These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic
$Q:$ Can you think of any fragments of first-order logic for which validity is decidable?

Some Decidable Fragments

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIMEcomplete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in time polynomial in the size of the structure and the formula.

3.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} F
$$

where F is quantifier-free and $Q_{i} \in\{\forall, \exists\}$; we call $Q_{1} x_{1} \ldots Q_{n} x_{n}$ the quantifier prefix and F the matrix of the formula.

Computing prenex normal form by the rewrite relation \Rightarrow_{P} :

$$
\begin{align*}
&(F \leftrightarrow G) \Rightarrow_{P} \quad(F \rightarrow G) \wedge(G \rightarrow F) \\
& \neg Q x F \Rightarrow_{P} \\
&(Q x F \rho G) \Rightarrow_{P} \\
&(Q y(F[y / x] \rho G), y \text { fresh, } \rho \in\{\wedge, \vee\} \\
&(Q x F \rightarrow G) \Rightarrow_{P} \overline{Q y}(F[y / x] \rightarrow G), y \text { fresh } \\
&(F \rho Q x G) \Rightarrow_{P} \\
& Q y(F \rho G[y / x]), y \text { fresh, } \rho \in\{\wedge, \vee, \rightarrow\}
\end{align*}
$$

Here \bar{Q} denotes the quantifier dual to Q, i. e., $\bar{\forall}=\exists$ and $\bar{\exists}=\forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_{S} (to be applied outermost, not in subformulas):

$$
\forall x_{1}, \ldots, x_{n} \exists y F \Rightarrow_{S} \quad \forall x_{1}, \ldots, x_{n} F\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

where f, where $\operatorname{arity}(f)=n$, is a new function symbol (Skolem function).
Together: $F \stackrel{*}{\Rightarrow} P \underbrace{G}_{\text {prenex }} \stackrel{*}{S}_{\text {prenex, no } \exists}^{H}$

Theorem 3.9 Let F, G, and H as defined above and closed. Then
(i) F and G are equivalent.
(ii) $H \models G$ but the converse is not true in general.
(iii) G satisfiable (w.r.t. Σ-Alg) $\Leftrightarrow H$ satisfiable (w.r.t. Σ^{\prime}-Alg) where $\Sigma^{\prime}=(\Omega \cup$ $S K F, \Pi)$, if $\Sigma=(\Omega, \Pi)$.

Clausal Normal Form (Conjunctive Normal Form)

$$
\begin{array}{rll}
(F \leftrightarrow G) & \Rightarrow_{K} & (F \rightarrow G) \wedge(G \rightarrow F) \\
(F \rightarrow G) & \Rightarrow_{K} & (\neg F \vee G) \\
\neg(F \vee G) & \Rightarrow_{K} & (\neg F \wedge \neg G) \\
\neg(F \wedge G) & \Rightarrow_{K} & (\neg F \vee \neg G) \\
\neg \neg F & \Rightarrow_{K} & F \\
(F \wedge G) \vee H & \Rightarrow_{K} & (F \vee H) \wedge(G \vee H) \\
(F \wedge \top) & \Rightarrow_{K} & F \\
(F \wedge \perp) & \Rightarrow_{K} & \perp \\
(F \vee \top) & \Rightarrow_{K} & \top \\
(F \vee \perp) & \Rightarrow_{K} & F
\end{array}
$$

These rules are to be applied modulo associativity and commutativity of \wedge and \vee. The first five rules, plus the rule $(\neg Q)$, compute the negation normal form (NNF) of a formula.

The Complete Picture

$$
\begin{array}{rlr}
F & \stackrel{*}{P}_{P} & Q_{1} y_{1} \ldots Q_{n} y_{n} G \\
& \stackrel{*}{*}_{S} & \forall x_{1}, \ldots, x_{m} H \\
& \stackrel{*}{*}_{K} \underbrace{\forall \underbrace{\forall x_{1}, \ldots, x_{m}}_{\text {leave out }} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{i j}}_{\text {clauses } C_{i}}}_{F^{\prime}} \quad(m \leq n, H \text { quantifier-free })
\end{array}
$$

$N=\left\{C_{1}, \ldots, C_{k}\right\}$ is called the clausal (normal) form (CNF) of F.
Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then $F^{\prime} \models F$. (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable iff F^{\prime} is satisfiable iff N is satisfiable

