## DPLL(T) Rules from DPLL

Unit Propagate:
$M\left\|N \cup\{C \vee L\} \Rightarrow \Rightarrow_{\operatorname{DPLL}(\mathrm{T})} M L\right\| N \cup\{C \vee L\}$
if $C$ is false under $M$ and $L$ is undefined under $M$.
Decide:
$M\left\|N \Rightarrow \operatorname{DPLL}(\mathrm{~T}) M L^{\mathrm{d}}\right\| N$
if $L$ is undefined under $M$.

## Fail:

$M \| N \cup\{C\} \Rightarrow{ }_{\text {DPLL(T) }}$ fail
if $C$ is false under $M$ and $M$ contains no decision literals.

## Specific DPLL(T) Rules

$T$-Backjump:
$M L^{\mathrm{d}} M^{\prime}\left\|N \cup\{C\} \Rightarrow \operatorname{DPLL}(\mathrm{T}) M L^{\prime}\right\| N \cup\{C\}$
if $M L^{\mathrm{d}} M^{\prime} \models \neg C$
there is some "backjump clause" $C^{\prime} \vee L^{\prime}$ such that
$N \cup\{C\} \models_{T} C^{\prime} \vee L^{\prime}$ and $M \models \neg C^{\prime}$
$L^{\prime}$ is undefined under $M^{\prime}$, and
$L^{\prime}$ or $\overline{L^{\prime}}$ occurs in $N$ or in $M L^{\mathrm{d}} M^{\prime}$.
$T$-Learn:
$M\left\|N \Rightarrow{ }_{\operatorname{DPLL}(\mathrm{T})} M\right\| N \cup\{C\}$
if $N \models_{T} C$ and each atom of $C$ occurs in $N$ or $M$.
$T$-Forget:
$M\left\|N \cup\{C\} \Rightarrow \Rightarrow_{\operatorname{DPLL}(\mathrm{T})} M\right\| N$
if $N \not \models_{T} C$.
$T$-Propagate:
$M\left\|N \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} M L\right\| N$
if $M \models_{T} L$ where $L$ is undefined in $M$ and
$L$ or $\bar{L}$ occurs in $N$.

## DPLL(T) Properties

The DPPL modulo theories system DPLL(T) consists of the rules Decide, Fail, UnitPropagate, $T$-Propagate, $T$-Backjump, $T$-Learn and $T$-Forget.

The Lemma 1.9 and the Lemma 1.10 from DPLL hold accordingly for DPLL(T). Again we will reconsider termination when the needed notions on orderings are established.

Lemma 2.2 If $\emptyset\left\|N \Rightarrow{ }_{\operatorname{DPLL}(\mathrm{T})}^{*} M\right\| N^{\prime}$ and there is some conflicting clause in $M \| N^{\prime}$, that is, $M \models \neg C$ for some clause $C$ in $N$, then either Fail or $T$-Backjump applies to $M \| N^{\prime}$.

Proof. As in Lemma 1.11.

Lemma 2.3 If $\emptyset\left\|N \Rightarrow{ }_{\operatorname{DPLL}(\mathrm{T})}^{*} M\right\| N^{\prime}$ and $M$ is $T$-inconsistent, then either there is a conflicting clause in $M \| N^{\prime}$, or else $T$-Learn applies to $M \| N^{\prime}$, generating a conflicting clause.

Proof. If $M$ is $T$-inconsistent, then there exists a subsequence $\left(L_{1}, \ldots, L_{n}\right)$ of $M$ such that $\emptyset \models_{T} \overline{L_{1}} \vee \ldots \vee \overline{L_{n}}$. Hence the conflicting clause $\overline{L_{1}} \vee \ldots \vee \overline{L_{n}}$ is either in $M \| N^{\prime}$, or else it can be learned by one $T$-Learn step.

## 3 First-Order Logic

First-order logic

- formalizes fundamental mathematical concepts
- is expressive (Turing-complete)
- is not too expressive (e.g. not axiomatizable: natural numbers, uncountable sets)
- has a rich structure of decidable fragments
- has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

### 3.1 Syntax

Syntax:

- non-logical symbols (domain-specific)
$\Rightarrow$ terms, atomic formulas
- logical symbols (domain-independent)
$\Rightarrow$ Boolean combinations, quantifiers


## Signature

A signature

$$
\Sigma=(\Omega, \Pi)
$$

fixes an alphabet of non-logical symbols, where

- $\Omega$ is a set of function symbols $f$ with arity $n \geq 0$, written $\operatorname{arity}(f)=n$,
- $\Pi$ is a set of predicate symbols $p$ with arity $m \geq 0$, written $\operatorname{arity}(p)=m$.

If $n=0$ then $f$ is also called a constant (symbol).
If $m=0$ then $p$ is also called a propositional variable.
We use letters $P, Q, R, S$, to denote propositional variables.
Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages); not so interesting from a logical point of view.

## Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that

## X

is a given countably infinite set of symbols which we use for (the denotation of) variables.

## Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a context-free grammar $G=(N, T, P, S)$ consists of:

- a set of non-terminal symbols $N$
- a set of terminal symbols $T$
- a set $P$ of rules $A::=w$ where $A \in N$ and $w \in(N \cup T)^{*}$
- a start symbol $S$ where $S \in N$

For rules $A::=w_{1}, A::=w_{2}$ we write $A::=w_{1} \mid w_{2}$

## Terms

Terms over $\Sigma$ (resp., $\Sigma$-terms) are formed according to these syntactic rules:

$$
\begin{array}{rlr}
s, t, u, v & ::=x & , x \in X \\
\mid f\left(s_{1}, \ldots, s_{n}\right) & , f \in \Omega, \operatorname{arity}(f)=n & \text { (functional term) }
\end{array}
$$

By $\mathrm{T}_{\Sigma}(X)$ we denote the set of $\Sigma$-terms (over $X$ ). A term not containing any variable is called a ground term. By $\mathrm{T}_{\Sigma}$ we denote the set of $\Sigma$-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may also view as marked, ordered trees. The markings are function symbols or variables. The nodes correspond to the subterms of the term. A node $v$ that is marked with a function symbol $f$ of arity $n$ has exactly $n$ subtrees representing the $n$ immediate subterms of $v$.

## Atoms

Atoms (also called atomic formulas) over $\Sigma$ are formed according to this syntax:

$$
\begin{gathered}
A, B \quad::=p\left(s_{1}, \ldots, s_{m}\right) \\
{\left[\begin{array}{cl}
\mid \quad(s \approx t) & \text { (equation) }
\end{array}\right]}
\end{gathered}
$$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of firstorder logic, (cf. exercises). But deductive systems where equality is treated specifically can be much more efficient.

## Literals

```
L ::= A (positive literal)
    | }\negA (negative literal
```


## Clauses

$$
\begin{array}{rlr}
C, D \quad::= & \perp & \text { (empty clause) } \\
\mid & L_{1} \vee \ldots \vee L_{k}, k \geq 1 & \text { (non-empty clause) }
\end{array}
$$

## General First-Order Formulas

$\mathrm{F}_{\Sigma}(X)$ is the set of first-order formulas over $\Sigma$ defined as follows:


## Positions in terms, formulas

Positions of a term $s$ (formula F):

```
pos(x)={\varepsilon},
pos}(f(\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{n}{}))={\varepsilon}\cup\mp@subsup{\bigcup}{i=1}{n}{ip|p\in\operatorname{pos}(\mp@subsup{s}{i}{})}
pos(\forallxF)={\varepsilon}\cup{1p|p\in\operatorname{pos}(F)}
```

Analogously for all other formulas.
Prefix order for $p, q \in \operatorname{pos}(s)$ :
$p$ above $q: p \leq q$ if $p p^{\prime}=q$ for some $p^{\prime}$, $p$ strictly above $q: p<q$ if $p \leq q$ and not $q \leq p$, $p$ and $q$ parallel: $p \| q$ if neither $p \leq q$ nor $q \leq p$.

Subterm of $s(F)$ at a position $p \in \operatorname{pos}(s)$ :
$s / \varepsilon=s$,
$f\left(s_{1}, \ldots, s_{n}\right) / i p=s_{i} / p$.

Analougously for formulas ( $F / p$ ).
Replacement of the subterm at position $p \in \operatorname{pos}(s)$ by $t$ :

$$
\begin{aligned}
& s[t]_{\varepsilon}=t \\
& f\left(s_{1}, \ldots, s_{n}\right)[t]_{i p}=f\left(s_{1}, \ldots, s_{i}[t]_{p}, \ldots, s_{n}\right) .
\end{aligned}
$$

Analougously for formulas $\left(F[G]_{p}\right)$.
Size of a term $s$ :
$|s|=$ cardinality of $\operatorname{pos}(s)$.

## Notational Conventions

We omit brackets according to the following rules:

- $\neg>_{p} \vee>_{p} \wedge>_{p} \rightarrow>_{p} \leftrightarrow$
(binding precedences)
- $\vee$ and $\wedge$ are associative and commutative
- $\rightarrow$ is right-associative
$Q x_{1}, \ldots, x_{n} F \quad$ abbreviates $\quad Q x_{1} \ldots Q x_{n} F$.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.
Examples:

$$
\begin{array}{ccc}
s+t * u & \text { for } & +(s, *(t, u)) \\
s * u \leq t+v & \text { for } & \leq(*(s, u),+(t, v)) \\
-s & \text { for } & -(s) \\
0 & \text { for } & 0()
\end{array}
$$

## Example: Peano Arithmetic

$\Sigma_{P A}=\left(\Omega_{P A}, \Pi_{P A}\right)$
$\Omega_{P A}=\{0 / 0,+/ 2, * / 2, s / 1\}$
$\Pi_{P A}=\{\leq / 2,</ 2\}$
$+, *,<, \leq \operatorname{infix} ; *>_{p}+>_{p}<>_{p} \leq$
Examples of formulas over this signature are:

$$
\begin{aligned}
& \forall x, y(x \leq y \leftrightarrow \exists z(x+z \approx y)) \\
& \exists x \forall y(x+y \approx y) \\
& \forall x, y(x * s(y) \approx x * y+x) \\
& \forall x, y(s(x) \approx s(y) \rightarrow x \approx y) \\
& \forall x \exists y(x<y \wedge \neg \exists z(x<z \wedge z<y))
\end{aligned}
$$

