and if $S(D \sigma) \simeq S(D), S(C \rho) \simeq S(C)$ (that is,"corresponding" literals are selected), then there exists a substitution τ such that

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 3.42 Let N be a set of general clauses saturated under Res ${ }_{S}^{\succ}$, i. e., Res S $(N) \subseteq$ N. Then there exists a selection function S^{\prime} such that $\left.S\right|_{N}=\left.S^{\prime}\right|_{N}$ and $G_{\Sigma}(N)$ is also saturated, i. e.,

$$
\operatorname{Res}_{S_{S^{\prime}}^{\succ}}^{\succ}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N) .
$$

Proof. We first define the selection function S^{\prime} such that $S^{\prime}(C)=S(C)$ for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \backslash N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define $S^{\prime}(C)$ to be those occurrences of literals that are ground instances of the occurrences selected by S in D. Then proceed as in the proof of Corollary 3.34 using the above lifting lemma.

Soundness and Refutational Completeness

Theorem 3.43 Let \succ be an atom ordering and S a selection function such that $\operatorname{Res}_{S}^{\succ}(N) \subseteq$ N. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate interpretation I_{N} as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_{C} and when their maximal atom occurs only once and positively. The result for general clauses follows using Corollary 3.42.

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 3.44 (Craig 1957) Let F and G be two propositional formulas such that $F \models G$. Then there exists a formula H (called the interpolant for $F \models G$), such that H contains only prop. variables occurring both in F and in G, and such that $F \models H$ and $H \models G$.

Proof. Translate F and $\neg G$ into CNF. let N and M, resp., denote the resulting clause set. Choose an atom ordering \succ for which the prop. variables that occur in F but not in G are maximal. Saturate N into N^{*} w.r.t. $R e s_{S}^{\succ}$ with an empty selection function S. Then saturate $N^{*} \cup M$ w.r.t. $R e s_{S}^{\succ}$ to derive \perp. As N^{*} is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^{*}, only contain symbols that also occur in G. The conjunction of these premises is an interpolant H. The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on resolution technology is more complicated because of Skolemization.

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called redundant w.r.t. N, if there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$, such that $C_{i} \prec C$ and $C_{1}, \ldots, C_{n} \models C$.

Redundancy for general clauses: C is called redundant w.r.t. N, if all ground instances $C \sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.
Note: The same ordering \prec is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 3.45 Some redundancy criteria:

- C tautology (i.e., $\models C$) $\Rightarrow C$ redundant w.r.t. any set N.
- $C \sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup\{C\}$.
- $C \sigma \subseteq D \Rightarrow D \vee \bar{L} \sigma$ redundant w.r.t. $N \cup\{C \vee L, D\}$.
(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Res ${ }_{S}^{\succ}$)

$$
: \Leftrightarrow \operatorname{Res}_{S}^{\succ}(N \backslash \operatorname{Red}(N)) \subseteq N \cup \operatorname{Red}(N)
$$

Theorem 3.46 Let N be saturated up to redundancy. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Proof (Sketch). (i) Ground case:

- consider the construction of the candidate interpretation I_{N}^{\succ} for $\operatorname{Res}_{S}^{\succ}$
- redundant clauses are not productive
- redundant clauses in N are not minimal counterexamples for I_{N}^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.
(ii) Lifting: no additional problems over the proof of Theorem 3.43.

Monotonicity Properties of Redundancy

Theorem 3.47
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof. Exercise.

We conclude that redundancy is preserved when, during a theorem proving process, one adds (derives) new clauses or deletes redundant clauses.

A Resolution Prover

So far: static view on completeness of resolution:
Saturated sets are inconsistent if and only if they contain \perp.
We will now consider a dynamic view:
How can we get saturated sets in practice?
The theorems 3.46 and 3.47 are the basis for the completeness proof of our prover $R P$.

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover states N :

- Deletion of tautologies

$$
N \cup\{C \vee A \vee \neg A\} \triangleright N
$$

- Deletion of subsumed clauses

$$
N \cup\{C, D\} \triangleright N \cup\{C\}
$$

if $C \sigma \subseteq D(C$ subsumes $D)$.

