4.4 Critical Pairs

Showing local confluence (Sketch):
Problem: If $t_{1} \leftarrow_{E} t_{0} \rightarrow_{E} t_{2}$, does there exist a term s such that $t_{1} \rightarrow_{E}^{*} s \leftarrow_{E}^{*} t_{2}$?
If the two rewrite steps happen in different subtrees (disjoint redexes): yes.
If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Question:
Are there rewrite rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ such that some subterm l_{1} / p and l_{2} have a common instance $\left(l_{1} / p\right) \sigma_{1}=l_{2} \sigma_{2}$?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $\left(l_{1} / p\right) \sigma=l_{2} \sigma$.

Further observation:
The mgu of l_{1} / p and l_{2} subsumes all unifiers σ of l_{1} / p and l_{2}.
Let $l_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS R whose variables have been renamed such that $\operatorname{var}\left(l_{1}\right) \cap \operatorname{var}\left(l_{2}\right)=\emptyset$. (Remember that $\operatorname{var}\left(l_{i}\right) \supseteq \operatorname{var}\left(r_{i}\right)$.)

Let $p \in \operatorname{pos}\left(l_{1}\right)$ be a position such that l_{1} / p is not a variable and σ is an mgu of l_{1} / p and l_{2}.

Then $r_{1} \sigma \leftarrow l_{1} \sigma \rightarrow\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of R.
The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Theorem 4.18 ("Critical Pair Theorem") A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof. "only if": obvious, since joinability of a critical pair is a special case of local confluence.
"if": Suppose s rewrites to t_{1} and t_{2} using rewrite rules $l_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{pos}(s)$, where $i=1,2$. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s / p_{i}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either p_{1} and p_{2} are in disjoint subtrees ($p_{1} \| p_{2}$), or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$).

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[l_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$, and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[l_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$. Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $l_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $l_{1} \rightarrow r_{1}$.

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where l_{1} / q_{1} is some variable x.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_{1} and n times in r_{1} (where $m \geq 1$ and $n \geq 0$).

Then $t_{1} \rightarrow{ }_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where q^{\prime} is a position of x in r_{1}.

Conversely, $t_{2} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where q is a position of x in l_{1} different from q_{1}, and by applying $l_{1} \rightarrow r_{1}$ at p_{1} with the substitution θ^{\prime}, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.

Case 2.2: $p_{2}=p_{1} p$, where p is a non-variable position of l_{1}.
Then $s / p_{2}=l_{2} \theta$ and $s / p_{2}=\left(s / p_{1}\right) / p=\left(l_{1} \theta\right) / p=\left(l_{1} / p\right) \theta$, so θ is a unifier of l_{2} and l_{1} / p.

Let σ be the mgu of l_{2} and l_{1} / p, then $\theta=\tau \circ \sigma$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.
By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$ and $t_{2}=s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}}=$ $s\left[\left(l_{1} \sigma \tau\right)\left[r_{2} \sigma \tau\right]_{p}\right]_{p_{1}}=s\left[\left(\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right) \tau\right]_{p_{1}} \rightarrow{ }_{R}^{*} s[v \tau]_{p_{1}}$.
This completes the proof of the Critical Pair Theorem.
Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i.e., $p=\varepsilon$).

Corollary 4.19 A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof. By Newman's Lemma and the Critical Pair Theorem.

Corollary 4.20 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\left\langle u_{1}, u_{2}\right\rangle$.

Reduce every u_{i} to some normal form u_{i}^{\prime}. If $u_{1}^{\prime}=u_{2}^{\prime}$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u_{1}^{\prime} \leftarrow_{R}^{*} u_{1} \leftarrow_{R} s \rightarrow_{R} u_{2} \rightarrow_{R}^{*} u_{2}^{\prime}$.

4.5 Termination

Termination problems:
Given a finite TRS R and a term t, are all R-reductions starting from t terminating?
Given a finite TRS R, are all R-reductions terminating?

Proposition 4.21 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Consequence:
Decidable criteria for termination are not complete.

Reduction Orderings

Goal:
Given a finite TRS R, show termination of R by looking at finitely many rules $l \rightarrow$ $r \in R$, rather than at infinitely many possible replacement steps $s \rightarrow_{R} s^{\prime}$.

