4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\forall x (x \sim x) \forall x, y (x \sim y \rightarrow y \sim x) \forall x, y, z (x \sim y \land y \sim z \rightarrow x \sim z) \forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \dots \land x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \dots \land x_m \sim y_m \land p(x_1, \dots, x_m) \rightarrow p(y_1, \dots, y_m))$$

for every $f \in \Omega$ and $p \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim . Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Proof. Let $\Sigma = (\Omega, \Pi)$, let $\Sigma_1 = (\Omega, \Pi \cup \{\sim\})$.

For the "only if" part assume that F is satisfiable and let \mathcal{A} be a Σ -model of F. Then we define a Σ_1 -algebra \mathcal{B} in such a way that \mathcal{B} and \mathcal{A} have the same universe, $f_{\mathcal{B}} = f_{\mathcal{A}}$ for every $f \in \Omega$, $p_{\mathcal{B}} = p_{\mathcal{A}}$ for every $p \in \Pi$, and $\sim_{\mathcal{B}}$ is the identity relation on the universe. It is easy to check that \mathcal{B} is a model of both \tilde{F} and of $Eq(\Sigma)$.

The proof of the "if" part consists of two steps.

Assume that the Σ_1 -algebra $\mathcal{B} = (U_{\mathcal{B}}, (f_{\mathcal{B}} : U^n \to U)_{f \in \Omega}, (p_{\mathcal{B}} \subseteq U_{\mathcal{B}}^m)_{p \in \Pi \cup \{\sim\}})$ is a model of $Eq(\Sigma) \cup \{\tilde{F}\}$. In the first step, we can show that the interpretation $\sim_{\mathcal{B}}$ of \sim in \mathcal{B} is a congruence relation. We will prove this for the symmetry property, the other properties of congruence relations, that is, reflexivity, transitivity, and congruence with respect to functions and predicates are shown analogously. Let $a, a' \in U_{\mathcal{B}}$ such that $a \sim_{\mathcal{B}} a'$. We have to show that $a' \sim_{\mathcal{B}} a$. Since \mathcal{B} is a model of $Eq(\Sigma), \mathcal{B}(\beta)(\forall x, y (x \sim y \to y \sim x)) = 1$ for every β , hence $\mathcal{B}(\beta[x \mapsto b_1, y \mapsto b_2])(x \sim y \to y \sim x) = 1$ for every β and every $b_1, b_2 \in U_{\mathcal{B}}$. Set $b_1 = a$ and $b_2 = a'$, then $1 = \mathcal{B}(\beta[x \mapsto a, y \mapsto a'])(x \sim y \rightarrow y \sim x) = (a \sim_{\mathcal{B}} a' \rightarrow a' \sim_{\mathcal{B}} a)$, and since $a \sim_{\mathcal{B}} a'$ holds by assumption, $a' \sim_{\mathcal{B}} a$ must also hold.

In the second step, we will now construct a Σ -algebra \mathcal{A} from \mathcal{B} and the congruence relation $\sim_{\mathcal{B}}$. Let [a] be the congruence class of an element $a \in U_{\mathcal{B}}$ with respect to $\sim_{\mathcal{B}}$. The universe $U_{\mathcal{A}}$ of \mathcal{A} is the set $\{ [a] \mid a \in U_{\mathcal{B}} \}$ of congruence classes of the universe of \mathcal{B} . For a function symbol $f \in \Omega$, we define $f_{\mathcal{A}}([a_1], \ldots, [a_n]) = [f_{\mathcal{B}}(a_1, \ldots, a_n)]$, and for a predicate symbol $p \in \Pi$, we define $([a_1], \ldots, [a_n]) \in p_{\mathcal{A}}$ if and only if $(a_1, \ldots, a_n) \in p_{\mathcal{B}}$. Observe that this is well-defined: If we take different representatives of the same congruence class, we get the same result by congruence of $\sim_{\mathcal{B}}$. Now for every Σ -term t and every \mathcal{B} -assignment β , $[\mathcal{B}(\beta)(t)] = \mathcal{A}(\gamma)(t)$, where γ is the \mathcal{A} -assignment that maps every variable x to $[\beta(x)]$, and analogously for every Σ -formula G, $\mathcal{B}(\beta)(\tilde{G}) = \mathcal{A}(\gamma)(G)$. Both properties can easily shown by structural induction. Consequently, \mathcal{A} is a model of F.

