4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e. g., resolution
theorem provers.

Equality is theoretically difficult: First-order functional programming is Turing-complete.
But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

4.1 Handling Equality Naively

Proposition 4.1 Let F' be a closed first-order formula with equality. Let ~ ¢ II be a
new predicate symbol. The set Eq(¥) contains the formulas

Vo (x ~ x)
Vo,y (v ~y—y~x)
Ve,y,z(x ~yANy~z— 1~ 2)
VEG(xr ~ i A AN~y — [, m0) ~ f(Y1s - 0n))
VZ, g (e~ A Ay ~ Y AD(T1, o ) — (Y1 - Ym))

for every f € Q and p € II. Let F be the formula that one obtains from F if every
occurrence of = is replaced by ~. Then F' is satisfiable if and only if Eq(X) U {F} is
satisfiable.

Proof. Let ¥ = (Q,1I), let £, = (Q,ITU {~}).

For the “only if” part assume that F' is satisfiable and let A be a ¥-model of F. Then
we define a Yj-algebra B in such a way that B and A have the same universe, fz = f4

for every f € Q, pg = py4 for every p € 11, and ~p is the identity relation on the universe.
It is easy to check that B is a model of both F' and of Eq(X).

The proof of the “if” part consists of two steps.

Assume that the ¥-algebra B = (Ug, (fs: U™ — U)eq, (P8 € UR')peniui~}) is a model
of Eq(X) U {F}. In the first step, we can show that the interpretation ~g of ~ in B is a
congruence relation. We will prove this for the symmetry property, the other properties
of congruence relations, that is, reflexivity, transitivity, and congruence with respect to
functions and predicates are shown analogously. Let a,a’ € Ug such that a ~5 a’. We
have to show that @’ ~g a. Since B is a model of Fq(X), B(6)(Vx,y(x ~y =y ~=z)) =1
for every 3, hence B(S[z — by,y — bo])(z ~y — y ~ x) = 1 for every  and every
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bi,by € Ug. Set by = a and by = d/, then 1 = B(f[x — a,y — d])(x ~y =y ~x) =
(a ~g a' — a' ~ga), and since a ~g a’ holds by assumption, a’ ~5 a must also hold.

In the second step, we will now construct a Y-algebra A from B and the congruence
relation ~g. Let [a] be the congruence class of an element a € Up with respect to ~z. The
universe Uy of A is the set { [a] | a € Ug } of congruence classes of the universe of B. For a
function symbol f € Q, we define f4([a1],...,[as]) = [fs(ai,...,a,)], and for a predicate
symbol p € II, we define ([a4],...,[an]) € pa if and only if (ay,...,a,) € ps. Observe
that this is well-defined: If we take different representatives of the same congruence
class, we get the same result by congruence of ~z. Now for every Y-term ¢ and every
B-assignment 3, [B(5)(t)] = A(v)(t), where 7 is the A-assignment that maps every
variable z to [3(x)], and analogously for every Y-formula G, B(5)(G) = A(7)(G). Both
properties can easily shown by structural induction. Consequently, A is a model of F.

O

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Roadmap

How to proceed:

e Arbitrary binary relations.
e Equations (unit clauses with equality):

Term rewrite systems.
Expressing semantic consequence syntactically.
Entailment for equations.

e Equational clauses:

Entailment for clauses with equality.

4.2 Abstract Reduction Systems

Abstract reduction system: (A, —), where
A is a set,

— C A x A is a binary relation on A.
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0 _ {(a,a) |a€ A} identity

-l = Lo 1 + 1-fold composition

-t = U " transitive closure

—* = Ujso—" = =T U reflexive transitive closure
—= = 5Uu=>0 reflexive closure

—1 =« ={(bc)|c—b} inverse

- = U« symmetric closure

ot = ()t transitive symmetric closure
o = (o) refl. trans. symmetric closure

b € A is reducible, if there is a ¢ such that b — c.
b is in normal form (irreducible), if it is not reducible.

¢ is a normal form of b, if b —* ¢ and ¢ is in normal form.
Notation: ¢ = b] (if the normal form of b is unique).

b and c are joinable, if there is a a such that b —* a «* c.
Notation: b | c.

A relation — is called
Church-Rosser, if b «<* ¢ implies b | c.
confluent, if b «* a —* ¢ implies b | c.

locally confluent, if b+ a — ¢ implies b | c.

terminating, if there is no infinite descending chain by — by — by — .. ..

normalizing, if every b € A has a normal form.

convergent, if it is confluent and terminating.
Lemma 4.2 If — is terminating, then it is normalizing.
Note: The reverse implication does not hold.

Theorem 4.3 The following properties are equivalent:
(i) — has the Church-Rosser property.

(ii)) — is confluent.
Proof. (i)=-(ii): trivial.

(ii)=-(i): by induction on the number of peaks in
the derivation b <™ c.
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Lemma 4.4 If — is confluent, then every element has at most one normal form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b «—* a —* c.
If — is confluent, then b —* d «<* ¢ for some d € A. Since b and ¢ are normal forms,
both derivations must be empty, hence b —° d < ¢, so b, ¢, and d must be identical.

O

Corollary 4.5 If — is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.6 If — is normalizing and confluent, then b «<* ¢ if and only if b] = c|.

Proof. Either using Thm. 4.3 or directly by induction on the length of the derivation
of b <% c. a

Well-Founded Orderings

Lemma 4.7 If — is a terminating binary relation over A, then —% is a well-founded
partial ordering.

Proof. Transitivity of —* is obvious; irreflexivity and well-foundedness follow from
termination of —. O

Lemma 4.8 If > is a well-founded partial ordering and — C >, then — is terminating.

Proving Confluence

Theorem 4.9 (“Newman’s Lemma”) If a terminating relation — is locally conflu-
ent, then it is confluent.

Proof. Let — be a terminating and locally confluent relation. Then —* is a well-
founded ordering. Define P(a) < (Vb,c:b«*a—"c=1b]c).

We prove P(a) for all a € A by well-founded induction over —7:
Case 1: b« a —* ¢ trivial.

Case 2: b «—* a —9 ¢: trivial.

Case 3: b «* b «— a — ¢ —* ¢: use local confluence, then use the induction hypothesis.
O

85



