Proving Termination: Monotone Mappings

Let $\left(A,>_{A}\right)$ and $\left(B,>_{B}\right)$ be partial orderings. A mapping $\varphi: A \rightarrow B$ is called monotone, if $a>_{A} a^{\prime}$ implies $\varphi(a)>_{B} \varphi\left(a^{\prime}\right)$ for all $a, a^{\prime} \in A$.

Lemma 4.10 If $\varphi: A \rightarrow B$ is a monotone mapping from $\left(A,>_{A}\right)$ to $\left(B,>_{B}\right)$ and $\left(B,>_{B}\right)$ is well-founded, then $\left(A,>_{A}\right)$ is well-founded.

4.3 Rewrite Systems

Let E be a set of equations.
The rewrite relation $\rightarrow_{E} \subseteq \mathrm{~T}_{\Sigma}(X) \times \mathrm{T}_{\Sigma}(X)$ is defined by

$$
\begin{aligned}
s \rightarrow_{E} t \quad \text { iff } & \text { there exist }(l \approx r) \in E, p \in \operatorname{pos}(s), \\
& \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X), \\
& \text { such that } s / p=l \sigma \text { and } t=s[r \sigma]_{p} .
\end{aligned}
$$

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression). Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $\operatorname{var}(l) \supseteq \operatorname{var}(r)$.
Notation: $l \rightarrow r$.
A set of rewrite rules is called a term rewrite system (TRS).
We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_{E} or \rightarrow_{R} has this property.
(Analogously for other properties of abstract reduction systems).
Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of equations. A Σ-algebra \mathcal{A} is called an E-algebra, if $\mathcal{A} \models \forall \vec{x}(s \approx t)$ for all $\forall \vec{x}(s \approx t) \in E$.

If $E \models \forall \vec{x}(s \approx t)$ (i.e., $\forall \vec{x}(s \approx t)$ is valid in all E-algebras), we write this also as $s \approx_{E} t$.

Goal:
Use the rewrite relation \rightarrow_{E} to express the semantic consequence relation syntactically:
$s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$.

Let E be a set of equations over $\mathrm{T}_{\Sigma}(X)$. The following inference system allows to derive consequences of E :

$$
\begin{array}{ll}
E \vdash t \approx t & \text { (Reflexivity) } \\
\frac{E \vdash t \approx t^{\prime}}{E \vdash t^{\prime} \approx t} & \text { (Symmetry) } \\
\frac{E \vdash t \approx t^{\prime} \quad E \vdash t^{\prime} \approx t^{\prime \prime}}{E \vdash t \approx t^{\prime \prime}} & \text { (Transitivity) } \\
\frac{E \vdash t_{1} \approx t_{1}^{\prime} \quad \ldots \quad E \vdash t_{n} \approx t_{n}^{\prime}}{E \vdash f\left(t_{1}, \ldots, t_{n}\right) \approx f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)} & \text { (Congruence) } \\
E \vdash t \sigma \approx t^{\prime} \sigma & \text { (Instance) } \\
\quad \text { if }\left(t \approx t^{\prime}\right) \in E \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X) &
\end{array}
$$

Lemma 4.11 The following properties are equivalent:
(i) $s \leftrightarrow_{E}^{*} t$
(ii) $E \vdash s \approx t$ is derivable.
(Proof Scetch Follows)

Proof. (i) $\Rightarrow($ ii $): s \leftrightarrow_{E} t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow_{E}^{*} t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_{E}^{*} t$.
(ii) \Rightarrow (i): By induction on the size (number of symbols) of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:
Let X be a set of variables.
For $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]=\left\{t^{\prime} \in \mathrm{T}_{\Sigma}(X) \mid E \vdash t \approx t^{\prime}\right\}$ be the congruence class of t.
Define a Σ-algebra $\mathrm{T}_{\Sigma}(X) / E$ (abbreviated by \mathcal{T}) as follows:

$$
\begin{aligned}
& U_{\mathcal{T}}=\left\{[t] \mid t \in \mathrm{~T}_{\Sigma}(X)\right\} . \\
& f_{\mathcal{T}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, \ldots, t_{n}\right)\right] \text { for } f \in \Omega .
\end{aligned}
$$

Lemma 4.12 $f_{\mathcal{T}}$ is well-defined: If $\left[t_{i}\right]=\left[t_{i}^{\prime}\right]$, then $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=\left[f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right]$.

