
DPLL(T) Rules from DPLL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒DPLL(T) M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒DPLL(T) M Ld ‖ N

if L is undefined under M .

Fail:

M ‖ N ∪ {C} ⇒DPLL(T) fail

if C is false under M and M contains no decision literals.

Specific DPLL(T) Rules

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒DPLL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′

L′ is undefined under M ′, and
L′ or L′ occurs in N or in M Ld M ′.

T -Learn:

M ‖ N ⇒DPLL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Forget:

M ‖ N ∪ {C} ⇒DPLL(T) M ‖ N

if N |=T C.

T -Propagate:

M ‖ N ⇒DPLL(T) M L ‖ N

if M |=T L where L is undefined in M and
L or L occurs in N .

27



DPLL(T) Properties

The DPPL modulo theories system DPLL(T) consists of the rules Decide, Fail, Unit-
Propagate, T -Propagate, T -Backjump, T -Learn and T -Forget.

The Lemma 1.9 and the Lemma 1.10 from DPLL hold accordingly for DPLL(T). Again
we will reconsider termination when the needed notions on orderings are established.

Lemma 2.2 If ∅ ‖ N ⇒∗

DPLL(T) M ‖ N ′ and there is some conflicting clause in M ‖ N ′,

that is, M |= ¬C for some clause C in N , then either Fail or T -Backjump applies to
M ‖ N ′.

Proof. As in Lemma 1.11. 2

Lemma 2.3 If ∅ ‖ N ⇒∗

DPLL(T) M ‖ N ′ and M is T -inconsistent, then either there is a

conflicting clause in M ‖ N ′, or else T -Learn applies to M ‖ N ′, generating a conflicting
clause.

Proof. If M is T -inconsistent, then there exists a subsequence (L1, . . . , Ln) of M such
that ∅ |=T L1 ∨ . . . ∨ Ln. Hence the conflicting clause L1 ∨ . . . ∨ Ln is either in M ‖ N ′,
or else it can be learned by one T -Learn step. 2

3 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

28



3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical symbols (domain-independent)
⇒ Boolean combinations, quantifiers

Signature

A signature

Σ = (Ω, Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols p with arity m ≥ 0, written arity(p) = m.

If n = 0 then f is also called a constant (symbol).
If m = 0 then p is also called a propositional variable.
We use letters P , Q, R, S, to denote propositional variables.

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
not so interesting from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.

29



Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T )∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f ∈ Ω, arity(f) = n (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may
also view as marked, ordered trees. The markings are function symbols or variables. The
nodes correspond to the subterms of the term. A node v that is marked with a function
symbol f of arity n has exactly n subtrees representing the n immediate subterms of
v.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A, B ::= p(s1, ..., sm) , p ∈ Π, arity(p) = m
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order logic
with equality . Admitting equality does not really increase the expressiveness of first-
order logic, (cf. exercises). But deductive systems where equality is treated specifically
can be much more efficient.

30



Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C, D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Positions in terms, formulas

Positions of a term s (formula F):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n

i=1{ ip | p ∈ pos(si) }.

pos(∀xF ) = {ε} ∪ { 1p | p ∈ pos(F ) }
Analogously for all other formulas.

Prefix order for p, q ∈ pos(s):

p above q: p ≤ q if pp′ = q for some p′,
p strictly above q: p < q if p ≤ q and not q ≤ p,
p and q parallel: p ‖ q if neither p ≤ q nor q ≤ p.

Subterm of s (F ) at a position p ∈ pos(s):

s/ε = s,
f(s1, . . . , sn)/ip = si/p.

31



Analougously for formulas (F/p).

Replacement of the subterm at position p ∈ pos(s) by t:

s[t]ε = t,
f(s1, . . . , sn)[t]ip = f(s1, . . . , si[t]p, . . . , sn).

Analougously for formulas (F [G]p).

Size of a term s:

|s| = cardinality of pos(s).

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∨ >p ∧ >p → >p ↔
(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))
−s for −(s)
0 for 0()

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {≤ /2, < /2}
+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x, y(x ≤ y ↔ ∃z(x + z ≈ y))
∃x∀y(x + y ≈ y)
∀x, y(x ∗ s(y) ≈ x ∗ y + x)
∀x, y(s(x) ≈ s(y) → x ≈ y)
∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

32