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Roadmap

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):

Term rewrite systems. Expressing semantic consequence syntactically. Entailment for equations.

• Equational clauses:

Entailment for clauses with equality.

4.2 Abstract Reduction Systems

Abstract reduction system: (A, \rightarrow) , where

A is a set,

 $\rightarrow \subseteq A \times A$ is a binary relation on A.

\rightarrow^0	$= \{ (a, a) \mid a \in A \}$	identity
\rightarrow^{i+1}	$= \rightarrow^i \circ \rightarrow$	i + 1-fold composition
\rightarrow^+	$= \bigcup_{i>0} \rightarrow^i$	transitive closure
\rightarrow^*	$= \bigcup_{i>0}^{i} \to^{i} = \to^{+} \cup \to^{0}$	reflexive transitive closure
$\rightarrow^{=}$	$= \rightarrow \cup \rightarrow^0$	reflexive closure
\rightarrow^{-1}	$= \leftarrow = \{ (b, c) \mid c \to b \}$	inverse
\leftrightarrow	$= \rightarrow \cup \leftarrow$	symmetric closure
\leftrightarrow^+	$= (\leftrightarrow)^+$	transitive symmetric closure
\leftrightarrow^*	$= (\leftrightarrow)^*$	refl. trans. symmetric closure

 $b \in A$ is reducible, if there is a c such that $b \to c$.

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if $b \to^* c$ and c is in normal form. Notation: $c = b \downarrow$ (if the normal form of b is unique).

b and c are *joinable*, if there is a a such that $b \to^* a \leftarrow^* c$. Notation: $b \downarrow c$.

A relation \rightarrow is called

Church-Rosser, if $b \leftrightarrow^* c$ implies $b \downarrow c$.

confluent, if $b \leftarrow^* a \rightarrow^* c$ implies $b \downarrow c$.

locally confluent, if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$.

terminating, if there is no infinite descending chain $b_0 \rightarrow b_1 \rightarrow b_2 \rightarrow \dots$

normalizing, if every $b \in A$ has a normal form.

convergent, if it is confluent and terminating.

Lemma 4.2 If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem 4.3 The following properties are equivalent:

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

Proof. (i) \Rightarrow (ii): trivial.

(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $b \leftrightarrow^* c$.

Lemma 4.4 If \rightarrow is confluent, then every element has at most one normal form.

Proof. Suppose that some element $a \in A$ has normal forms b and c, then $b \leftarrow^* a \rightarrow^* c$. If \rightarrow is confluent, then $b \rightarrow^* d \leftarrow^* c$ for some $d \in A$. Since b and c are normal forms, both derivations must be empty, hence $b \rightarrow^0 d \leftarrow^0 c$, so b, c, and d must be identical.

Corollary 4.5 If \rightarrow is normalizing and confluent, then every element *b* has a unique normal form.

Proposition 4.6 If \rightarrow is normalizing and confluent, then $b \leftrightarrow^* c$ if and only if $b \downarrow = c \downarrow$.

Proof. Either using Thm. 4.3 or directly by induction on the length of the derivation of $b \leftrightarrow^* c$.

Well-Founded Orderings

Lemma 4.7 If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Proof. Transitivity of \rightarrow^+ is obvious; irreflexivity and well-foundedness follow from termination of \rightarrow .

Lemma 4.8 If > is a well-founded partial ordering and $\rightarrow \subseteq >$, then \rightarrow is terminating.

Proving Confluence

Theorem 4.9 ("Newman's Lemma") If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof. Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering. Define $P(a) \Leftrightarrow (\forall b, c : b \leftarrow^* a \rightarrow^* c \Rightarrow b \downarrow c)$.

We prove P(a) for all $a \in A$ by well-founded induction over \rightarrow^+ :

Case 1: $b \leftarrow^0 a \rightarrow^* c$: trivial.

Case 2: $b \leftarrow^* a \rightarrow^0 c$: trivial.

Case 3: $b \leftarrow^* b' \leftarrow a \rightarrow c' \rightarrow^* c$: use local confluence, then use the induction hypothesis.