3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

e We have to show: N E 1L = N Fge L, or equivalently: If N t/g.s L, then N
has a model.

e Idea: Suppose that we have computed sufficiently many inferences (and not derived
1).

e Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

e The limit interpretation can be shown to be a model of N.

Clause Orderings

1. We assume that > is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e.g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend > to an ordering > on ground literals:

[-]A >, [1]B ,ifA>B
-A L A

3. Extend > to an ordering > on ground clauses:
¢ = (> )mul, the multi-set extension of >.

Notation: = also for = and =c.

Example

Suppose As = Ay = Ag = Ay = Ay = Ag. Then:

AO V A1

A1 V A2

_|A1 \% A2
ﬁAl V A4 V Ag
—A VALV A

A5 V As

AL A A A
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Properties of the Clause Ordering

Proposition 3.16

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = max(C'), B = max(D), where max(C) denotes
the maximal atom in C.

(i) If A > B then C' = D.
(ii) If A= B, A occurs negatively in C' but only positively in D, then C' > D.

Stratified Structure of Clause Sets

Let A = B. Clause sets are then stratified in this form:

B VB all D where max(D) = B
...VBVB

" SBV...

L..VA
A __._..vA\/A
—AV...

all C' where max(C) = A

Closure of Clause Sets under Res

Res(N) ={C | C is concl. of a rule in Res w/ premises in N}
Res’(N) =N
Res"™(N) = Res(Res™(N)) U Res"(N), for n >0

Res*(N) = 5o Res"(N)
N is called saturated (w.r.t. resolution), if Res(/N) C N.

Proposition 3.17
(i) Res*(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

NEL & L€ Res*(N)
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Construction of Interpretations

Given: set N of ground clauses, atom ordering .
Wanted: Herbrand interpretation I such that

e “many” clauses from N are valid in [;

e [ =N, if N is saturated and L ¢ N.

Construction according to >, starting with the minimal clause.

Main ldeas of the Construction

e Clauses are considered in the order given by <.

e When considering C', one already has a partial interpretation I (initially Ic = ()
available.

e If C is true in the partial interpretation I, nothing is done. (Ag = 0).
o If C is false, one would like to change I~ such that C' becomes true.
e Changes should, however, be monotone. One never deletes anything from I and

the truth value of clauses smaller than C' should be maintained the way it was in
Ic.

e Hence, one chooses A¢x = {A} if, and only if, C is false in I¢, if A occurs positively
in C' (adding A will make C' become true) and if this occurrence in C' is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses).

Construction of Candidate Interpretations

Let N, > be given. We define sets I and Ag for all ground clauses C' over the given
signature inductively over >:

Ie = UC’>DAD
A {A}, itCeN,C=C'"VA A=C"IcEC
c =

0, otherwise

We say that C' produces A, if Ao = {A}.

The candidate interpretation for N (w.r.t. >) is given as Iy := (J, Ac. (We also simply
write Iy or I for Iy if > is either irrelevant or known from the context.)
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Example

Let A5 = Ay = Az = Ay = Ay = Ap (max. literals in red)

‘ ‘ clauses C ‘ 1o ‘ Ao ‘ Remarks

1 - Ay 0 0 | true in I¢

2 AoV A 0 {A;} | A; maximal

3 AV Ay {A} (0 | truein I¢

4 —-A; VA {A;} {A3} | A3 maximal

5 _‘Al V A4 vV Ag vV A() {Al, AQ} {A4} A4 maximal

6 —A; VALV A | {Ag, Ag, Ay} 0 Az not maximal;
min. counter-ex.

7 —ALV Ay | {A, Ag, Ast | {As}

I ={A, Ay, Ay, A5} is not a model of the clause set
= there exists a counterexample.

Structure of N, >

Let A > B; producing a new atom does not affect smaller clauses.

pﬁibly productive

4
...VB
all D with max(D) = B
B ...VB\VB (D)
-BV...

V
oeVA all C with max(C) = A
A VAV A

Some Properties of the Construction

Proposition 3.18
(i) C =—-AVC" = noD > C produces A.
(ii) C productive = Ic U A¢ = C.

(iii) Let D' = D = C. Then

IDUAD):C:>ID/UAD/)ZCaHdIN}:C.
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If, in addition, C' € N or max(D) > max(C):
]DUADl?&CéID/UAD/ %CandINbéC'
(iv) Let D' = D > C. Then

ID):C:>]D/ ):C&HdIN):C

If, in addition, C' € N or max(D) > max(C):

ID%C:>ID/ %C’andINbéC

(v) D =CV A produces A = Iy [~ C.

Resolution Reduces Counterexamples

A VANV A3V Ay A VALV A
ALV oA VA3V A3V Ay

Construction of I for the extended clause set:

clauses C ‘ 1o ‘ Ao ‘ Remarks
- Ay 0 0
AO V Al @ {Al}
ALV A, {A} 0

—-A; V A,y {A} {Ay}
—AV=A VA3V AV Ay {Ay, Ao} 0 As occurs twice
minimal counter-ex.
_|A1 vV A4 V Ag V AO {Al, AQ} {A4}
—AL VALV As | {Ar Ag, Ayt 0
—A; VA5 | {Ar, Ag, Ay} | {A5)

counterexample

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

—A VA VA3V A3V A
—A VA VA3V A

Construction of I for the extended clause set:
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clauses C ‘ 1o ‘ Ac ‘ Remarks

-4 0 0
Ay V A, 0 (A}
ALV A, (A} 0

AV A | A A

_\A1 vV _|A1 V Ag V AO {Al, AQ} {Ag}
—A1 VAL VA3V A3V Ag | {Ar, Ay, As) 0
—A; VALV A3V Ay | {Ag, As, As} 0

_\A1 V _|A4 vV Ag {Al, AQ, Ag} @ true in ]C

A5V As | {AL Ag, A3} | {A45)

The resulting I = {A;, Ay, A3, A5} is a model of the clause set.

true in ¢

Model Existence Theorem

Theorem 3.19 (Bachmair & Ganzinger 1990) Let > be a clause ordering, let N
be saturated w.r.t. Res, and suppose that L ¢ N. Then I}, = N.

Corollary 3.20 Let N be saturated w.r.t. Res. Then N =1 < 1 € N.

Proof of Theorem 3.19. Suppose L. ¢ N, but I £ N. Let C € N minimal (in >)
such that Iy F& C. Since C' is false in Iy, C' is not productive. As C' # L there exists a
maximal atom A in C'

Case 1: C'=-AV (' (i.e., the maximal atom occurs negatively)
éIN):AandINb&C’

= some D = D'V A € N produces A. As W, we infer that D'V C’ € N,
and C' > D'V " and Iy £ D' Vv '

= contradicts minimality of C.

Case 2: C =C"V AV A. Then C,CV,# yields a smaller counterexample C'V A € N. =

contradicts minimality of C. O

Compactness of Propositional Logic

Theorem 3.21 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M C N is unsatisfiable.

Proof. “<”: trivial.

“=": Let N be unsatisfiable.
= Res*(N) unsatisfiable
= 1 € Res*(N) by refutational completeness of resolution
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