### 3.11 General Resolution

Propositional resolution:
refutationally complete,
in its most naive version: not guaranteed to terminate for satisfiable sets of clauses, (improved versions do terminate, however)
in its naive form clearly inferior to the DPLL procedure (in its "full" form competitive).
And: in contrast to the DPLL procedure, resolution can be easily extended to nonground clauses.

## General Resolution through Instantiation

Idea: instantiate clauses appropriately:


Problems:
More than one instance of a clause can participate in a proof.
Even worse: There are infinitely many possible instances.
Observation:
Instantiation must produce complementary literals (so that inferences become possible).

Idea:
Do not instantiate more than necessary to get complementary literals.
Idea: do not instantiate more than necessary:


## Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground) instances of finitely many general clauses (with variables) effective and efficient.
Idea (Robinson 1965):

- Resolution for general clauses:
- Equality of ground atoms is generalized to unifiability of general atoms;
- Only compute most general (minimal) unifiers.

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore 1960) is that unification enumerates only those instances of clauses that participate in an inference. Moreover, clauses are not right away instantiated into ground clauses. Rather they are instantiated only as far as required for an inference. Inferences with non-ground clauses in general represent infinite sets of ground inferences which are computed simultaneously in a single step.

## Resolution for General Clauses

General binary resolution Res:

$$
\begin{aligned}
\frac{D \vee B \quad C \vee \neg A}{(D \vee C) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad \text { [resolution] } \\
\frac{C \vee A \vee B}{(C \vee A) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B)
\end{aligned} \quad \text { [factorization] } \quad \text { [ }
$$

General resolution RIF with implicit factorization:

$$
\begin{equation*}
\frac{D \vee B_{1} \vee \ldots \vee B_{n} \quad C \vee \neg A}{(D \vee C) \sigma} \text { if } \sigma=\operatorname{mgu}\left(A, B_{1}, \ldots, B_{n}\right) \tag{RIF}
\end{equation*}
$$

For inferences with more than one premise, we assume that the variables in the premises are (bijectively) renamed such that they become different to any variable in the other premises. We do not formalize this. Which names one uses for variables is otherwise irrelevant.

## Unification

Let $E=\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}\left(s_{i}, t_{i}\right.$ terms or atoms) a multi-set of equality problems. A substitution $\sigma$ is called a unifier of $E$ if $s_{i} \sigma=t_{i} \sigma$ for all $1 \leq i \leq n$.

If a unifier of $E$ exists, then $E$ is called unifiable.
A substitution $\sigma$ is called more general than a substitution $\tau$, denoted by $\sigma \leq \tau$, if there exists a substitution $\rho$ such that $\rho \circ \sigma=\tau$, where $(\rho \circ \sigma)(x):=(x \sigma) \rho$ is the composition of $\sigma$ and $\rho$ as mappings. (Note that $\rho \circ \sigma$ has a finite domain as required for a substitution.)

If a unifier of $E$ is more general than any other unifier of $E$, then we speak of a most general unifier of $E$, denoted by $\operatorname{mgu}(E)$.

## Proposition 3.22

(i) $\leq$ is a quasi-ordering on substitutions, and $\circ$ is associative.
(ii) If $\sigma \leq \tau$ and $\tau \leq \sigma$ (we write $\sigma \sim \tau$ in this case), then $x \sigma$ and $x \tau$ are equal up to (bijective) variable renaming, for any $x$ in $X$.

A substitution $\sigma$ is called idempotent, if $\sigma \circ \sigma=\sigma$.

Proposition 3.23 $\sigma$ is idempotent iff $\operatorname{dom}(\sigma) \cap \operatorname{codom}(\sigma)=\emptyset$.

## Rule Based Naive Standard Unification

$$
\begin{aligned}
t \doteq t, E & \Rightarrow_{S U} \quad E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow_{S U} \quad s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E & \Rightarrow_{S U} \quad \perp \\
x \doteq t, E & \Rightarrow_{S U} \quad x \doteq t, E[t / x] \\
& \text { if } x \in \operatorname{var}(E), x \notin \operatorname{var}(t) \\
x \doteq t, E & \Rightarrow_{S U} \perp \\
& \text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E & \Rightarrow_{S U} \quad x \doteq t, E \\
& \text { if } t \notin X
\end{aligned}
$$

## SU: Main Properties

If $E=x_{1} \doteq u_{1}, \ldots, x_{k} \doteq u_{k}$, with $x_{i}$ pairwise distinct, $x_{i} \notin \operatorname{var}\left(u_{j}\right)$, then $E$ is called an (equational problem in) solved form representing the solution $\sigma_{E}=\left[u_{1} / x_{1}, \ldots, u_{k} / x_{k}\right]$.

Proposition 3.24 If $E$ is a solved form then $\sigma_{E}$ is an mgu of $E$.

## Theorem 3.25

1. If $E \Rightarrow_{S U} E^{\prime}$ then $\sigma$ is a unifier of $E$ iff $\sigma$ is a unifier of $E^{\prime}$
2. If $E \Rightarrow{ }_{S U}^{*} \perp$ then $E$ is not unifiable.
3. If $E \Rightarrow{ }_{S U}^{*} E^{\prime}$ with $E^{\prime}$ in solved form, then $\sigma_{E^{\prime}}$ is an mgu of $E$.

Proof. (1) We have to show this for each of the rules. Let's treat the case for the 4th rule here. Suppose $\sigma$ is a unifier of $x \doteq t$, that is, $x \sigma=t \sigma$. Thus, $\sigma \circ[t / x]=\sigma[x \mapsto t \sigma]=$ $\sigma[x \mapsto x \sigma]=\sigma$. Therefore, for any equation $u \doteq v$ in $E: u \sigma=v \sigma$, iff $u[t / x] \sigma=v[t / x] \sigma$. (2) and (3) follow by induction from (1) using Proposition 3.24.

## Main Unification Theorem

Theorem 3.26 $E$ is unifiable if and only if there is a most general unifier $\sigma$ of $E$, such that $\sigma$ is idempotent and $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq \operatorname{var}(E)$.

Problem: exponential growth of terms possible

Proof of Theorem 3.26. $\quad \Rightarrow_{S U}$ is Noetherian. A suitable lexicographic ordering on the multisets $E$ (with $\perp$ minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables $x$ in equations $x \doteq t$ with $x \notin \operatorname{var}(t))$, which also occur outside their definition elsewhere in $E$;
2. the multi-set ordering induced by (i) the size (number of symbols) in an equation; (ii) if sizes are equal consider $x \doteq t$ smaller than $t \doteq x$, if $t \notin X$.

- A system $E$ that is irreducible w.r.t. $\Rightarrow_{S U}$ is either $\perp$ or a solved form.
- Therefore, reducing any $E$ by SU will end (no matter what reduction strategy we apply) in an irreducible $E^{\prime}$ having the same unifiers as $E$, and we can read off the mgu (or non-unifiability) of $E$ from $E^{\prime}$ (Theorem 3.25, Proposition 3.24).
- $\sigma$ is idempotent because of the substitution in rule 4. $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq$ $\operatorname{var}(E)$, as no new variables are generated.

