
Automated Reasoning∗

Christoph Weidenbach

Summer Term 2010

Topics of the Course I

Propositional logic

language: syntax, semantics – orderings
calculi: DPLL-procedure
implementation: 2-watched literal, clause learning

Linear arithmetic

language: syntax, semantics
calculi: Fourier-Motzkin

Propositional logic modulo a theory T

syntax, semantics
calculi: DPLL(T)-procedure, . . .
implementation: coupling

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.

1



Topics of the Course II

First-order predicate logic with equality

syntax, semantics, model theory, . . .
calculi: superposition (SUP)
implementation: sharing, indexing

First-order predicate logic with equality modulo a theory T

syntax, semantics, model theory, . . .
calculi: SUP(T)
implementation: coupling

1 Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e. g., model checking)

1.1 Syntax

• propositional variables

• logical symbols
⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S, to denote propositional variables.

2



Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| P , P ∈ Π (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔ (binding precedences)

– ∨ and ∧ are associative

– → is right-associative,
i. e., F → G → H means F → (G → H).

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

3



Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is defined inductively
over the structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P ) = A(P )

A∗(¬F ) = B¬(A∗(F ))

A∗(FρG) = Bρ(A
∗(F ),A∗(G))

where Bρ is the Boolean function associated with ρ defined by the usual truth table.

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation for a logical symbol and
for its meaning (but remember that formally these are different things.)

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G, if for all Π-valuations
A, whenever A |= F then A |= G.

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have
A |= F ⇔ A |= G.

Proposition 1.1 F |= G if and only if |= (F → G).(Proof follows)

4



Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F ) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = 1. Otherwise A(F ) = 0, then A(F → G) = B→(0,A(G)) = 1 independently of
A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = B→(A(F ),A(G)) = B→(1, 0) = 0,
so (F → G) does not hold in A. 2

Proposition 1.2 F |=| G if and only if |= (F ↔ G).

Proof. Follows from Prop. 1.1. 2

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 1.3 F is valid if and only if ¬F is unsatisfiable.(Proof follows)

Proof. (⇒) If F is valid, then A(F ) = 1 for every valuation A. Hence A(¬F ) =
B¬(A(F )) = B¬(1) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. 2

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 1.4 N |= F if and only if N ∪ {¬F} is unsatisfiable.

5



Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F )
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not.
⇒ truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

Substitution Theorem

Proposition 1.5 Let F and G be equivalent formulas, let H be a formula in which F

occurs as a subformula.

Then H is equivalent to H ′ where H ′ is obtained from H by replacing the occurrence of
the subformula F by G. (Notation: H = H [F ], H ′ = H [G]. Proof follows)

Proof. The proof proceeds by induction over the formula structure of H .

Each of the formulas ⊥, ⊤, and P for P ∈ Π contains only one subformula, namely
itself. Hence, if H = H [F ] equals ⊥, ⊤, or P , then H = F , H ′ = G, and H and H ′ are
equivalent by assumption.

If H = H1 ∧ H2, then either F equals H (this case is treated as above), or F is a
subformula of H1 or H2. Without loss of generality, assume that F is a subformula of
H1, so H = H1[F ] ∧ H2. By the induction hypothesis, H1[F ] and H1[G] are equiva-
lent. Hence, for every valuation A, A(H ′) = A(H1[G] ∧ H2) = A(H1[G]) ∧ A(H2) =
A(H1[F ]) ∧A(H2) = A(H1[F ] ∧ H2) = A(H).

The other boolean connectives are handled analogously. 2

Some Important Equivalences

Proposition 1.6 The following equivalences are valid for all formulas F, G, H :

6



(F ∧ F ) ↔ F

(F ∨ F ) ↔ F (Idempotency)
(F ∧ G) ↔ (G ∧ F )
(F ∨ G) ↔ (G ∨ F ) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)
(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)
(¬¬F ) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)
¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology
(F ∨ G) ↔ ⊤, if G is a tautology
(F ∧ G) ↔ ⊥, if G is unsatisfiable
(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

(F ↔ G) ↔ ((F → G) ∧ (G → F )) (Equivalence)
(F → G) ↔ (¬F ∨ G) (Implication)

7


