Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p = Qx G and F/q = Qx H.

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

 $\exists x H \Rightarrow_{SK} H[f(y_1, \dots, y_n)/x]$ if $F/p = \exists x H$ and p has minimal length, $\{y_1, \dots, y_n\}$ are the free variables in $\exists x H$, f is a new function symbol, $\operatorname{arity}(f) = n$

3.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = T_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n), f \in \Omega, \operatorname{arity}(f) = n$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P \in \Pi$, $\operatorname{arity}(P) = m$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1,\ldots,s_n) \in P_\mathcal{A} \quad :\Leftrightarrow \quad P(s_1,\ldots,s_n) \in I$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Example: $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \{</2, \le/2\})$ \mathbb{N} as Herbrand interpretation over Σ_{Pres} : $I = \{ 0 \le 0, 0 \le s(0), 0 \le s(s(0)), \dots, 0 + 0 \le 0, 0 + 0 \le s(0), \dots, \dots, (s(0) + 0) + s(0) \le s(0) + (s(0) + s(0)) \dots, (s(0) + 0 < s(0) + 0 + 0 + s(0) + (s(0) + 1) + (s(0) + 1)$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 3.13 (Herbrand) Let N be a set of Σ -clauses.

 $N \text{ satisfiable } \Leftrightarrow N \text{ has a Herbrand model (over } \Sigma)$ $\Leftrightarrow G_{\Sigma}(N) \text{ has a Herbrand model (over } \Sigma)$

where $G_{\Sigma}(N) = \{C\sigma \text{ ground clause} \mid C \in N, \sigma : X \to T_{\Sigma}\}$ is the set of ground instances of N.

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a G_{Σ}

For Σ_{Pres} one obtains for

 $C = (x < y) \lor (y \le s(x))$

the following ground instances:

 $\begin{array}{l} (0 < 0) \lor (0 \le s(0)) \\ (s(0) < 0) \lor (0 \le s(s(0))) \\ \dots \\ (s(0) + s(0) < s(0) + 0) \lor (s(0) + 0 \le s(s(0) + s(0))) \\ \dots \end{array}$

3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

$$(F_1,\ldots,F_n,F_{n+1}), n \ge 0,$$

called inferences or inference rules, and written

$$\underbrace{F_1 \dots F_n}_{F_{n+1}}$$

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference

$$\frac{F_{i_1} \ \dots \ F_{i_{n_i}}}{F_i}$$

in Γ , such that $0 \leq i_j < i$, for $1 \leq j \leq n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 Γ is called *sound* : \Leftrightarrow

$$\frac{F_1 \ \dots \ F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \dots, F_n \models F$$

 Γ is called *complete* : \Leftrightarrow

 $N \models F \Rightarrow N \vdash_{\Gamma} F$

 Γ is called refutationally complete : \Leftrightarrow

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

Proposition 3.14

- (i) Let Γ be sound. Then $N \vdash_{\Gamma} F \Rightarrow N \models F$
- (ii) $N \vdash_{\Gamma} F \Rightarrow$ there exist $F_1, \ldots, F_n \in N$ s.t. $F_1, \ldots, F_n \vdash_{\Gamma} F$ (resembles compactness).

Proofs as Trees

3.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule: $\frac{D \lor A \quad \neg A \lor C}{D \lor C}$ Terminology: $D \lor C$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by ground clauses and ground atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.	$\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$	(given)
2.	$P(f(c)) \lor Q(b)$	(given)
3.	$\neg P(g(b,c)) \lor \neg Q(b)$	(given)
4.	P(g(b,c))	(given)
5.	$\neg P(f(c)) \lor Q(b) \lor Q(b)$	(Res. 2. into 1.)
6.	$\neg P(f(c)) \lor Q(b)$	(Fact. $5.$)
7.	$Q(b) \lor Q(b)$	(Res. 2. into 6.)
8.	Q(b)	(Fact. $7.$)
9.	$\neg P(g(b,c))$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

	$D \lor A \lor \ldots \lor A \qquad \neg A \lor C$	
	$D \lor C$	
1.	$\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$	(given)
2.	$P(f(c)) \lor Q(b)$	(given)
3.	$\neg P(g(b,c)) \lor \neg Q(b)$	(given)
4.	P(g(b,c))	(given)
5.	$\neg P(f(c)) \lor Q(b) \lor Q(b)$	(Res. 2. into 1.)
6.	$Q(b) \lor Q(b) \lor Q(b)$	(Res. 2. into 5.)
7.	$\neg P(g(b,c))$	(Res. 6. into 3.)
8.	\perp	(Res. 4. into 7.)

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let $I \in \Sigma$ -Alg. To be shown:

- (i) for resolution: $I \models D \lor A$, $I \models C \lor \neg A \Rightarrow I \models D \lor C$
- (ii) for factorization: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$

(i): Assume premises are valid in I. Two cases need to be considered: If $I \models A$, then $I \models C$, hence $I \models D \lor C$. Otherwise, $I \models \neg A$, then $I \models D$, and again $I \models D \lor C$. (ii): even simpler.

Note: In propositional logic (ground clauses) we have:

- 1. $I \models L_1 \lor \ldots \lor L_n \iff$ there exists $i: I \models L_i$.
- 2. $I \models A$ or $I \models \neg A$.

This does not hold for formulas with variables!

3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived ⊥).
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on ground atoms that is *total* and *well-founded*. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
- 2. Extend \succ to an ordering \succ_L on ground literals:

 $\begin{array}{ll} [\neg] A & \succ_L & [\neg] B & , \mbox{if} \ A \succ B \\ \neg A & \succ_L & A \end{array}$

3. Extend \succ_L to an ordering \succ_C on ground clauses: $\succ_C = (\succ_L)_{\text{mul}}$, the multi-set extension of \succ_L . Notation: \succ also for \succ_L and \succ_C .

Example

Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$. Then:

$$\begin{array}{ccc} & A_0 \lor A_1 \\ \prec & A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_4 \lor A_3 \\ \prec & \neg A_1 \lor \neg A_4 \lor A_3 \\ \prec & \neg A_5 \lor A_5 \end{array}$$