The solved form of $\Rightarrow_{P U}$ is different form the solved form obtained from $\Rightarrow_{S U}$. In order to obtain a unifier, the substitutions generated by the single equations have to be composed.

Lifting Lemma

Lemma 3.33 Let C and D be variable-disjoint clauses. If

then there exists a substitution τ such that

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.34 Let N be a set of general clauses saturated under Res, i. e., $\operatorname{Res}(N) \subseteq$ N. Then also $G_{\Sigma}(N)$ is saturated, that is,

$$
\operatorname{Res}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N)
$$

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise make them disjoint, and this renaming process changes neither $\operatorname{Res}(N)$ nor $G_{\Sigma}(N)$.)
Let $C^{\prime} \in \operatorname{Res}\left(G_{\Sigma}(N)\right)$, meaning (i) there exist resolvable ground instances $D \sigma$ and $C \rho$ of N with resolvent C^{\prime}, or else (ii) C^{\prime} is a factor of a ground instance $C \sigma$ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent $C^{\prime \prime}$ with $C^{\prime \prime} \tau=C^{\prime}$, for a suitable substitution τ. As $C^{\prime \prime} \in N$ by assumption, we obtain that $C^{\prime} \in G_{\Sigma}(N)$.
Case (ii): Similar.

Herbrand's Theorem

Lemma 3.35 Let N be a set of Σ-clauses, let \mathcal{A} be an interpretation. Then $\mathcal{A} \models N$ implies $\mathcal{A} \models G_{\Sigma}(N)$.

Lemma 3.36 Let N be a set of Σ-clauses, let \mathcal{A} be a Herbrand interpretation. Then $\mathcal{A} \models G_{\Sigma}(N)$ implies $\mathcal{A} \models N$.

Theorem 3.37 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a Herbrand model over Σ.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not \vDash \perp$.

$$
\begin{aligned}
N \not \models \perp & \Rightarrow \perp \notin \operatorname{Res}^{*}(N) \quad \text { (resolution is sound) } \\
& \Rightarrow \perp \notin G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right) \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right) \quad \text { (Thm. 3.24; Cor. 3.34) } \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models \operatorname{Res}^{*}(N) \quad(\text { Lemma 3.36) } \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models N \quad\left(N \subseteq \operatorname{Res}^{*}(N)\right) \quad \square
\end{aligned}
$$

The Theorem of Löwenheim-Skolem

Theorem 3.38 (Löwenheim-Skolem) Let Σ be a countable signature and let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ^{\prime}. As Σ^{\prime} is countable, so is $T_{\Sigma^{\prime}}$, the universe of Herbrand-interpretations over Σ^{\prime}. Now apply Theorem 3.37.

Refutational Completeness of General Resolution

Theorem 3.39 Let N be a set of general clauses where $\operatorname{Res}(N) \subseteq N$. Then

$$
N \models \perp \Leftrightarrow \perp \in N .
$$

Proof. Let $\operatorname{Res}(N) \subseteq N$. By Corollary 3.34: $\operatorname{Res}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N)$

$$
\begin{aligned}
N \models \perp & \Leftrightarrow G_{\Sigma}(N) \models \perp \quad \text { (Lemma 3.35/3.36; Theorem 3.37) } \\
& \Leftrightarrow \perp \in G_{\Sigma}(N) \quad \text { (propositional resolution sound and complete) } \\
& \Leftrightarrow \perp \in N \quad \square
\end{aligned}
$$

Compactness of Predicate Logic

Theorem 3.40 (Compactness Theorem for First-Order Logic) Let Φ be a set of first-order formulas. Φ is unsatisfiable \Leftrightarrow some finite subset $\Psi \subseteq \Phi$ is unsatisfiable.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let Φ be unsatisfiable and let N be the set of clauses obtained by Skolemization and CNF transformation of the formulas in Φ. Clearly $\operatorname{Res}^{*}(N)$ is unsatisfiable. By Theorem 3.39, $\perp \in \operatorname{Res}^{*}(N)$, and therefore $\perp \in \operatorname{Res}^{n}(N)$ for some $n \in \mathbb{N}$. Consequently, \perp has a finite resolution proof B of depth $\leq n$. Choose Ψ as the subset of formulas in Φ such that the corresponding clauses contain the assumptions (leaves) of B.

3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.
Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.24) one only needs to resolve and factor maximal atoms
\Rightarrow if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
\Rightarrow order restrictions
2. In the proof, it does not really matter with which negative literal an inference is performed
\Rightarrow choose a negative literal don't-care-nondeterministically
\Rightarrow selection

Selection Functions

A selection function is a mapping
$S: C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

$$
\neg A \vee \neg A \vee B
$$

$\neg B_{0} \vee \neg B_{1} \vee A$

Resolution Calculus $\operatorname{Res}{ }_{S}^{\succ}$

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.
In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances:

Let \succ be a total and well-founded ordering on ground atoms. A literal L is called [strictly] maximal in a clause C if and only if there exists a ground substitution σ such that for no other L^{\prime} in $C: L \sigma \prec L^{\prime} \sigma\left[L \sigma \preceq L^{\prime} \sigma\right]$.

Let \succ be an atom ordering and S a selection function.

$$
\frac{D \vee B \quad C \vee \neg A}{(D \vee C) \sigma} \quad \text { [ordered resolution with selection] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and
(i) $B \sigma$ strictly maximal w.r.t. $D \sigma$;
(ii) nothing is selected in D by S;
(iii) either $\neg A$ is selected, or else nothing is selected in $C \vee \neg A$ and $\neg A \sigma$ is maximal in $C \sigma$.

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma} \quad[\text { ordered factoring }]
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $A \sigma$ is maximal in $C \sigma$ and nothing is selected in C.

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

$$
\frac{D \vee A \quad C \vee \neg A}{D \vee C}
$$

if
(i) $A \succ D$;
(ii) nothing is selected in D by. S ;
(iii) $\neg A$ is selected in $C \vee \neg A$, or else nothing is selected in $C \vee \neg A$ and $\neg A \succeq \max (C)$.

Note: For positive literals, $A \succ D$ is the same as $A \succ \max (D)$.

Search Spaces Become Smaller

$1 \quad A \vee B$
$2 \quad A \vee \neg B$
$3 \neg A \vee B$
$4 \quad \neg A \vee \neg B$
$5 B \vee B \quad$ Res 1,3
$6 \quad B \quad$ Fact 5
$7 \quad \neg A \quad$ Res 6, 4
$8 A \quad$ Res 6, 2
$9 \perp \quad$ Res 8, 7
we assume $A \succ B$ and
S as indicated by X.
The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

$$
\frac{C_{1} \vee A C_{2} \vee \neg A \vee B}{\frac{C_{1} \vee C_{2} \vee B}{C_{1} \vee C_{2} \vee C_{3}}} C_{3} \vee \neg B
$$

we can obtain by rotation

$$
\frac{C_{1} \vee A \frac{C_{2} \vee \neg A \vee B \quad C_{3} \vee \neg B}{C_{2} \vee \neg A \vee C_{3}}}{C_{1} \vee C_{2} \vee C_{3}}
$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representant in any class of of rotation-equivalent proofs.

Lifting Lemma for $R e s_{S}^{\succ}$

Lemma 3.41 Let D and C be variable-disjoint clauses. If

[propositional inference in Res ${ }_{S}^{\succ}$]

