Length-based ordering on words. For alphabets Σ with a well-founded ordering $>_{\Sigma}$, the relation \succ, defined as

$$
\begin{aligned}
& \left.w \succ w^{\prime}:=\alpha\right)|w|>\left|w^{\prime}\right| \text { or } \\
& \beta)|w|=\left|w^{\prime}\right| \text { and } w>_{\Sigma, l e x} w^{\prime},
\end{aligned}
$$

is a well-founded ordering on Σ^{*} (proof below).
Counterexamples:
($\mathbb{Z},>$);
$(\mathbb{N},<)$;
the lexicographic ordering on Σ^{*}

Basic Properties of Well-Founded Orderings

Lemma $3.16(M, \succ)$ is well-founded if and only if every $\emptyset \subset M^{\prime} \subseteq M$ has a minimal element.

Lemma $3.17\left(M_{i}, \succ_{i}\right)$ is well-founded for $i=1,2$ if and only if $\left(M_{1} \times M_{2}, \succ\right)$ with $\succ=\left(\succ_{1}, \succ_{2}\right)_{\text {lex }}$ is well-founded.

Proof. (i) " \Rightarrow ": Suppose ($M_{1} \times M_{2}, \succ$) is not well-founded. Then there is an infinite sequence $\left(a_{0}, b_{0}\right) \succ\left(a_{1}, b_{1}\right) \succ\left(a_{2}, b_{2}\right) \succ \ldots$.

Let $A=\left\{a_{i} \mid i \geq 0\right\} \subseteq M_{1}$. Since $\left(M_{1}, \succ_{1}\right)$ is well-founded, A has a minimal element a_{n}. But then $B=\left\{b_{i} \mid i \geq n\right\} \subseteq M_{2}$ can not have a minimal element, contradicting the well-foundedness of $\left(M_{2}, \succ_{2}\right)$.
(ii) " \Leftarrow ": obvious.

Noetherian Induction

Theorem 3.18 (Noetherian Induction) Let (M, \succ) be a well-founded ordering, let Q be a property of elements of M.
If for all $m \in M$ the implication
if $Q\left(m^{\prime}\right)$, for all $m^{\prime} \in M$ such that $m \succ m^{\prime},{ }^{1}$
then $Q(m){ }^{2}$
is satisfied, then the property $Q(m)$ holds for all $m \in M$.

[^0]Proof. Let $X=\{m \in M \mid Q(m)$ false $\}$. Suppose, $X \neq \emptyset$. Since (M, \succ) is well-founded, X has a minimal element m_{1}. Hence for all $m^{\prime} \in M$ with $m^{\prime} \prec m_{1}$ the property $Q\left(m^{\prime}\right)$ holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_{1}, hence $Q\left(m_{1}\right)$ must be true so that m_{1} can not be in X. Contradiction.

Multi-Sets

Let M be a set. A multi-set S over M is a mapping $S: M \rightarrow \mathbb{N}$. Hereby $S(m)$ specifies the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if $S(m)>0$.
We use set notation $(\epsilon, \subset, \subseteq, \cup, \cap$, etc.) with analogous meaning also for multi-sets, e. g.,

$$
\begin{aligned}
\left(S_{1} \cup S_{2}\right)(m) & =S_{1}(m)+S_{2}(m) \\
\left(S_{1} \cap S_{2}\right)(m) & =\min \left\{S_{1}(m), S_{2}(m)\right\}
\end{aligned}
$$

A multi-set is called finite, if

$$
|\{m \in M \mid s(m)>0\}|<\infty
$$

for each m in M.
From now on we only consider finite multi-sets.
Example. $S=\{a, a, a, b, b\}$ is a multi-set over $\{a, b, c\}$, where $S(a)=3, S(b)=2$, $S(c)=0$.

Multi-Set Orderings

Lemma 3.19 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$
\begin{aligned}
& S_{1} \succ_{\text {mul }} S_{2}: \Leftrightarrow S_{1} \neq S_{2} \\
& \quad \text { and } \forall m \in M:\left[S_{2}(m)>S_{1}(m)\right. \\
& \left.\quad \Rightarrow \quad \exists m^{\prime} \in M:\left(m^{\prime} \succ m \text { and } S_{1}\left(m^{\prime}\right)>S_{2}\left(m^{\prime}\right)\right)\right]
\end{aligned}
$$

Theorem 3.20
(a) $\succ_{\text {mul }}$ is a partial ordering.
(b) \succ well-founded $\Rightarrow \succ_{\text {mul }}$ well-founded.
(c) \succ total $\Rightarrow \succ_{\text {mul }}$ total.

