These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-complete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

3.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

$$Q_1x_1\dots Q_nx_n F$$
,

where F is quantifier-free and $Q_i \in \{\forall, \exists\}$; we call $Q_1x_1 \dots Q_nx_n$ the quantifier prefix and F the matrix of the formula.

Computing prenex normal form by the rewrite relation \Rightarrow_P :

$$\begin{array}{ccc} (F \leftrightarrow G) & \Rightarrow_{P} & (F \rightarrow G) \wedge (G \rightarrow F) \\ \neg QxF & \Rightarrow_{P} & \overline{Q}x \neg F \\ (QxF \rho G) & \Rightarrow_{P} & Qy(F[y/x] \rho G), \ y \ \text{fresh}, \ \rho \in \{\land, \lor\} \\ (QxF \rightarrow G) & \Rightarrow_{P} & \overline{Q}y(F[y/x] \rightarrow G), \ y \ \text{fresh} \\ (F \rho QxG) & \Rightarrow_{P} & Qy(F \rho G[y/x]), \ y \ \text{fresh}, \ \rho \in \{\land, \lor, \rightarrow\} \end{array}$$

Here \overline{Q} denotes the quantifier dual to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, not in subformulas):

$$\forall x_1, \dots, x_n \exists y F \Rightarrow_S \forall x_1, \dots, x_n F[f(x_1, \dots, x_n)/y]$$

where f, where arity(f) = n, is a new function symbol (Skolem function).

Together:
$$F \stackrel{*}{\Rightarrow_P} \underbrace{G}_{\text{prenex}} \stackrel{*}{\Rightarrow_S} \underbrace{H}_{\text{prenex, no } \exists}$$

Theorem 3.9 Let F, G, and H as defined above and closed. Then

- (i) F and G are equivalent.
- (ii) $H \models G$ but the converse is not true in general.
- (iii) G satisfiable (w. r. t. Σ -Alg) \Leftrightarrow H satisfiable (w. r. t. Σ' -Alg) where $\Sigma' = (\Omega \cup SKF, \Pi)$, if $\Sigma = (\Omega, \Pi)$.

Clausal Normal Form (Conjunctive Normal Form)

$$\begin{array}{ccc} (F \leftrightarrow G) & \Rightarrow_{K} & (F \rightarrow G) \wedge (G \rightarrow F) \\ (F \rightarrow G) & \Rightarrow_{K} & (\neg F \vee G) \\ \neg (F \vee G) & \Rightarrow_{K} & (\neg F \wedge \neg G) \\ \neg (F \wedge G) & \Rightarrow_{K} & (\neg F \vee \neg G) \\ \neg \neg F & \Rightarrow_{K} & F \\ (F \wedge G) \vee H & \Rightarrow_{K} & (F \vee H) \wedge (G \vee H) \\ (F \wedge \top) & \Rightarrow_{K} & F \\ (F \wedge \bot) & \Rightarrow_{K} & \bot \\ (F \vee \top) & \Rightarrow_{K} & T \\ (F \vee \bot) & \Rightarrow_{K} & F \end{array}$$

These rules are to be applied modulo associativity and commutativity of \wedge and \vee . The first five rules, plus the rule $(\neg Q)$, compute the negation normal form (NNF) of a formula.

The Complete Picture

$$F \Rightarrow_{P}^{*} Q_{1}y_{1} \dots Q_{n}y_{n} G \qquad (G \text{ quantifier-free})$$

$$\Rightarrow_{S}^{*} \forall x_{1}, \dots, x_{m} H \qquad (m \leq n, H \text{ quantifier-free})$$

$$\Rightarrow_{K}^{*} \underbrace{\forall x_{1}, \dots, x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$$

 $N = \{C_1, \ldots, C_k\}$ is called the *clausal (normal) form (CNF)* of F. Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then $F' \models F$. (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable iff F' is satisfiable iff N is satisfiable