
3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥, or equivalently: If N 6⊢Res ⊥, then N

has a model.

• Idea: Suppose that we have computed sufficiently many inferences (and not derived
⊥).

• Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N .

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e. g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

[¬]A ≻L [¬]B , if A ≻ B

¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A0 ∨ A1

≺ A1 ∨ A2

≺ ¬A1 ∨ A2

≺ ¬A1 ∨ A4 ∨ A3

≺ ¬A1 ∨ ¬A4 ∨ A3

≺ ¬A5 ∨ A5
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Properties of the Clause Ordering

Proposition 3.16

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = max(C), B = max(D), where max(C) denotes
the maximal atom in C.

(i) If A ≻ B then C ≻ D.

(ii) If A = B, A occurs negatively in C but only positively in D, then C ≻ D.

Stratified Structure of Clause Sets

Let A ≻ B. Clause sets are then stratified in this form:

{

{
...

...
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D where max(D) = B

all C where max(C) = A

Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0
Res∗(N) =

⋃

n≥0 Resn(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N .

Proposition 3.17

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)
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Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.
Wanted: Herbrand interpretation I such that

• “many” clauses from N are valid in I;

• I |= N , if N is saturated and ⊥ 6∈ N .

Construction according to ≻, starting with the minimal clause.

Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C, one already has a partial interpretation IC (initially IC = ∅)
available.

• If C is true in the partial interpretation IC , nothing is done. (∆C = ∅).

• If C is false, one would like to change IC such that C becomes true.

• Changes should, however, be monotone. One never deletes anything from IC and
the truth value of clauses smaller than C should be maintained the way it was in
IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if A occurs positively
in C (adding A will make C become true) and if this occurrence in C is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses).

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C over the given
signature inductively over ≻:

IC :=
⋃

C≻D
∆D

∆C :=







{A}, if C ∈ N , C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate interpretation for N (w. r. t. ≻) is given as I≻
N

:=
⋃

C
∆C . (We also simply

write IN or I for I≻
N

if ≻ is either irrelevant or known from the context.)
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Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC

2 A0 ∨ A1 ∅ {A1} A1 maximal
3 A1 ∨ A2 {A1} ∅ true in IC

4 ¬A1 ∨ A2 {A1} {A2} A2 maximal
5 ¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4} A4 maximal
6 ¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ A3 not maximal;

min. counter-ex.
7 ¬A1 ∨ A5 {A1, A2, A4} {A5}

I = {A1, A2, A4, A5} is not a model of the clause set
⇒ there exists a counterexample.

Structure of N,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
...

...
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D with max(D) = B

all C with max(C) = A

Some Properties of the Construction

Proposition 3.18

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪ ∆C |= C.

(iii) Let D′ ≻ D � C. Then

ID ∪ ∆D |= C ⇒ ID′ ∪ ∆D′ |= C and IN |= C.
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If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪ ∆D 6|= C ⇒ ID′ ∪ ∆D′ 6|= C and IN 6|= C.

(iv) Let D′ ≻ D ≻ C. Then

ID |= C ⇒ ID′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C.

(v) D = C ∨ A produces A ⇒ IN 6|= C.

Resolution Reduces Counterexamples

¬A1 ∨ A4 ∨ A3 ∨ A0 ¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}
¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2} ∅ A3 occurs twice

minimal counter-ex.
¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4}

¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ counterexample
¬A1 ∨ A5 {A1, A2, A4} {A5}

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

¬A1 ∨ ¬A1 ∨ A3 ∨ A0

Construction of I for the extended clause set:
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clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}
¬A1 ∨ ¬A1 ∨ A3 ∨ A0 {A1, A2} {A3}

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2, A3} ∅ true in IC

¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2, A3} ∅
¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A3} ∅ true in IC

¬A3 ∨ A5 {A1, A2, A3} {A5}

The resulting I = {A1, A2, A3, A5} is a model of the clause set.

Model Existence Theorem

Theorem 3.19 (Bachmair & Ganzinger 1990) Let ≻ be a clause ordering, let N

be saturated w. r. t. Res, and suppose that ⊥ 6∈ N . Then I≻
N
|= N .

Corollary 3.20 Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .

Proof of Theorem 3.19. Suppose ⊥ 6∈ N , but I≻
N

6|= N . Let C ∈ N minimal (in ≻)
such that I≻

N
6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there exists a

maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′
, we infer that D′ ∨ C ′ ∈ N ,

and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C.

Case 2: C = C ′ ∨ A ∨ A. Then C′∨A∨A

C′∨A
yields a smaller counterexample C ′ ∨ A ∈ N . ⇒

contradicts minimality of C. 2

Compactness of Propositional Logic

Theorem 3.21 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M ⊆ N is unsatisfiable.

Proof. “⇐”: trivial.

“⇒”: Let N be unsatisfiable.
⇒ Res∗(N) unsatisfiable
⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution
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