Proof. see Baader and Nipkow, page 22-24.

Proof of DPLL Termination: Lemma 1.10

Proof. (Idea) Consider a DPLL derivation step $M\left\|N \Rightarrow_{\text {DPLL }} M^{\prime}\right\| N^{\prime}$ and a decomposition $M_{0} l_{1}^{d} M_{1} \ldots l_{k}^{d} M_{k}$ of M (accordingly for M^{\prime}). Let n be the number of distinct propositional variables in N. Then k, k^{\prime} and the length of M, M^{\prime} are always smaller than n. We define $f(M)=n-\operatorname{length}(M)$ and finally

$$
M\left\|N \succ M^{\prime}\right\| N^{\prime} \quad \text { if }
$$

(i) $f\left(M_{0}\right)=f\left(M_{0}^{\prime}\right), \ldots, f\left(M_{i-1}\right)=f\left(M_{i-1}^{\prime}\right), f\left(M_{i}\right)>f\left(M_{i}^{\prime}\right)$ for some $i<k, k^{\prime}$ or
(ii) $f\left(M_{j}\right)=f\left(M_{j}^{\prime}\right)$ for all $1 \leq j \leq k$ and $f(M)>f\left(M^{\prime}\right)$.

3.11 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash_{\text {Res }} \perp$, or equivalently: If $N \nvdash_{\text {Res }} \perp$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived $\perp)$.
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.

Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is total and wellfounded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
2. Extend \succ to an ordering \succ_{L} on ground literals:

$$
\begin{array}{ccc}
{[\neg] A} & \succ_{L} & {[\neg] B} \\
\neg A & \succ_{L} & A
\end{array}, \text { if } A \succ B
$$

3. Extend \succ_{L} to an ordering \succ_{C} on ground clauses:
$\succ_{C}=\left(\succ_{L}\right)_{\text {mul }}$, the multi-set extension of \succ_{L}.
Notation: \succ also for \succ_{L} and \succ_{C}.

Example

Suppose $A_{5} \succ A_{4} \succ A_{3} \succ A_{2} \succ A_{1} \succ A_{0}$. Then:

$$
\begin{array}{cc}
& A_{0} \vee A_{1} \\
\prec & A_{1} \vee A_{2} \\
\prec & \neg A_{1} \vee A_{2} \\
\prec & \neg A_{1} \vee A_{4} \vee A_{3} \\
\prec & \neg A_{1} \vee \neg A_{4} \vee A_{3} \\
\prec & \quad \neg A_{5} \vee A_{5}
\end{array}
$$

Properties of the Clause Ordering

Proposition 3.21

1. The orderings on literals and clauses are total and well-founded.
2. Let C and D be clauses with $A=\max (C), B=\max (D)$, where $\max (C)$ denotes the maximal atom in C.
(i) If $A \succ B$ then $C \succ D$.
(ii) If $A=B$, A occurs negatively in C but only positively in D, then $C \succ D$.

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under Res

$$
\begin{aligned}
\operatorname{Res}(N) & =\{C \mid C \text { is concl. of a rule in Res } \mathrm{w} / \text { premises in } N\} \\
\operatorname{Res}^{0}(N) & =N \\
\operatorname{Res}^{n+1}(N) & =\operatorname{Res}\left(\operatorname{Res}^{n}(N)\right) \cup \operatorname{Res}^{n}(N), \text { for } n \geq 0 \\
\operatorname{Res}^{*}(N) & =\bigcup_{n \geq 0} \operatorname{Res}^{n}(N)
\end{aligned}
$$

N is called saturated (w.r.t. resolution), if $\operatorname{Res}(N) \subseteq N$.

Proposition 3.22

(i) $\operatorname{Res}^{*}(N)$ is saturated.
(ii) Res is refutationally complete, iff for each set N of ground clauses:

$$
N \models \perp \Leftrightarrow \perp \in \operatorname{Res}^{*}(N)
$$

Construction of Interpretations

Given: set N of ground clauses, atom ordering \succ.
Wanted: Herbrand interpretation I such that

- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ, starting with the minimal clause.