Proof. Follows directly from the Congruence rule for \vdash.

Lemma 4.13 $\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an E-algebra. (Proof Follows)

Proof. Let $\forall x_{1} \ldots x_{n}(s \approx t)$ be an equation in E; let β be an arbitrary assignment.
We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$, or equivalently, that $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid 1 \leq i \leq n\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.
Let $\sigma=\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$, then $s \sigma \in \mathcal{T}(\gamma)(s)$ and $t \sigma \in \mathcal{T}(\gamma)(t)$.
By the Instance rule, $E \vdash s \sigma \approx t \sigma$ is derivable, hence $\mathcal{T}(\gamma)(s)=[s \sigma]=[t \sigma]=\mathcal{T}(\gamma)(t)$.

Lemma 4.14 Let X be a countably infinite set of variables; let $s, t \in \mathrm{~T}_{\Sigma}(X)$. If $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable. (Proof Follows)

Proof. Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$. Consequently, $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid 1 \leq i \leq n\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.

Choose $t_{i}=x_{i}$, then $[s]=\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)=[t]$, so $E \vdash s \approx t$ is derivable by definition of \mathcal{T}.

Theorem 4.15 ("Birkhoff's Theorem") Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in \mathrm{~T}_{\Sigma}(X)$:
(i) $s \leftrightarrow_{E}^{*} t$.
(ii) $E \vdash s \approx t$ is derivable.
(iii) $s \approx_{E} t$, i.e., $E \models \forall \vec{x}(s \approx t)$.
(iv) $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$.

Proof. (i) \Leftrightarrow (ii): Lemma 4.11.
(ii) $\Rightarrow($ iii $)$: By induction on the size of the derivation for $E \vdash s \approx t$.
(iii) $\Rightarrow\left(\right.$ iv): Obvious, since $\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an E-algebra.
(iv) \Rightarrow (ii): Lemma 4.14.

Universal Algebra

$\mathrm{T}_{\Sigma}(X) / E=\mathrm{T}_{\Sigma}(X) / \approx_{E}=\mathrm{T}_{\Sigma}(X) / \leftrightarrow_{E}^{*}$ is called the free E-algebra with generating set $X / \approx_{E}=\{[x] \mid x \in X\}:$

Every mapping $\varphi: X / \approx_{E} \rightarrow \mathcal{B}$ for some E-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X) / E \rightarrow \mathcal{B}$.
$\mathrm{T}_{\Sigma}(\emptyset) / E=\mathrm{T}_{\Sigma}(\emptyset) / \approx_{E}=\mathrm{T}_{\Sigma}(\emptyset) / \leftrightarrow_{E}^{*}$ is called the initial E-algebra.
$\approx_{E}=\{(s, t) \mid E \models s \approx t\}$ is called the equational theory of E.
$\approx_{E}^{I}=\left\{(s, t) \mid \mathrm{T}_{\Sigma}(\emptyset) / E \models s \approx t\right\}$ is called the inductive theory of E.
Example:
Let $E=\{\forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y))\}$. Then $x+y \approx_{E}^{I} y+x$, but $x+y \not \nsim E_{E} y+x$.

Rewrite Relations

Corollary 4.16 If E is convergent (i. e., terminating and confluent), then $s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$ if and only if $s \downarrow_{E}=t \downarrow_{E}$.

Corollary 4.17 If E is finite and convergent, then \approx_{E} is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.
Problems:
Show local confluence of E.
Show termination of E.
Transform E into an equivalent set of equations that is locally confluent and terminating.

