Many-Sorted Structures

A Σ_{Υ} -algebra is a quadruple

$$\mathcal{A} = (U_{\mathcal{A}}, (f_{\mathcal{A}} : (T_1)_{\mathcal{A}} \times \ldots \times (T_n)_{\mathcal{A}} \to S_{\mathcal{A}})_{f \in \Omega}, (p_{\mathcal{A}} \subseteq (S_1)_{\mathcal{A}} \times \ldots \times (S_m)_{\mathcal{A}})_{p \in \Pi}, (T_{\mathcal{A}} \subseteq U_{\mathcal{A}})_{T \in \Upsilon})$$

where $\operatorname{arity}(f) = n$, $\operatorname{arity}(p) = m$, $\upsilon(f) = T_1 \dots T_n S$, $\upsilon(p) = S_1 \dots S_m$, $T_{\mathcal{A}} \neq \emptyset$, $U_{\mathcal{A}} \neq \emptyset$ is a set, called the *universe* of \mathcal{A} .

The rest of the semantics is identical to the unsorted case, except that valuations respect the sort information.

7 SUP(LA)

Superposition Modulo Linear Arithmetic

- Consider the base specification $SP = (\Sigma_{LA}, \mathcal{A}_{LA})$, where $\Sigma_{LA} = (\mathbb{Q} \cup \{+, -, *\}, \{\geq , \leq, >, <\})$ see Section 2.
- The hierarchic extension of SP is $SP' = (\Sigma', N')$, where $\Sigma_{LA} \subseteq \Sigma'$ and N' is a set of Σ' clauses.
- We consider a many-sorted setting, consisting of a base sort, containing all terms of Σ_{LA} plus potentially extension terms from $\Sigma' \setminus \Sigma_{LA}$, and a general sort containing all other terms.
- A term (a clause) consisting only of Σ_{LA} symbols and base sort variables, is called a base term (base clause).
- For the following results, we need that \mathcal{A}_{LA} is term-generated, i.e., for any $a \in U_{LA}$ (= \mathbb{Q}) there is a ground term $t \in T_{\Sigma_{LA}}$ with $\mathcal{A}_{LA}(t) = a$. This is obvious, because $\mathbb{Q} \subseteq \Sigma_{LA}$.
- Furthermore, we need that $SP = (\Sigma_{LA}, \mathcal{A}_{LA})$ is compact.
- A model of \mathcal{A}' of SP', i.e., $\mathcal{A}' \models N'$, is called hierarchic if $\mathcal{A}' \mid_{\Sigma_{LA}} = \mathcal{A}_{LA}$.
- A substitution is called *simple* if it maps variables of the base sort to base terms.

Hierarchic Clauses

A clause $C = \Lambda \parallel C'$ is called *hierarchic* if Λ only contains base terms and base literals (Σ_{LA}) and all base terms in C' are variables. The semantics of C is $\bigwedge \Lambda \to C'$.

Any clause can be equivalently transformed into a hierarchic clause: whenever a subterm t whose top symbol is a base theory symbol occurs immediately below a non-base operator symbol, it is replaced by a new base sort variable x ("abstracted out") and the equation $x \approx t$ is added to Λ . Analogously, if a subterm t whose top symbol is not a base theory symbol occurs immediately below a base operator symbol, it is replaced by a general variable y and the disequation $y \not\approx t$ is added to C'. This transformation is repeated until the clause is hierarchic.

Superposition Modulo LA

Pos. Superposition:
$$\frac{\Lambda_1 \parallel D' \vee t \approx t' \quad \Lambda_2 \parallel C' \vee s[u] \approx s'}{(\Lambda_1, \Lambda_2 \parallel D' \vee C' \vee s[t'] \approx s')\sigma}$$

where $\sigma = \text{mgu}(t, u)$ and simple and u is not a variable.

Neg. Superposition:
$$\frac{\Lambda_1 \parallel D' \vee t \approx t' \qquad \Lambda_2 \parallel C' \vee s[u] \not\approx s'}{(\Lambda_1, \Lambda_2 \parallel D' \vee C' \vee s[t'] \not\approx s')\sigma}$$

where $\sigma = \text{mgu}(t, u)$ and simple and

u is not a variable.

Equality Resolution:
$$\frac{\Lambda \parallel C' \lor s \not\approx s'}{(\Lambda \parallel C') \sigma}$$

where $\sigma = \text{mgu}(s, s')$ and simple.

Equality Factoring:
$$\frac{\Lambda \parallel C' \vee s' \approx t' \vee s \approx t}{(\Lambda \parallel C' \vee t \not\approx t' \vee s \approx t')\sigma}$$

where $\sigma = \text{mgu}(s, s')$ and simple.

Constraint Refutation:
$$\Lambda_1 \parallel \Box \dots \Lambda_n \parallel \Box$$

where $\neg(\bigwedge \Lambda_1) \land \ldots \land \neg(\bigwedge \Lambda_n)$ is inconsistent in \mathcal{A}_{LA} .

Redundancy

A clause $C \in N$ is called *redundant* if for all simple ground instances C' of C there are simple ground instances C'_1, \ldots, C'_n from N such that $C'_1, \ldots, C'_n \models C'$ and $C'_i \prec C'$ for all i.

A hierarchic clause $\Lambda \parallel C$ is called a tautology if C is a tautology or the existential closure of $\bigwedge \Lambda$ is unsatisfiable in \mathcal{A}_{LA} .

A hierarchic clause $\Lambda_1 \parallel C_1$ subsumes a hierarchic clause $\Lambda_2 \parallel C_2$, if there is a simple matcher σ such that $C_1 \sigma \subset C_2$ and the universal closure of $\bigwedge \Lambda_2 \to \bigwedge \Lambda_1 \sigma$ holds in \mathcal{A}_{LA} .

Sufficient Completeness

A set N of clauses is called *sufficiently complete with respect to simple instances*, if for every model \mathcal{A}' of the set of simple ground instances from N and every ground non-base term t of the base sort there exists a ground base term t such that $t' \approx t$ is true in \mathcal{A}' .

Completeness of SUP(LA)

The hierarchic superposition calculus modulo LA is refutationally complete for all sets of clauses that are sufficiently complete with respect to simple instances.

The End