Example

Let $A_{5} \succ A_{4} \succ A_{3} \succ A_{2} \succ A_{1} \succ A_{0}$ (max. literals in red)

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg A_{0}$	\emptyset	\emptyset	true in I_{C}
2	$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	A_{1} maximal
3	$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	true in I_{C}
4	$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	A_{2} maximal
5	$\neg A_{1} \vee A_{4} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{4}\right\}$	A_{4} maximal
6	$\neg A_{1} \vee \neg A_{4} \vee A_{3}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	\emptyset	A_{3} not maximal;
			min. counter-ex.	
7	$\neg A_{1} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	$\left\{A_{5}\right\}$	
$I=\left\{A_{1}, A_{2}, A_{4}, A_{5}\right\}$ is not a model of the clause set				
\Rightarrow there exists a counterexample.				

Main Ideas of the Construction

- Clauses are considered in the order given by \prec.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.
- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{C}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.
- Changes should, however, be monotone. One never deletes anything from I_{C} and the truth value of clauses smaller than C should be maintained the way it was in I_{C}.
- Hence, one chooses $\Delta_{C}=\{A\}$ if, and only if, C is false in I_{C}, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$
\frac{\neg A_{1} \vee A_{4} \vee A_{3} \vee A_{0} \neg A_{1} \vee \neg A_{4} \vee A_{3}}{\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3} \vee A_{0}}
$$

Construction of I for the extended clause set:

clauses C	I_{C}	Δ_{C}	Remarks
$\neg A_{0}$	\emptyset	\emptyset	
$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	
$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	
$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	
$\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}\right\}$	\emptyset	A_{3} occurs twice
			minimal counter-ex.
$\neg A_{1} \vee A_{4} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{4}\right\}$	
$\neg A_{1} \vee \neg A_{4} \vee A_{3}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	\emptyset	counterexample
$\neg A_{1} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	$\left\{A_{5}\right\}$	

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$
\frac{\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3} \vee A_{0}}{\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{0}}
$$

Construction of I for the extended clause set:

clauses C	I_{C}	Δ_{C}	Remarks
$\neg A_{0}$	\emptyset	\emptyset	
$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	
$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	
$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	
$\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{3}\right\}$	
$\neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	true in I_{C}
$\neg A_{1} \vee A_{4} \vee A_{3} \vee A_{0}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	
$\neg A_{1} \vee \neg A_{4} \vee A_{3}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	true in I_{C}
$\neg A_{3} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	$\left\{A_{5}\right\}$	

The resulting $I=\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$ is a model of the clause set.

Construction of Candidate Interpretations

Let N, \succ be given. We define sets I_{C} and Δ_{C} for all ground clauses C over the given signature inductively over \succ :

$$
\begin{aligned}
I_{C} & :=\bigcup_{C \succ D} \Delta_{D} \\
\Delta_{C} & := \begin{cases}\{A\}, & \text { if } C \in N, C=C^{\prime} \vee A, A \succ C^{\prime}, I_{C} \not \models C \\
\emptyset, & \text { otherwise }\end{cases}
\end{aligned}
$$

We say that C produces A, if $\Delta_{C}=\{A\}$.
The candidate interpretation for N (w.r.t. \succ) is given as $I_{N}^{\succ}:=\bigcup_{C} \Delta_{C}$. (We also simply write I_{N} or I for I_{N}^{\succ} if \succ is either irrelevant or known from the context.)

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

Some Properties of the Construction

Proposition 3.23

(i) $C=\neg A \vee C^{\prime} \Rightarrow$ no $D \succeq C$ produces A.
(ii) C productive $\Rightarrow I_{C} \cup \Delta_{C} \models C$.
(iii) Let $D^{\prime} \succ D \succeq C$. Then

$$
I_{D} \cup \Delta_{D} \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \models C \text { and } I_{N} \models C .
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \cup \Delta_{D} \not \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \not \models C \text { and } I_{N} \not \models C .
$$

(iv) Let $D^{\prime} \succ D \succ C$. Then

$$
I_{D} \models C \Rightarrow I_{D^{\prime}} \models C \text { and } I_{N} \models C
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \not \models C \Rightarrow I_{D^{\prime}} \not \models C \text { and } I_{N} \not \models C
$$

(v) $D=C \vee A$ produces $A \Rightarrow I_{N} \not \vDash C$.

[^0]: ${ }^{1}$ induction hypothesis
 ${ }^{2}$ induction step

