
and if S(Dσ) ≃ S(D), S(Cρ) ≃ S(C) (that is, “corresponding” literals are selected),
then there exists a substitution τ such that

D C

C ′′

y

τ

C ′ = C ′′τ

[inference in Res≻
S
]

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 3.42 Let N be a set of general clauses saturated under Res≻
S
, i. e., Res≻

S
(N) ⊆

N . Then there exists a selection function S ′ such that S|N = S ′|N and GΣ(N) is also
saturated, i. e.,

Res≻
S′(GΣ(N)) ⊆ GΣ(N).

Proof. We first define the selection function S ′ such that S ′(C) = S(C) for all clauses
C ∈ GΣ(N)∩N . For C ∈ GΣ(N) \N we choose a fixed but arbitrary clause D ∈ N with
C ∈ GΣ(D) and define S ′(C) to be those occurrences of literals that are ground instances
of the occurrences selected by S in D. Then proceed as in the proof of Corollary 3.34
using the above lifting lemma. 2

Soundness and Refutational Completeness

Theorem 3.43 Let ≻ be an atom ordering and S a selection function such that Res≻
S
(N) ⊆

N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. The “⇐” part is trivial. For the “⇒” part consider first the propositional
level: Construct a candidate interpretation IN as for unrestricted resolution, except
that clauses C in N that have selected literals are not productive, even when they are
false in IC and when their maximal atom occurs only once and positively. The result
for general clauses follows using Corollary 3.42. 2

72

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 3.44 (Craig 1957) Let F and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F |= G), such that H

contains only prop. variables occurring both in F and in G, and such that F |= H and
H |= G.

Proof. Translate F and ¬G into CNF. let N and M , resp., denote the resulting clause
set. Choose an atom ordering ≻ for which the prop. variables that occur in F but not in
G are maximal. Saturate N into N∗ w. r. t. Res≻

S
with an empty selection function S .

Then saturate N∗ ∪M w. r. t. Res≻
S

to derive ⊥. As N∗ is already saturated, due to the
ordering restrictions only inferences need to be considered where premises, if they are
from N∗, only contain symbols that also occur in G. The conjunction of these premises
is an interpolant H . The theorem also holds for first-order formulas. For universal
formulas the above proof can be easily extended. In the general case, a proof based on
resolution technology is more complicated because of Skolemization. 2

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other
clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering ≺ is used for ordering restrictions and for redundancy (and
for the completeness proof).

73

Examples of Redundancy

Proposition 3.45 Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻
S
)

:⇔ Res≻
S
(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 3.46 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch). (i) Ground case:

• consider the construction of the candidate interpretation I≻

N
for Res≻

S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻

N

The premises of “essential” inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 3.43. 2

Monotonicity Properties of Redundancy

Theorem 3.47

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

Proof. Exercise. 2

We conclude that redundancy is preserved when, during a theorem proving process, one
adds (derives) new clauses or deletes redundant clauses.

74

A Resolution Prover

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain ⊥.

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 3.46 and 3.47 are the basis for the completeness proof of our prover RP .

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover states N :

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} ⊲ N

• Deletion of subsumed clauses

N ∪ {C, D} ⊲ N ∪ {C}

if Cσ ⊆ D (C subsumes D).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} ⊲ N ∪ {C ∨ L, D ∨ Cσ}

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents
P(rocessed) containing simplified resolvents
clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilities for simplifi-
cation

75

Transition Rules for RP (I)

Tautology elimination
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if C is a tautology

Forward subsumption
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption
NNN ∪ {C} | PPP ∪ {D} | OOO ⊲ NNN ∪ {C} | PPP | OOO
NNN ∪ {C} | PPP | OOO ∪ {D} ⊲ NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

Transition Rules for RP (II)

Forward reduction
NNN ∪ {C ∨ L} | PPP | OOO ⊲ NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO

such that L = L′σ and Dσ ⊆ C

Backward reduction
NNN | PPP ∪ {C ∨ L} | OOO ⊲ NNN | PPP ∪ {C} | OOO
NNN | PPP | OOO ∪ {C ∨ L} ⊲ NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN

such that L = L′σ and Dσ ⊆ C

Transition Rules for RP (III)

Clause processing
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP ∪ {C} | OOO

Inference computation
∅ | PPP ∪ {C} | OOO ⊲ NNN | PPP | OOO ∪ {C},

with NNN = Res≻
S
(OOO ∪ {C})

Soundness and Completeness

Theorem 3.48

N |= ⊥ ⇔ N | ∅ | ∅
∗

⊲ N ′ ∪ {⊥} | |

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the
Handbook of Automated Reasoning, 2001

76

Fairness

Problem:

If N is inconsistent, then N | ∅ | ∅
∗

⊲ N ′ ∪ {⊥} | | .

Does this imply that every derivation starting from an inconsistent set N eventually
produces ⊥ ?

No: a clause could be kept in PPP without ever being used for an inference.

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is ever deleted), then
it must be computed eventually.

One possible way to guarantee fairness: Implement PPP as a queue (there are other
techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then
every fair derivation will eventually produce ⊥.

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger: Resolution
Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res≻
S
, the

calculus is parameterized by an atom ordering ≻ and a selection function S.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1

.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

77

