4.6 Knuth-Bendix Completion

Completion:
Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.
(If R is finite: decision procedure for E.)
How to ensure termination?
Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_{R} \subseteq \succ$ (i. e., $l \succ r$ for every $l \rightarrow r \in R)$.

How to ensure confluence?
Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R : $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$

At the beginning, $E=E_{0}$ is the input set and $R=R_{0}$ is empty. At the end, E should be empty; then R is the result.
For each step $E, R \vdash E^{\prime}, R^{\prime}$, the equational theories of $E \cup R$ and $E^{\prime} \cup R^{\prime}$ agree: $\approx_{E \cup R}=$ $\approx_{E^{\prime} \cup R^{\prime}}$.

Notations:

The formula $s \dot{\sim} t$ denotes either $s \approx t$ or $t \approx s$.
$\mathrm{CP}(R)$ denotes the set of all critical pairs between rules in R.

Orient:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E, \quad R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

Note: There are equations $s \approx t$ that cannot be oriented, i. e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented - but we don't need them anyway:
Delete:
$\frac{E \cup\{s \approx s\}, \quad R}{E, \quad R}$

Critical pairs between rules in R are turned into additional equations:
Deduce:

$$
\frac{E, R}{E \cup\{s \approx t\}, \quad R} \quad \text { if }\langle s, t\rangle \in \mathrm{CP}(R)
$$

Note: If $\langle s, t\rangle \in \mathrm{CP}(R)$ then $s \leftarrow_{R} u \rightarrow_{R} t$ and hence $R \models s \approx t$.
The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E \cup\{u \approx t\}, \quad R} \quad \text { if } s \rightarrow_{R} u
$$

Simplification of the right-hand side of a rule is unproblematic.
R-Simplify-Rule:

$$
\frac{E,}{\frac{E,}{E,} \quad R \cup\{s \rightarrow t\}} \quad \quad \text { if } t \rightarrow_{R} u .
$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an equation:

L-Simplify-Rule:
$\begin{array}{ll}\frac{E, R \cup\{s \rightarrow t\}}{E \cup\{u \approx t\}, R} & \text { if } s \rightarrow_{R} u \text { using a rule } l \rightarrow r \in R \\ \text { such that } s \sqsupset l \text { (see next slide). }\end{array}$

For technical reasons, the lhs of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset l$, where the encompassment quasi-ordering \sqsupset is defined by

$$
s \sqsupset l \text { if } s / p=l \sigma \text { for some } p \text { and } \sigma
$$

and $\sqsupset=\beth \backslash \underset{\sim}{~ i s ~ t h e ~ s t r i c t ~ p a r t ~ o f ~} \sqsupset$.

Lemma $4.38 \sqsupset$ is a well-founded strict partial ordering.

Lemma 4.39 If $E, R \vdash E^{\prime}, R^{\prime}$, then $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.

Lemma 4.40 If $E, R \vdash E^{\prime}, R^{\prime}$ and $\rightarrow_{R} \subseteq \succ$, then $\rightarrow_{R^{\prime}} \subseteq \succ$.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:
(1) We reach a state where no more inference rules are applicable and E is not empty. \Rightarrow Failure (try again with another ordering?)
(2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.
A (finite or infinite sequence) $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ with $R_{0}=\emptyset$ is called a run of the completion procedure with input E_{0} and \succ.

For a run, $E_{\infty}=\bigcup_{i \geq 0} E_{i}$ and $R_{\infty}=\bigcup_{i \geq 0} R_{i}$.
The sets of persistent equations or rules of the run are $E_{*}=\bigcup_{i \geq 0} \bigcap_{j \geq i} E_{j}$ and $R_{*}=$ $\bigcup_{i \geq 0} \bigcap_{j \geq i} R_{j}$.
Note: If the run is finite and ends with E_{n}, R_{n}, then $E_{*}=E_{n}$ and $R_{*}=R_{n}$.

A run is called fair, if $C P\left(R_{*}\right) \subseteq E_{\infty}$ (i. e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:
Show: If a run is fair and E_{*} is empty, then R_{*} is convergent and equivalent to E_{0}.
In particular: If a run is fair and E_{*} is empty, then $\approx_{E_{0}}=\approx_{E_{\infty} \cup R_{\infty}}=\leftrightarrow_{E_{\infty} \cup R_{\infty}}^{*}=\downarrow_{R_{*}}$.

General assumptions from now on:
$E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ is a fair run.
R_{0} and E_{*} are empty.

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence $\left(s_{0}, \ldots, s_{n}\right)$ such that $s=s_{0}, t=s_{n}$, and for all $i \in\{1, \ldots, n\}$:
(1) $s_{i-1} \leftrightarrow_{E_{\infty}} s_{i}$, or
(2) $s_{i-1} \rightarrow_{R_{\infty}} s_{i}$, or
(3) $s_{i-1} \leftarrow_{R_{\infty}} s_{i}$.