A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called compatible with Σ-operations, if $s \sqsupset s^{\prime}$ implies $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \sqsupset f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$ for all $f \in \Omega$ and $s, s^{\prime}, t_{i} \in \mathrm{~T}_{\Sigma}(X)$.

Lemma 4.22 The relation \sqsupset is compatible with Σ-operations, if and only if $s \sqsupset s^{\prime}$ implies $t[s]_{p} \sqsupset t\left[s^{\prime}\right]_{p}$ for all $s, s^{\prime}, t \in \mathrm{~T}_{\Sigma}(X)$ and $p \in \operatorname{pos}(t)$.

Note: compatible with Σ-operations = compatible with contexts.
A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called stable under substitutions, if $s \sqsupset s^{\prime}$ implies $s \sigma \sqsupset s^{\prime} \sigma$ for all $s, s^{\prime} \in \mathrm{T}_{\Sigma}(X)$ and substitutions σ.

A binary relation \sqsupset is called a rewrite relation, if it is compatible with Σ-operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_{R} is a rewrite relation.
A strict partial ordering over $\mathrm{T}_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.
A well-founded rewrite ordering is called reduction ordering.

Theorem 4.23 A TRS R terminates if and only if there exists a reduction ordering \succ such that $l \succ r$ for every rule $l \rightarrow r \in R$.

Proof. "if": $s \rightarrow_{R} s^{\prime}$ if and only if $s=t[l \sigma]_{p}, s^{\prime}=t[r \sigma]_{p}$. If $l \succ r$, then $l \sigma \succ r \sigma$ and therefore $t[l \sigma]_{p} \succ t[r \sigma]_{p}$. This implies $\rightarrow_{R} \subseteq \succ$. Since \succ is a well-founded ordering, \rightarrow_{R} is terminating.
"only if": Define $\succ=\rightarrow_{R}^{+}$. If \rightarrow_{R} is terminating, then \succ is a reduction ordering.

The Interpretation Method

Proving termination by interpretation:
Let \mathcal{A} be a Σ-algebra; let \succ be a well-founded strict partial ordering on its universe.
Define the ordering $\succ_{\mathcal{A}}$ over $\mathrm{T}_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?
Lemma $4.24 \succ_{\mathcal{A}}$ is stable under substitutions.
Proof. Let $s \succ_{\mathcal{A}} s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s \sigma) \succ \mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$ for all assignments $\gamma: X \rightarrow U_{\mathcal{A}}$. Choose $\beta=\gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s \sigma)=\mathcal{A}(\beta)(s) \succ$ $\mathcal{A}(\beta)\left(s^{\prime}\right)=\mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$. Therefore $s \sigma \succ_{\mathcal{A}} s^{\prime} \sigma$.

A function $F: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}$ is called monotone (with respect to \succ), if $a \succ a^{\prime}$ implies $F\left(b_{1}, \ldots, a, \ldots, b_{n}\right) \succ F\left(b_{1}, \ldots, a^{\prime}, \ldots, b_{n}\right)$ for all $a, a^{\prime}, b_{i} \in U_{\mathcal{A}}$.

Lemma 4.25 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is compatible with Σ-operations.

Proof. Let $s \succ s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all $\beta: X \rightarrow U_{\mathcal{A}}$. Let $\beta: X \rightarrow U_{\mathcal{A}}$ be an arbitrary assignment. Then

$$
\begin{aligned}
\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s, \ldots, t_{n}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)(s), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& \succ f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)\left(s^{\prime}\right), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& =\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)\right)
\end{aligned}
$$

Therefore $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \succ_{\mathcal{A}} f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$.
Theorem 4.26 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is a reduction ordering.

Proof. By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_{1} \succ_{\mathcal{A}} s_{2} \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)\left(s_{1}\right) \succ$ $\mathcal{A}(\beta)\left(s_{2}\right) \succ \ldots$ (with β chosen arbitrarily). Thus $\succ_{\mathcal{A}}$ is well-founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set $U_{\mathcal{A}}$ is some subset of the natural numbers.
To every function symbol f with arity n we associate a polynomial $P_{f}\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ with coefficients in \mathbb{N} and indeterminates X_{1}, \ldots, X_{n}. Then we define $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=P_{f}\left(a_{1}, \ldots, a_{n}\right)$ for $a_{i} \in U_{\mathcal{A}}$.

