DPLL(T) Rules from DPLL

Unit Propagate:

$$M \parallel N \cup \{C \vee L\} \ \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} \ M \ L \parallel N \cup \{C \vee L\}$$

if C is false under M and L is undefined under M.

Decide:

$$M \parallel N \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} M L^{\mathrm{d}} \parallel N$$

if L is undefined under M.

Fail:

$$M \parallel N \cup \{C\} \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} fail$$

if C is false under M and M contains no decision literals.

Specific DPLL(T) Rules

T-Backjump:

$$M\ L^{\operatorname{d}}\ M' \parallel N \cup \{C\} \ \Rightarrow_{\operatorname{DPLL}(\operatorname{T})} \ M\ L' \parallel N \cup \{C\}$$

if
$$M L^{\operatorname{d}} M' \models \neg C$$

there is some "backjump clause" $C' \vee L'$ such that

$$N \cup \{C\} \models_T C' \lor L' \text{ and } M \models \neg C'$$

L' is undefined under M', and

L' or $\overline{L'}$ occurs in N or in M L^{d} M'.

T-Learn:

$$M \parallel N \ \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} \ M \parallel N \cup \{C\}$$

if $N \models_T C$ and each atom of C occurs in N or M.

T-Forget:

$$M \parallel N \cup \{C\} \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} M \parallel N$$

if
$$N \models_T C$$
.

T-Propagate:

$$M \parallel N \Rightarrow_{\mathrm{DPLL}(\mathrm{T})} M L \parallel N$$

if $M \models_T L$ where L is undefined in M and

L or \overline{L} occurs in N.

DPLL(T) Properties

The DPPL modulo theories system DPLL(T) consists of the rules Decide, Fail, Unit-Propagate, T-Propagate, T-Backjump, T-Learn and T-Forget.

The Lemma 1.9 and the Lemma 1.10 from DPLL hold accordingly for DPLL(T). Again we will reconsider termination when the needed notions on orderings are established.

Lemma 2.2 If $\emptyset \parallel N \Rightarrow_{\mathrm{DPLL}(\mathrm{T})}^* M \parallel N'$ and there is some conflicting clause in $M \parallel N'$, that is, $M \models \neg C$ for some clause C in N, then either Fail or T-Backjump applies to $M \parallel N'$.

Proof. As in Lemma 1.11.

Lemma 2.3 If $\emptyset \parallel N \Rightarrow_{\mathrm{DPLL}(\mathrm{T})}^* M \parallel N'$ and M is T-inconsistent, then either there is a conflicting clause in $M \parallel N'$, or else T-Learn applies to $M \parallel N'$, generating a conflicting clause.

Proof. If M is T-inconsistent, then there exists a subsequence (L_1, \ldots, L_n) of M such that $\emptyset \models_T \overline{L_1} \lor \ldots \lor \overline{L_n}$. Hence the conflicting clause $\overline{L_1} \lor \ldots \lor \overline{L_n}$ is either in $M \parallel N'$, or else it can be learned by one T-Learn step.

3 First-Order Logic

First-order logic

- formalizes fundamental mathematical concepts
- is expressive (Turing-complete)
- is not too expressive (e.g. not axiomatizable: natural numbers, uncountable sets)
- has a rich structure of decidable fragments
- has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

- non-logical symbols (domain-specific) ⇒ terms, atomic formulas
- logical symbols (domain-independent) ⇒ Boolean combinations, quantifiers

Signature

A signature

$$\Sigma = (\Omega, \Pi),$$

fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$, written $\operatorname{arity}(f) = n$,
- Π is a set of predicate symbols p with arity $m \geq 0$, written $\operatorname{arity}(p) = m$.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P, Q, R, S, to denote propositional variables.

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming languages); not so interesting from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) variables.

Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a context-free grammar G = (N, T, P, S) consists of:

- \bullet a set of non-terminal symbols N
- a set of terminal symbols T
- a set P of rules A := w where $A \in N$ and $w \in (N \cup T)^*$
- a start symbol S where $S \in N$

For rules $A ::= w_1$, $A ::= w_2$ we write $A ::= w_1 \mid w_2$

Terms

Terms over Σ (resp., Σ -terms) are formed according to these syntactic rules:

$$s,t,u,v ::= x , x \in X$$
 (variable)
 $\mid f(s_1,...,s_n) , f \in \Omega, \text{ arity}(f) = n$ (functional term)

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ -ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may also view as marked, ordered trees. The markings are function symbols or variables. The nodes correspond to the *subterms* of the term. A node v that is marked with a function symbol f of arity n has exactly n subtrees representing the n immediate subterms of v.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$\begin{array}{cccc} A,B & ::= & p(s_1,...,s_m) & , \, p \in \Pi, \, \mathsf{arity}(p) = m \\ & \left[& \mid & (s \approx t) & (\mathsf{equation}) \end{array} \right] \end{array}$$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic, (cf. exercises). But deductive systems where equality is treated specifically can be much more efficient.

Literals

$$L ::= A$$
 (positive literal)
 $\neg A$ (negative literal)

Clauses

$$C, D ::= \bot$$
 (empty clause)
 $\downarrow L_1 \lor ... \lor L_k, k \ge 1$ (non-empty clause)

General First-Order Formulas

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$$F,G,H$$
 ::= \bot (falsum)

| \top (verum)

| A (atomic formula)

| $\neg F$ (negation)

| $(F \land G)$ (conjunction)

| $(F \lor G)$ (disjunction)

| $(F \to G)$ (implication)

| $(F \leftrightarrow G)$ (equivalence)

| $\forall xF$ (universal quantification)

| $\exists xF$ (existential quantification)

Positions in terms, formulas

```
Positions of a term s (formula F):
```

```
pos(x) = \{\varepsilon\},\
\operatorname{pos}(f(s_1,\ldots,s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in \operatorname{pos}(s_i)\}.
pos(\forall xF) = \{\varepsilon\} \cup \{1p \mid p \in pos(F)\}\
Analogously for all other formulas.
```

Prefix order for $p, q \in pos(s)$:

```
p above q: p \le q if pp' = q for some p',
p strictly above q: p < q if p \le q and not q \le p,
p and q parallel: p \parallel q if neither p \leq q nor q \leq p.
```

Subterm of s (F) at a position $p \in pos(s)$:

$$s/\varepsilon = s,$$

 $f(s_1, \dots, s_n)/ip = s_i/p.$

Analougously for formulas (F/p).

Replacement of the subterm at position $p \in pos(s)$ by t:

$$s[t]_{\varepsilon} = t,$$

$$f(s_1, \dots, s_n)[t]_{ip} = f(s_1, \dots, s_i[t]_p, \dots, s_n).$$

Analougously for formulas $(F[G]_p)$.

Size of a term s:

|s| = cardinality of pos(s).

Notational Conventions

We omit brackets according to the following rules:

- $\neg >_p \lor >_p \land >_p \rightarrow >_p \leftrightarrow$ (binding precedences)
- \bullet \vee and \wedge are associative and commutative
- ullet \rightarrow is right-associative

$$Qx_1, \ldots, x_n F$$
 abbreviates $Qx_1 \ldots Qx_n F$.

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:

$$s + t * u$$
 for $+(s, *(t, u))$
 $s * u \le t + v$ for $\le (*(s, u), +(t, v))$
 $-s$ for $-(s)$
 0 for $0()$

Example: Peano Arithmetic

$$\Sigma_{PA} = (\Omega_{PA}, \Pi_{PA})$$

 $\Omega_{PA} = \{0/0, +/2, */2, s/1\}$
 $\Pi_{PA} = \{ \le /2,
 $+, *, <, \le \text{infix}; * >_p + >_p < >_p \le$$

Examples of formulas over this signature are:

$$\forall x, y(x \le y \leftrightarrow \exists z(x+z \approx y))$$

$$\exists x \forall y(x+y \approx y)$$

$$\forall x, y(x*s(y) \approx x*y+x)$$

$$\forall x, y(s(x) \approx s(y) \rightarrow x \approx y)$$

$$\forall x \exists y(x < y \land \neg \exists z(x < z \land z < y))$$