Variable Renaming

Rename all variables in F such that there are no two different positions p, q with $F / p=$ $Q x G$ and $F / q=Q x H$.

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

$$
\begin{aligned}
\exists x H \quad & \Rightarrow_{S K} \quad H\left[f\left(y_{1}, \ldots, y_{n}\right) / x\right] \\
& \text { if } F / p=\exists x H \text { and } p \text { has minimal length, } \\
& \left\{y_{1}, \ldots, y_{n}\right\} \text { are the free variables in } \exists x H, \\
& f \text { is a new function symbol, arity }(f)=n
\end{aligned}
$$

3.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that

- $U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f \in \Omega, \operatorname{arity}(f)=n$

$$
f_{\mathcal{A}}(\triangle, \ldots, \triangle)=
$$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P \in \Pi$, arity $(P)=m$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq \mathrm{T}_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$
\left(s_{1}, \ldots, s_{n}\right) \in P_{\mathcal{A}} \quad: \Leftrightarrow \quad P\left(s_{1}, \ldots, s_{n}\right) \in I
$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.
Example: $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\},\{</ 2, \leq / 2\})$
\mathbb{N} as Herbrand interpretation over $\Sigma_{\text {Pres }}$:

$$
\begin{aligned}
I=\{ & 0 \leq 0,0 \leq s(0), 0 \leq s(s(0)), \ldots, \\
& 0+0 \leq 0,0+0 \leq s(0), \ldots, \\
& \cdots,(s(0)+0)+s(0) \leq s(0)+(s(0)+s(0)) \\
& \cdots \\
& s(0)+0<s(0)+0+0+s(0) \\
& \cdots\}
\end{aligned}
$$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 3.13 (Herbrand) Let N be a set of Σ-clauses.

$$
\begin{aligned}
N \text { satisfiable } & \Leftrightarrow N \text { has a Herbrand model (over } \Sigma \text {) } \\
& \left.\Leftrightarrow G_{\Sigma}(N) \text { has a Herbrand model (over } \Sigma\right)
\end{aligned}
$$

where $G_{\Sigma}(N)=\left\{C \sigma\right.$ ground clause $\left.\mid C \in N, \sigma: X \rightarrow \mathrm{~T}_{\Sigma}\right\}$ is the set of ground instances of N.
[The proof will be given below in the context of the completeness proof for resolution.]

Example of a G_{Σ}

For $\Sigma_{\text {Pres }}$ one obtains for

$$
C=(x<y) \vee(y \leq s(x))
$$

the following ground instances:

$$
\begin{aligned}
& (0<0) \vee(0 \leq s(0)) \\
& (s(0)<0) \vee(0 \leq s(s(0))) \\
& \ldots \\
& (s(0)+s(0)<s(0)+0) \vee(s(0)+0 \leq s(s(0)+s(0)))
\end{aligned}
$$

3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), n \geq 0
$$

called inferences or inference rules, and written

conclusion
Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k: F_{i} \in N$, or else there exists an inference

$$
\frac{F_{i_{1}} \ldots F_{i_{n_{i}}}}{F_{i}}
$$

in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in $\Gamma: N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \quad \Rightarrow \quad F_{1}, \ldots, F_{n} \models F
$$

Γ is called complete $: \Leftrightarrow$

$$
N \models F \Rightarrow N \vdash_{\Gamma} F
$$

Γ is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \quad \Rightarrow \quad N \vdash_{\Gamma} \perp
$$

Proposition 3.14

(i) Let Γ be sound. Then $N \vdash_{\Gamma} F \Rightarrow N \models F$
(ii) $N \vdash_{\Gamma} F \Rightarrow$ there exist $F_{1}, \ldots, F_{n} \in N$ s.t. $F_{1}, \ldots, F_{n} \vdash_{\Gamma} F$ (resembles compactness).

Proofs as Trees

3.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.
In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:

$$
\frac{D \vee A \quad \neg A \vee C}{D \vee C}
$$

Terminology: $D \vee C$: resolvent; A : resolved atom
(Positive) factorisation inference rule:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by ground clauses and ground atoms we obtain an inference rule.

As " V " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1. $\neg P(f(c)) \vee \neg P(f(c)) \vee Q(b)$
2. $P(f(c)) \vee Q(b)$
3. $\neg P(g(b, c)) \vee \neg Q(b)$
4. $P(g(b, c))$
5. $\neg P(f(c)) \vee Q(b) \vee Q(b)$
6. $\neg P(f(c)) \vee Q(b)$
7. $Q(b) \vee Q(b)$
8. $Q(b)$
9. $\neg P(g(b, c))$
10. \perp
(given)
(given) (given) (given) (Res. 2. into 1.)
(Fact. 5.)
(Res. 2. into 6.)
(Fact. 7.)
(Res. 8. into 3.)
(Res. 4. into 9.)

Resolution with Implicit Factorization RIF

$$
\frac{D \vee A \vee \ldots \vee A \quad \neg A \vee C}{D \vee C}
$$

1. $\neg P(f(c)) \vee \neg P(f(c)) \vee Q(b) \quad$ (given)
2. $P(f(c)) \vee Q(b) \quad$ (given)
3. $\neg P(g(b, c)) \vee \neg Q(b) \quad$ (given)
4. $P(g(b, c))$ (given)
5. $\neg P(f(c)) \vee Q(b) \vee Q(b) \quad$ (Res. 2. into 1.)
6. $Q(b) \vee Q(b) \vee Q(b) \quad$ (Res. 2. into 5.)
7. $\neg P(g(b, c)) \quad$ (Res. 6. into 3.)
8. \perp

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let $I \in \Sigma$-Alg. To be shown:
(i) for resolution: $I \models D \vee A, I \models C \vee \neg A \Rightarrow I \models D \vee C$
(ii) for factorization: $I \models C \vee A \vee A \Rightarrow I \models C \vee A$
(i): Assume premises are valid in I. Two cases need to be considered:

If $I \models A$, then $I \models C$, hence $I \models D \vee C$.
Otherwise, $I \models \neg A$, then $I \models D$, and again $I \models D \vee C$.
(ii): even simpler.

Note: In propositional logic (ground clauses) we have:

1. $I \models L_{1} \vee \ldots \vee L_{n} \Leftrightarrow$ there exists $i: I \models L_{i}$.
2. $I \models A$ or $I \models \neg A$.

This does not hold for formulas with variables!

3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash_{\text {Res }} \perp$, or equivalently: If $N \nvdash$ Res \perp, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived $\perp)$.
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.

Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is total and wellfounded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
2. Extend \succ to an ordering \succ_{L} on ground literals:

$$
\begin{array}{ccc}
{[\neg] A} & \succ_{L} & {[\neg] B} \\
\neg A & \succ_{L} & A
\end{array}
$$

3. Extend \succ_{L} to an ordering \succ_{C} on ground clauses:
$\succ_{C}=\left(\succ_{L}\right)_{\text {mul }}$, the multi-set extension of \succ_{L}.
Notation: \succ also for \succ_{L} and \succ_{C}.

Example

Suppose $A_{5} \succ A_{4} \succ A_{3} \succ A_{2} \succ A_{1} \succ A_{0}$. Then:

$$
\begin{array}{cc}
& A_{0} \vee A_{1} \\
\prec & A_{1} \vee A_{2} \\
\prec & \neg A_{1} \vee A_{2} \\
\prec & \neg A_{1} \vee A_{4} \vee A_{3} \\
\prec & \neg A_{1} \vee \neg A_{4} \vee A_{3} \\
\prec & \neg A_{5} \vee A_{5}
\end{array}
$$

