
(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by S, or else
nothing is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factoring infer-
ence.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

78

3.14 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating ground instances and proving inconsistency
through the use of unification.

• Parameters: atom ordering ≻ and selection function S. On the non-ground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C; inferences with those reduce counterexamples.

• Local restrictions of inferences via ≻ and S
⇒ fewer proof variants.

• Global restrictions of the search space via elimination of redundancy
⇒ computing with “smaller” clause sets;
⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields)
⇒ further specialization of inference systems required.

3.15 Other Inference Systems

Instantiation-based methods for FOL:

• (Semantic) Tableau;

• Resolution-based instance generation;

• Disconnection calculus.

Further (mainly propositional) proof systems:

• Hilbert calculus;

• Sequent calculus;

• Natural deduction.

79

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in resolution);

However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as DPLL.

There are both saturation-based variants, such as partial instantiation [Hooker et
al.] or resolution-based instance generation (Inst-Gen) [Ganzinger and Korovin], and
tableau-style variants, such as the disconnection calculus [Billon; Letz and Stenz].

Hilbert Calculus

Hilbert calculus:

Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F → (G→ F)
(F → (G→ H))→ ((F → G)→ (F → H))

plus Modus ponens:

F F → G

G

Unsuitable for both humans and machines.

Natural Deduction

Natural deduction (Prawitz):

Models the concept of proofs from assumptions as humans do it (cf. Fitting or Huth/Ryan).

80

Sequent Calculus

Sequent calculus (Gentzen):

Assumptions internalized into the data structure of sequents

F1, . . . , Fm → G1, . . . , Gk

meaning

F1 ∧ · · · ∧ Fm → G1 ∨ · · · ∨Gk

A kind of mixture between natural deduction and semantic tableaux.

Perfect symmetry between the handling of assumptions and their consequences.

Can be used both backwards and forwards.

81

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e. g., resolution
theorem provers.

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ p(x1, . . . , xm)→ p(y1, . . . , ym))

for every f ∈ Ω and p ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω, Π), let Σ1 = (Ω, Π ∪ {∼}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then
we define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA
for every f ∈ Ω, pB = pA for every p ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

The proof of the “if” part consists of two steps.

Assume that the Σ1-algebra B = (UB, (fB : Un → U)f∈Ω, (pB ⊆ Um
B)p∈Π∪{∼}) is a model

of Eq(Σ) ∪ {F̃}. In the first step, we can show that the interpretation ∼B of ∼ in B is a
congruence relation. We will prove this for the symmetry property, the other properties
of congruence relations, that is, reflexivity, transitivity, and congruence with respect to
functions and predicates are shown analogously. Let a, a′ ∈ UB such that a ∼B a′. We
have to show that a′ ∼B a. Since B is a model of Eq(Σ), B(β)(∀x, y (x ∼ y → y ∼ x)) = 1
for every β, hence B(β[x 7→ b1, y 7→ b2])(x ∼ y → y ∼ x) = 1 for every β and every

82

b1, b2 ∈ UB. Set b1 = a and b2 = a′, then 1 = B(β[x 7→ a, y 7→ a′])(x ∼ y → y ∼ x) =
(a ∼B a′ → a′ ∼B a), and since a ∼B a′ holds by assumption, a′ ∼B a must also hold.

In the second step, we will now construct a Σ-algebra A from B and the congruence
relation∼B. Let [a] be the congruence class of an element a ∈ UB with respect to∼B. The
universe UA ofA is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a
function symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate
symbol p ∈ Π, we define ([a1], . . . , [an]) ∈ pA if and only if (a1, . . . , an) ∈ pB. Observe
that this is well-defined: If we take different representatives of the same congruence
class, we get the same result by congruence of ∼B. Now for every Σ-term t and every
B-assignment β, [B(β)(t)] = A(γ)(t), where γ is the A-assignment that maps every
variable x to [β(x)], and analogously for every Σ-formula G, B(β)(G̃) = A(γ)(G). Both
properties can easily shown by structural induction. Consequently, A is a model of F .

2

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.
Expressing semantic consequence syntactically.
Entailment for equations.

• Equational clauses:

Entailment for clauses with equality.

4.2 Abstract Reduction Systems

Abstract reduction system: (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.

83

→0 = { (a, a) | a ∈ A } identity
→i+1 = →i ◦→ i + 1-fold composition
→+ =

⋃
i>0
→i transitive closure

→∗ =
⋃

i≥0
→i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
→−1 = ← = { (b, c) | c→ b } inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ refl. trans. symmetric closure

b ∈ A is reducible, if there is a c such that b→ c.

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b→∗ c and c is in normal form.
Notation: c = b↓ (if the normal form of b is unique).

b and c are joinable, if there is a a such that b→∗ a←∗ c.
Notation: b ↓ c.

A relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b←∗ a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

terminating, if there is no infinite descending chain b0 → b1 → b2 →

normalizing, if every b ∈ A has a normal form.

convergent, if it is confluent and terminating.

Lemma 4.2 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem 4.3 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in
the derivation b↔∗ c. 2

84