Requirement 1:
If $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, then $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \in U_{\mathcal{A}}$. (Otherwise, \mathcal{A} would not be a Σ algebra.)

Requirement 2:
$f_{\mathcal{A}}$ must be monotone (w.r.t. \succ).
From now on:
$U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\}$.
If $\operatorname{arity}(f)=0$, then P_{f} is a constant ≥ 2.
If arity $(f)=n \geq 1$, then P_{f} is a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$, such that every X_{i} occurs in some monomial with exponent at least 1 and non-zero coefficient.
\Rightarrow Requirements 1 and 2 are satisfied.
The mapping from function symbols to polynomials can be extended to terms: A term t containing the variables x_{1}, \ldots, x_{n} yields a polynomial P_{t} with indeterminates X_{1}, \ldots, X_{n} (where X_{i} corresponds to $\beta\left(x_{i}\right)$).

Example:
$\Omega=\{b, f, g\}$ with $\operatorname{arity}(b)=0, \operatorname{arity}(f)=1, \operatorname{arity}(g)=3$,
$U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\}$,
$P_{b}=3, \quad P_{f}\left(X_{1}\right)=X_{1}^{2}, \quad P_{g}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2} X_{3}$.
Let $t=g(f(b), f(x), y)$, then $P_{t}(X, Y)=9+X^{2} Y$.
If P, Q are polynomials in $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$, we write $P>Q$ if $P\left(a_{1}, \ldots, a_{n}\right)>Q\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Clearly, $l \succ_{\mathcal{A}} r$ iff $P_{l}>P_{r}$.
Question: Can we check $P_{l}>P_{r}$ automatically?

Given a polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with integer coefficients, is $P=0$ for some n-tuple of natural numbers?

Theorem 4.27 Hilbert's 10th Problem is undecidable.

Proposition 4.28 Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_{l}>P_{r}$.

Proof. By reduction of Hilbert's 10th Problem.

One possible solution:
Test whether $P_{l}\left(a_{1}, \ldots, a_{n}\right)>P_{r}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in\{x \in \mathbb{R} \mid x \geq 2\}$.
This is decidable (but very slow). Since $U_{\mathcal{A}} \subseteq\{x \in \mathbb{R} \mid x \geq 2\}$, it implies $P_{l}>P_{r}$.
Another solution (Ben Cherifa and Lescanne):
Consider the difference $P_{l}\left(X_{1}, \ldots, X_{n}\right)-P_{r}\left(X_{1}, \ldots, X_{n}\right)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$:
$P \Rightarrow{ }_{B C L} \top$,
if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.
$P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow_{B C L} P+c^{\prime} X_{1}^{p_{1}} \ldots X_{n}^{p_{n}}$,
if $c, d>0, p_{i} \geq q_{i}$ for all i, and $c^{\prime}=c-d \cdot 2^{\left(q_{1}-p_{1}\right)+\cdots+\left(q_{n}-p_{n}\right)} \geq 0$.
$P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow_{B C L} P-d^{\prime} X_{1}^{q_{1}} \ldots X_{n}^{q_{n}}$,
if $c, d>0, p_{i} \geq q_{i}$ for all i, and $d^{\prime}=d-c \cdot 2^{\left(p_{1}-q_{1}\right)+\cdots+\left(p_{n}-q_{n}\right)}>0$.

Lemma 4.29 If $P \Rightarrow_{B C L} P^{\prime}$, then $P\left(a_{1}, \ldots, a_{n}\right) \geq P^{\prime}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in$ $U_{\mathcal{A}}$.

Proof. Follows from the fact that $a_{i} \in U_{\mathcal{A}}$ implies $a_{i} \geq 2$.

Proposition 4.30 If $P \Rightarrow{ }_{B C L}^{+} \top$, then $P\left(a_{1}, \ldots, a_{n}\right)>0$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if $s / p=t$ for some position $p \neq \varepsilon$ of s.

