Vo, y(z xs(y) =z xy+ x)

Ve, y(s(z) = s(y) = = ~y)
Vedy(x <y A—-Fz(z <zAz<y))
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