
• . . .

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗)}
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{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

g b
c
∗

1 2

∗ d b
c
∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b), f(∗, ∗)}
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{5} {4}
{1, 3}

{2, 5}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

∗ g b
c
∗

1 2

∗ d b
c
∗

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c)}

{1}

f
g

d

∗

c
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Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b),
f(∗, ∗)}
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{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

Backtracking required for retrieval.

Literature
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R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

6 Many-Sorted First-Order Logic

→Many-Sorted First-order logic

• generalization of first-order logic

• idea is to prohibit ill-defined statements, e.g., cons(3, nil) + 2

• identical proof theory

• sorts denote subsets of the domain
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• variables come with a sort

• functions are declared over the sorts

Many-Sorted Signature

A signature

ΣΥ = (Ω, Π, Υ, υ)

fixes an alphabet of non-logical symbols, where

• Ω, Π are the sets of function, predicate symbols

• Υ is a set of sort symbols

• υ is a function assigning sorts to function, predicate and variable symbols

Terms, Atoms,Formulae

Well-sorted Terms of sort S ∈ Υ over ΣΥ (resp., TS

ΣΥ
(X)-terms) are formed according

to these syntactic rules:

s, t, u, v ::= x , x ∈ X, υ(x) = S (variable)
| f(t1, ..., tn) , f ∈ Ω, arity(f) = n, υ(f) = T1 . . . TnS,

ti ∈ TTi

ΣΥ
(X) (functional term)

By TS

ΣΥ
we denote the set of ΣΥ-ground terms of sort S, TΣΥ

(X) =
⋃

S∈Υ TS

ΣΥ
(X).

If P ∈ Π, ti ∈ TTi

ΣΥ
(X), υ(P ) = T1 . . . Tn then P (t1, ..., tn) is an atom. For any t, s ∈

TS

ΣΥ
(X), s ≈ t is an atom.

Formulae are build as for standard (unsorted) first-order logic.

For substitions we additionally require that if xσ = t then t ∈ T
υ(x)
ΣΥ

(X) and call it well-

sorted. Note that application of the standard unification algorithms to any two terms
of the same sort yields a well-sorted unifier (if there exists a unifier at all).
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