A rewrite ordering \succ over $\mathrm{T}_{\Sigma}(X)$ is called simplification ordering, if it has the subterm property: $s \triangleright t$ implies $s \succ t$ for all $s, t \in \mathrm{~T}_{\Sigma}(X)$.
Example:
Let $R_{\text {emb }}$ be the rewrite system $R_{\text {emb }}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \mid f \in \Omega, 1 \leq i \leq n=\right.$ $\operatorname{arity}(f)\}$.
Define $\triangleright_{\text {emb }}=\rightarrow_{R_{\text {emb }}}^{+}$and $\unrhd_{\text {emb }}=\rightarrow_{R_{\text {emb }}}^{*}$ ("homeomorphic embedding relation").
∇_{emb} is a simplification ordering.

Lemma 4.31 If \succ is a simplification ordering, then $s \unrhd_{\text {emb }} t$ implies $s \succ t$ and $s \unrhd_{\text {emb }} t$ implies $s \succeq t$.

Proof. Since \succ is transitive and \succeq is transitive and reflexive, it suffices to show that $s \rightarrow_{R_{\text {emb }}} t$ implies $s \succ t$. By definition, $s \rightarrow_{R_{\text {emb }}} t$ if and only if $s=s[l \sigma]$ and $t=s[r \sigma]$ for some rule $l \rightarrow r \in R_{\text {emb }}$. Obviously, $l \triangleright r$ for all rules in R_{emb}, hence $l \succ r$. Since \succ is a rewrite relation, $s=s[l \sigma] \succ s[r \sigma]=t$.

Goal:
Show that every simplification ordering is well-founded (and therefore a reduction ordering).

Note: This works only for finite signatures!
To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.

Theorem 4.32 ("Kruskal's Theorem") Let Σ be a finite signature, let X be a finite set of variables. Then for every infinite sequence $t_{1}, t_{2}, t_{3}, \ldots$ there are indices $j>i$ such that $t_{j} \unrhd_{\text {emb }} t_{i}$. $\unrhd_{\text {emb }}$ is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113-115.

Theorem 4.33 (Dershowitz) If Σ is a finite signature, then every simplification ordering \succ on $\mathrm{T}_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof. Suppose that $t_{1} \succ t_{2} \succ t_{3} \succ \ldots$ is an infinite descending chain.
First assume that there is an $x \in \operatorname{var}\left(t_{i+1}\right) \backslash \operatorname{var}\left(t_{i}\right)$. Let $\sigma=\left[t_{i} / x\right]$, then $t_{i+1} \sigma \unrhd x \sigma=t_{i}$ and therefore $t_{i}=t_{i} \sigma \succ t_{i+1} \sigma \succeq t_{i}$, contradicting reflexivity.

Consequently, $\operatorname{var}\left(t_{i}\right) \supseteq \operatorname{var}\left(t_{i+1}\right)$ and $t_{i} \in \mathrm{~T}_{\Sigma}(V)$ for all i, where V is the finite set $\operatorname{var}\left(t_{1}\right)$. By Kruskal's Theorem, there are $i<j$ with $t_{i} \unlhd_{\text {emb }} t_{j}$. Hence $t_{i} \preceq t_{j}$, contradicting $t_{i} \succ t_{j}$.

There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:
Let $R=\{f(f(x)) \rightarrow f(g(f(x)))\}$.
R terminates and \rightarrow_{R}^{+}is therefore a reduction ordering.
Assume that \rightarrow_{R} were contained in a simplification ordering \succ. Then $f(f(x)) \rightarrow_{R}$ $f(g(f(x)))$ implies $f(f(x)) \succ f(g(f(x)))$, and $f(g(f(x))) \unrhd_{\text {emb }} f(f(x))$ implies $f(g(f(x))) \succeq$ $f(f(x))$, hence $f(f(x)) \succ f(f(x))$.

Recursive Path Orderings

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω.

The lexicographic path ordering $\succ_{\text {lpo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text {lpo }} t$ iff
(1) $t \in \operatorname{var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \succeq_{\text {lpo }} t$ for some i, or
(b) $f \succ g$ and $s \succ_{\text {lpo }} t_{j}$ for all j, or
(c) $f=g, s \succ_{\text {lpo }} t_{j}$ for all j, and $\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\text {lpo }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{n}\right)$.

Lemma $4.34 s \succ_{\text {lpo }} t$ implies $\operatorname{var}(s) \supseteq \operatorname{var}(t)$.

Proof. By induction on $|s|+|t|$ and case analysis.

