
Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

• size of the CNF exponential when done naively;
but see the transformations we introduced for propositional logic

• want to preserve the original formula structure;

• want small arity of Skolem functions (follows)

3.6 Getting small Skolem Functions

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• skolemize

Negation Normal Form (NNF)

Apply the rewrite relation ⇒NNF , F is the overall formula:

G ↔ H ⇒NNF (G → H) ∧ (H → G)
if F/p = G ↔ H and F/p has positive polarity

G ↔ H ⇒NNF (G ∧ H) ∨ (¬H ∧ ¬G)
if F/p = G ↔ H and F/p has negative polarity

¬QxG ⇒NNF Qx¬G
¬(G ∨ H) ⇒NNF ¬G ∧ ¬H
¬(G ∧ H) ⇒NNF ¬G ∨ ¬H

G → H ⇒NNF ¬G ∨ H
¬¬G ⇒NNF G

Miniscoping

Apply the rewrite relation ⇒MS. For the below rules we assume that x occurs freely in
G, H , but x does not occur freely in F :

Qx (G ∧ F ) ⇒MS QxG ∧ F
Qx (G ∨ F ) ⇒MS QxG ∨ F
∀x (G ∧ H) ⇒MS ∀xG ∧ ∀xH
∃x (G ∨ H) ⇒MS ∃xG ∨ ∃xH
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Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p =
QxG and F/q = QxH .

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

∃xH ⇒SK H [f(y1, . . . , yn)/x]
if F/p = ∃xH and p has minimal length,
{y1, . . . , yn} are the free variables in ∃xH ,
f is a new function symbol, arity(f) = n

3.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one
constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f ∈ Ω, arity(f) = n

f
fA(△, . . . ,△) =

△ . . . △

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols p ∈ Π, arity(p) = m may be freely interpreted as
relations pA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I
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Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Example: ΣPres = ({0/0, s/1, +/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres:
I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,
. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))
. . .
s(0) + 0 < s(0) + 0 + 0 + s(0)
. . .}

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F , if I |= F .

Theorem 3.13 (Herbrand) Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)
⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set of ground
instances of N .

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))
(s(0) < 0) ∨ (0 ≤ s(s(0)))
. . .
(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))
. . .
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3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence
F1, . . . , Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N , or else there exists an inference

Fi1 . . . Fini

Fi

in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.

Soundness and Completeness

Provability ⊢Γ of F from N in Γ: N ⊢Γ F :⇔ there exists a proof Γ of F from N .

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥
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Proposition 3.14

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F

(ii) N ⊢Γ F ⇒ there exist F1, . . . , Fn ∈ N s.t. F1, . . . , Fn ⊢Γ F (resembles compact-
ness).

Proofs as Trees

markings =̂ formulas
leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor
premises =̂ direct descendants

P (f(c))

P (f(c)) ∨ Q(b)

P (f(c)) ∨ Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨ Q(b)

¬P (f(c)) ∨ Q(b) ∨ Q(b)

¬P (f(c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

3.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:
D ∨ A ¬A ∨ C

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, respectively, by ground clauses and ground atoms we obtain an inference
rule.

As “∨” is considered associative and commutative, we assume that A and ¬A can occur
anywhere in their respective clauses.
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Sample Refutation

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨ Q(b) (given)
2. P (f(c)) ∨ Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)
6. ¬P (f(c)) ∨ Q(b) (Fact. 5.)
7. Q(b) ∨ Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P (g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

Resolution with Implicit Factorization RIF

D ∨ A ∨ . . . ∨ A ¬A ∨ C

D ∨ C

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨ Q(b) (given)
2. P (f(c)) ∨ Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)
6. Q(b) ∨ Q(b) ∨ Q(b) (Res. 2. into 5.)
7. ¬P (g(b, c)) (Res. 6. into 3.)
8. ⊥ (Res. 4. into 7.)

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= D ∨ A, I |= C ∨ ¬A ⇒ I |= D ∨ C

(ii) for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

(i): Assume premises are valid in I. Two cases need to be considered:
If I |= A, then I |= C, hence I |= D ∨ C.
Otherwise, I |= ¬A, then I |= D, and again I |= D ∨ C.
(ii): even simpler. 2

Note: In propositional logic (ground clauses) we have:
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1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i: I |= Li.

2. I |= A or I |= ¬A.

This does not hold for formulas with variables!
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3.10 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge
Univ. Press, 1998, Chapter 2.

To show the refutational completeness of resolution, we will make use of the concept of
well-founded orderings.

Partial Orderings

A (strict) partial ordering ≻ on a set M is a transitive and irreflexive binary relation
on M .

An a ∈ M is called minimal, if there is no b in M such that a ≻ b.

An a ∈ M is called smallest, if b ≻ a for all b ∈ M different from a.

Notation:
≺ for the inverse relation ≻−1

� for the reflexive closure (≻∪ =) of ≻

Well-Foundedness

A (strict) partial ordering ≻ is called well-founded (Noetherian), if there is no infinite
descending chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈ M .

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-founded orderings. Then let
their lexicographic combination

≻ = (≻1,≻2)lex

on M1 × M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1, or else a1 = b1 & a2 ≻2 b2

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).
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