- Reduction (also called subsumption resolution)

$$
N \cup\{C \vee L, D \vee C \sigma \vee \bar{L} \sigma\} \triangleright N \cup\{C \vee L, D \vee C \sigma\}
$$

Resolution Prover $R P$

3 clause sets: $\mathrm{N}(\mathrm{ew})$ containing new resolvents
P (rocessed) containing simplified resolvents clauses get into $\mathrm{O}(\mathrm{ld})$ once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilities for simplification

Transition Rules for $R P$ (I)
Tautology elimination
$\boldsymbol{N \cup \{ C \} | \boldsymbol { P } | O \quad} \begin{array}{ll} & \boldsymbol{N}|\boldsymbol{P}| \boldsymbol{O} \\ \text { if } C \text { is a tautology }\end{array}$
Forward subsumption
$\boldsymbol{N} \cup\{C\}|\boldsymbol{P}| \boldsymbol{O}$
$\triangleright \quad N|P| O$
if some $D \in P \cup O$ subsumes C

Backward subsumption
$\boldsymbol{N} \cup\{C\}|\boldsymbol{P} \cup\{D\}| O \quad \triangleright \quad \boldsymbol{N} \cup\{C\}|\boldsymbol{P}| \boldsymbol{O}$
$\boldsymbol{N} \cup\{C\}|\boldsymbol{P}| \boldsymbol{O} \cup\{D\} \quad \triangleright \boldsymbol{N} \cup\{C\}|\boldsymbol{P}| \boldsymbol{O}$
if C strictly subsumes D

Transition Rules for $R P$ (II)
Forward reduction
$\boldsymbol{N} \cup\{C \vee L\}|\boldsymbol{P}| \boldsymbol{O} \triangleright \boldsymbol{N} \cup\{C\}|\boldsymbol{P}| \boldsymbol{O}$
if there exists $D \vee L^{\prime} \in P \cup O$
such that $\bar{L}=L^{\prime} \sigma$ and $D \sigma \subseteq C$
Backward reduction

$$
\begin{array}{lll}
N|P \cup\{C \vee L\}| O & & \boldsymbol{N}|\boldsymbol{P} \cup\{C\}| O \\
N|P| O \cup\{C \vee L\} & \triangleright & N|P \cup\{C\}| O \\
& & \text { if there exists } D \vee L^{\prime} \in N \\
& \text { such that } \bar{L}=L^{\prime} \sigma \text { and } D \sigma \subseteq C
\end{array}
$$

Transition Rules for $R P$ (III)
Clause processing

$$
N \cup\{C\}|P| O \quad \triangleright N|P \cup\{C\}| O
$$

Inference computation
$\emptyset|\boldsymbol{P} \cup\{C\}| O$

$$
\begin{aligned}
& \triangleright \quad \boldsymbol{N}|\boldsymbol{P}| \boldsymbol{O} \cup\{C\}, \\
& \quad \text { with } \boldsymbol{N}=\operatorname{Res}_{S}^{\succ}(\boldsymbol{O} \cup\{C\})
\end{aligned}
$$

Soundness and Completeness

Theorem 3.48

$$
N \models \perp \quad \Leftrightarrow N|\emptyset| \emptyset \quad \stackrel{*}{\triangleright} \quad N^{\prime} \cup\{\perp\}|-|-
$$

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the Handbook of Automated Reasoning, 2001

Fairness

Problem:
If N is inconsistent, then $N|\emptyset| \emptyset \stackrel{*}{\triangleright} N^{\prime} \cup\{\perp\}|-|-$.
Does this imply that every derivation starting from an inconsistent set N eventually produces \perp ?

No: a clause could be kept in \boldsymbol{P} without ever being used for an inference.
We need in addition a fairness condition:
If an inference is possible forever (that is, none of its premises is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness: Implement \boldsymbol{P} as a queue (there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then every fair derivation will eventually produce \perp.

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger: Resolution Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):
Assume that several negative literals are selected in a clause C. If we perform an inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion. Then we must eliminate the remaining selected literals one by one by further resolution steps.

Hyperresolution replaces these successive steps by a single inference. As for $\operatorname{Res}_{S}^{\succ}$, the calculus is parameterized by an atom ordering \succ and a selection function S.

$$
\frac{D_{1} \vee B_{1} \ldots \quad D_{n} \vee B_{n} \quad C \vee \neg A_{1} \vee \ldots \vee \neg A_{n}}{\left(D_{1} \vee \ldots \vee D_{n} \vee C\right) \sigma}
$$

with $\sigma=\operatorname{mgu}\left(A_{1} \doteq B_{1}, \ldots, A_{n} \doteq B_{n}\right)$, if
(i) $B_{i} \sigma$ strictly maximal in $D_{i} \sigma, 1 \leq i \leq n$;
(ii) nothing is selected in D_{i};

