
Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

E ⊢ t ≈ t (Reflexivity)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′
1

. . . E ⊢ tn ≈ t′
n

E ⊢ f(t1, . . . , tn) ≈ f(t′
1
, . . . , t′

n
)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

Lemma 4.11 The following properties are equivalent:

(i) s ↔∗

E
t

(ii) E ⊢ s ≈ t is derivable.

(Proof Scetch Follows)

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the rewrite rule is applied; then s ↔∗

E
t implies E ⊢ s ≈ t by induction on the

number of rewrite steps in s ↔∗

E
t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
2

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T ) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f ∈ Ω.

Lemma 4.12 fT is well-defined: If [ti] = [t′
i
], then [f(t1, . . . , tn)] = [f(t′

1
, . . . , t′

n
)].

Proof. Follows directly from the Congruence rule for ⊢. 2
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Lemma 4.13 T = TΣ(X)/E is an E-algebra. (Proof Follows)

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[ xi 7→ [ti] | 1 ≤ i ≤ n ] with [ti] ∈ UT .

Let σ = [t1/x1, . . . , tn/xn], then sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
2

Lemma 4.14 Let X be a countably infinite set of variables; let s, t ∈ TΣ(X). If
TΣ(X)/E |= ∀~x(s ≈ t), then E ⊢ s ≈ t is derivable. (Proof Follows)

Proof. Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1. Consequently,
T (γ)(s) = T (γ)(t) for all γ = β[ xi 7→ [ti] | 1 ≤ i ≤ n ] with [ti] ∈ UT .

Choose ti = xi, then [s] = T (γ)(s) = T (γ)(t) = [t], so E ⊢ s ≈ t is derivable by
definition of T . 2

Theorem 4.15 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s ↔∗

E
t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.11.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TE(X) is an E-algebra.

(iv)⇒(ii): Lemma 4.14. 2
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Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗

E
is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔∗

E
is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I

E
= { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I

E
y + x, but

x + y 6≈E y + x.

Rewrite Relations

Corollary 4.16 If E is convergent (i. e., terminating and confluent), then s ≈E t if and
only if s ↔∗

E
t if and only if s↓E = t↓E .

Corollary 4.17 If E is finite and convergent, then ≈E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.
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