The pairs $\left(s_{i-1}, s_{i}\right)$ are called proof steps.
A proof is called a rewrite proof in R_{*}, if there is a $k \in\{0, \ldots, n\}$ such that $s_{i-1} \rightarrow_{R_{*}} s_{i}$ for $1 \leq i \leq k$ and $s_{i-1} \leftarrow_{R_{*}} s_{i}$ for $k+1 \leq i \leq n$

Idea (Bachmair, Dershowitz, Hsiang):
Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_{*} there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_{*}.
We associate a cost $c\left(s_{i-1}, s_{i}\right)$ with every proof step as follows:
(1) If $s_{i-1} \leftrightarrow_{E_{\infty}} s_{i}$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}, s_{i}\right\},-,-\right)$, where the first component is a multiset of terms and - denotes an arbitrary (irrelevant) term.
(2) If $s_{i-1} \rightarrow_{R_{\infty}} s_{i}$ using $l \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}\right\}, l, s_{i}\right)$.
(3) If $s_{i-1} \leftarrow_{R_{\infty}} s_{i}$ using $l \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i}\right\}, l, s_{i-1}\right)$.

Proof steps are compared using the lexicographic combination of the multiset extension of the reduction ordering \succ, the encompassment ordering \sqsupset, and the reduction ordering \succ.

The cost $c(P)$ of a proof P is the multiset of the costs of its proof steps.
The proof ordering \succ_{C} compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma $4.41 \succ_{C}$ is a well-founded ordering.

Lemma 4.42 Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_{*}, then there exists an equivalent proof P^{\prime} in $E_{\infty} \cup R_{\infty}$ such that $P \succ_{C} P^{\prime}$.

Proof. If P is not a rewrite proof in R_{*}, then it contains
(a) a proof step that is in E_{∞}, or
(b) a proof step that is in $R_{\infty} \backslash R_{*}$, or
(c) a subproof $s_{i-1} \leftarrow_{R_{*}} s_{i} \rightarrow_{R_{*}} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Case (a): A proof step using an equation $s \dot{\sim} t$ is in E_{∞}. This equation must be deleted during the run.
If $s \dot{\sim} t$ is deleted using Orient:

$$
\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots
$$

If $s \dot{\sim} t$ is deleted using Delete:
$\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i-1} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \ldots$
If $s \dot{\sim} t$ is deleted using Simplify-Eq:
$\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i} \ldots \quad \Longrightarrow \ldots s_{i-1} \rightarrow_{R_{\infty}} s^{\prime} \leftrightarrow_{E_{\infty}} s_{i} \ldots$
Case (b): A proof step using a rule $s \rightarrow t$ is in $R_{\infty} \backslash R_{*}$. This rule must be deleted during the run.
If $s \rightarrow t$ is deleted using R-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s^{\prime} \leftarrow_{R_{\infty}} s_{i} \ldots
$$

If $s \rightarrow t$ is deleted using L-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s^{\prime} \leftrightarrow_{E_{\infty}} s_{i} \ldots
$$

Case (c): A subproof has the form $s_{i-1} \leftarrow_{R_{*}} s_{i} \rightarrow_{R_{*}} s_{i+1}$.
If there is no overlap or a non-critical overlap:

$$
\ldots s_{i-1} \leftarrow R_{*} s_{i} \rightarrow_{R_{*}} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow_{R_{*}}^{*} s^{\prime} \leftarrow_{R_{*}}^{*} s_{i+1} \ldots
$$

If there is a critical pair that has been added using Deduce:

$$
\ldots s_{i-1} \leftarrow_{R_{*}} s_{i} \rightarrow_{R_{*}} s_{i+1} \ldots \Longrightarrow \quad \ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i+1} \ldots
$$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.

Theorem 4.43 Let $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ be a fair run and let R_{0} and E_{*} be empty. Then
(1) every proof in $E_{\infty} \cup R_{\infty}$ is equivalent to a rewrite proof in R_{*},
(2) R_{*} is equivalent to E_{0}, and
(3) R_{*} is convergent.

Proof. (1) By well-founded induction on \succ_{C} using the previous lemma.
(2) Clearly $\approx_{E_{\infty} \cup R_{\infty}}=\approx_{E_{0}}$. Since $R_{*} \subseteq R_{\infty}$, we get $\approx_{R_{*}} \subseteq \approx_{E_{\infty} \cup R_{\infty}}$. On the other hand, by (1), $\approx_{E_{\infty} \cup R_{\infty}} \subseteq \approx_{R_{*}}$.
(3) Since $\rightarrow_{R_{*}} \subseteq \succ, R_{*}$ is terminating. By (1), R_{*} is confluent.

Knuth-Bendix Completion: Outlook

Classical completion:
Tries to transform a set E of equations into an equivalent convergent term rewrite system.

Fails, if an equation can neither be oriented nor deleted.
Unfailing completion:
Use an ordering \succ that is total on ground terms.
If an equation cannot be oriented, use it in both directions for rewriting (except if that would yield a larger term). In other words, consider the relation $\leftrightarrow_{E} \cap \npreceq$.

Special case of superposition (see next chapter).

