
Model Existence Theorem

Theorem 3.24 (Bachmair & Ganzinger 1990) Let ≻ be a clause ordering, let N
be saturated w. r. t. Res, and suppose that ⊥ 6∈ N . Then I≻

N |= N .

Corollary 3.25 Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .

Proof of Theorem 3.24. Suppose ⊥ 6∈ N , but I≻

N 6|= N . Let C ∈ N minimal (in ≻)
such that I≻

N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there exists a
maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′
∨A ¬A∨C′

D′∨C′
, we infer that D′ ∨ C ′ ∈ N ,

and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C.

Case 2: C = C ′ ∨ A ∨ A. Then C′
∨A∨A

C′∨A
yields a smaller counterexample C ′ ∨ A ∈ N . ⇒

contradicts minimality of C. 2

Compactness of Propositional Logic

Theorem 3.26 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M ⊆ N is unsatisfiable.

Proof. “⇐”: trivial.

“⇒”: Let N be unsatisfiable.
⇒ Res∗(N) unsatisfiable
⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution
⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has a finite resolution proof P ;
choose M as the set of assumptions in P . 2
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3.12 General Resolution

Propositional resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

in practice clearly inferior to the DPLL procedure (even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily extended to non-ground
clauses.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨ Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))¬P (a, a) ¬P (a, b) P (a, b) ∨ Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

[a/z′, f(a, b)/z] [a/y] [b/y] [a/x′, b/x]

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea:

Do not instantiate more than necessary to get complementary literals.

Idea: do not instantiate more than necessary:
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P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨ Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨ Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

[a/z′] [a/y] [b/y] [a/x′]

[f(a, x)/z]

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground)
instances of finitely many general clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general atoms;

• Only compute most general (minimal) unifiers.

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore
1960) is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A, B) [factorization]
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General resolution RIF with implicit factorization:

D ∨ B1 ∨ . . . ∨ Bn C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B1, . . . , Bn)

[RIF]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Unification

Let E = {s1

.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multi-set of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.27

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X.

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.28 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.
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Rule Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

x
.
= t, E ⇒SU x

.
= t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

SU: Main Properties

If E = x1

.
= u1, . . . , xk

.
= uk, with xi pairwise distinct, xi 6∈ var(uj), then E is called an

(equational problem in) solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 3.29 If E is a solved form then σE is an mgu of E.

Theorem 3.30

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒SU ⊥ then E is not unifiable.

3. If E
∗

⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ [t/x] = σ[x 7→ tσ] =

σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u[t/x]σ = v[t/x]σ.

(2) and (3) follow by induction from (1) using Proposition 3.29. 2

Main Unification Theorem

Theorem 3.31 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Problem: exponential growth of terms possible

Proof of Theorem 3.31. • ⇒SU is Noetherian. A suitable lexicographic ordering
on the multisets E (with ⊥ minimal) shows this. Compare in this order:
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1. the number of defined variables (d.h. variables x in equations x
.
= t with

x 6∈ var(t)), which also occur outside their definition elsewhere in E;

2. the multi-set ordering induced by (i) the size (number of symbols) in an
equation; (ii) if sizes are equal consider x

.
= t smaller than t

.
= x, if t 6∈ X.

2

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.30, Proposition 3.29).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

Rule Based Polynomial Unification

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

x
.
= y, E ⇒PU x

.
= y, E[y/x]

if x ∈ var(E), x 6= y

x1

.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with ti/pi = xi+1, tn/pn = x1 and some pi 6= ǫ

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 3.32

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒PU ⊥ then E is not unifiable.

3. If E
∗

⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.
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