Proving Termination: Monotone Mappings

Let $(A, >_A)$ and $(B, >_B)$ be partial orderings. A mapping $\varphi : A \to B$ is called monotone, if $a >_A a'$ implies $\varphi(a) >_B \varphi(a')$ for all $a, a' \in A$.

Lemma 4.10 If $\varphi: A \to B$ is a monotone mapping from $(A, >_A)$ to $(B, >_B)$ and $(B, >_B)$ is well-founded, then $(A, >_A)$ is well-founded.

4.3 Rewrite Systems

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq T_{\Sigma}(X) \times T_{\Sigma}(X)$ is defined by

```
s \to_E t iff there exist (l \approx r) \in E, p \in pos(s),
and \sigma : X \to T_{\Sigma}(X),
such that s/p = l\sigma and t = s[r\sigma]_p.
```

An instance of the lhs (left-hand side) of an equation is called a *redex* (reducible expression). Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $var(l) \supseteq var(r)$.

Notation: $l \to r$.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of equations. A Σ -algebra \mathcal{A} is called an E-algebra, if $\mathcal{A} \models \forall \vec{x}(s \approx t)$ for all $\forall \vec{x}(s \approx t) \in E$.

If $E \models \forall \vec{x}(s \approx t)$ (i.e., $\forall \vec{x}(s \approx t)$ is valid in all E-algebras), we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

```
s \approx_E t if and only if s \leftrightarrow_E^* t.
```

Let E be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of E:

$$E \vdash t \approx t$$
 (Reflexivity)

$$\frac{E \vdash t \approx t'}{E \vdash t' \approx t} \tag{Symmetry}$$

$$\frac{E \vdash t \approx t' \qquad E \vdash t' \approx t''}{E \vdash t \approx t''} \tag{Transitivity}$$

$$\frac{E \vdash t_1 \approx t'_1 \quad \dots \quad E \vdash t_n \approx t'_n}{E \vdash f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)}$$
 (Congruence)

$$E \vdash t\sigma \approx t'\sigma$$
 (Instance) if $(t \approx t') \in E$ and $\sigma : X \to T_{\Sigma}(X)$

Lemma 4.11 The following properties are equivalent:

- (i) $s \leftrightarrow_E^* t$
- (ii) $E \vdash s \approx t$ is derivable.

(Proof Scetch Follows)

Proof. (i) \Rightarrow (ii): $s \leftrightarrow_E t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow_E^* t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_E^* t$.

(ii) \Rightarrow (i): By induction on the size (number of symbols) of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{ t' \in T_{\Sigma}(X) \mid E \vdash t \approx t' \}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by \mathcal{T}) as follows:

$$U_{\mathcal{T}} = \{ [t] \mid t \in \mathcal{T}_{\Sigma}(X) \}.$$

$$f_{\mathcal{T}}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)] \text{ for } f \in \Omega.$$

Lemma 4.12 $f_{\mathcal{T}}$ is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, \dots, t_n)] = [f(t'_1, \dots, t'_n)]$.

Proof. Follows directly from the Congruence rule for \vdash .

Lemma 4.13 $\mathcal{T} = T_{\Sigma}(X)/E$ is an E-algebra. (Proof Follows)

Proof. Let $\forall x_1 \dots x_n (s \approx t)$ be an equation in E; let β be an arbitrary assignment.

We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$, or equivalently, that $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in U_{\mathcal{T}}$.

Let $\sigma = [t_1/x_1, \dots, t_n/x_n]$, then $s\sigma \in \mathcal{T}(\gamma)(s)$ and $t\sigma \in \mathcal{T}(\gamma)(t)$.

By the Instance rule, $E \vdash s\sigma \approx t\sigma$ is derivable, hence $\mathcal{T}(\gamma)(s) = [s\sigma] = [t\sigma] = \mathcal{T}(\gamma)(t)$.

Lemma 4.14 Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(X)$. If $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable. (Proof Follows)

Proof. Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$. Consequently, $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in U_{\mathcal{T}}$.

Choose $t_i = x_i$, then $[s] = \mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t) = [t]$, so $E \vdash s \approx t$ is derivable by definition of \mathcal{T} .

Theorem 4.15 ("Birkhoff's Theorem") Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

- (i) $s \leftrightarrow_E^* t$.
- (ii) $E \vdash s \approx t$ is derivable.
- (iii) $s \approx_E t$, i. e., $E \models \forall \vec{x} (s \approx t)$.
- (iv) $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$.

Proof. (i) \Leftrightarrow (ii): Lemma 4.11.

- (ii) \Rightarrow (iii): By induction on the size of the derivation for $E \vdash s \approx t$.
- (iii) \Rightarrow (iv): Obvious, since $\mathcal{T} = T_{\Sigma}(X)/E$ is an E-algebra.
- $(iv) \Rightarrow (ii)$: Lemma 4.14.

Universal Algebra

 $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_E = T_{\Sigma}(X)/\leftrightarrow_E^*$ is called the free *E*-algebra with generating set $X/\approx_E = \{ [x] \mid x \in X \}$:

Every mapping $\varphi: X/\approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X)/E \to \mathcal{B}$.

 $T_{\Sigma}(\emptyset)/E = T_{\Sigma}(\emptyset)/\approx_E = T_{\Sigma}(\emptyset)/\leftrightarrow_E^*$ is called the initial E-algebra.

 $\approx_E = \{ (s,t) \mid E \models s \approx t \}$ is called the equational theory of E.

 $\approx_E^I = \{ (s,t) \mid T_{\Sigma}(\emptyset)/E \models s \approx t \}$ is called the inductive theory of E.

Example:

Let
$$E = \{ \forall x(x+0 \approx x), \ \forall x \forall y(x+s(y) \approx s(x+y)) \}$$
. Then $x+y \approx_E^I y + x$, but $x+y \not\approx_E y + x$.

Rewrite Relations

Corollary 4.16 If E is convergent (i. e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 4.17 If E is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and terminating.