Universal Algebra

$\mathrm{T}_{\Sigma}(X) / E=\mathrm{T}_{\Sigma}(X) / \approx_{E}=\mathrm{T}_{\Sigma}(X) / \leftrightarrow_{E}^{*}$ is called the free E-algebra with generating set $X / \widetilde{\approx}_{E}=\{[x] \mid x \in X\}:$

Every mapping $\varphi: X / \approx_{E} \rightarrow \mathcal{B}$ for some E-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X) / E \rightarrow \mathcal{B}$.
$\mathrm{T}_{\Sigma}(\emptyset) / E=\mathrm{T}_{\Sigma}(\emptyset) / \approx_{E}=\mathrm{T}_{\Sigma}(\emptyset) / \leftrightarrow_{E}^{*}$ is called the initial E-algebra.
$\approx_{E}=\{(s, t) \mid E \models s \approx t\}$ is called the equational theory of E.
$\approx_{E}^{I}=\left\{(s, t) \mid \mathrm{T}_{\Sigma}(\emptyset) / E \models s \approx t\right\}$ is called the inductive theory of E.
Example:
Let $E=\{\forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y))\}$. Then $x+y \approx_{E}^{I} y+x$, but $x+y \not \nsim_{E} y+x$.

Rewrite Relations

Corollary 4.16 If E is convergent (i. e., terminating and confluent), then $s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$ if and only if $s \downarrow_{E}=t \downarrow_{E}$.

Corollary 4.17 If E is finite and convergent, then \approx_{E} is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.
Problems:
Show local confluence of E.
Show termination of E.
Transform E into an equivalent set of equations that is locally confluent and terminating.

4.4 Critical Pairs

Showing local confluence (Sketch):
Problem: If $t_{1} \leftarrow_{E} t_{0} \rightarrow_{E} t_{2}$, does there exist a term s such that $t_{1} \rightarrow_{E}^{*} s \leftarrow_{E}^{*} t_{2}$?
If the two rewrite steps happen in different subtrees (disjoint redexes): yes.
If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Question:
Are there rewrite rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ such that some subterm l_{1} / p and l_{2} have a common instance $\left(l_{1} / p\right) \sigma_{1}=l_{2} \sigma_{2}$?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $\left(l_{1} / p\right) \sigma=l_{2} \sigma$.

Further observation:
The mgu of l_{1} / p and l_{2} subsumes all unifiers σ of l_{1} / p and l_{2}.
Let $l_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS R whose variables have been renamed such that $\operatorname{var}\left(l_{1}\right) \cap \operatorname{var}\left(l_{2}\right)=\emptyset$. (Remember that $\operatorname{var}\left(l_{i}\right) \supseteq \operatorname{var}\left(r_{i}\right)$.)

Let $p \in \operatorname{pos}\left(l_{1}\right)$ be a position such that l_{1} / p is not a variable and σ is an mgu of l_{1} / p and l_{2}.
Then $r_{1} \sigma \leftarrow l_{1} \sigma \rightarrow\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of R.
The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Theorem 4.18 ("Critical Pair Theorem") A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof. "only if": obvious, since joinability of a critical pair is a special case of local confluence.
"if": Suppose s rewrites to t_{1} and t_{2} using rewrite rules $l_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{pos}(s)$, where $i=1,2$. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s / p_{i}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either p_{1} and p_{2} are in disjoint subtrees ($p_{1} \| p_{2}$), or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$).

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[l_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$, and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[l_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$. Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $l_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $l_{1} \rightarrow r_{1}$.

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where l_{1} / q_{1} is some variable x.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_{1} and n times in r_{1} (where $m \geq 1$ and $n \geq 0$).

Then $t_{1} \rightarrow{ }_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where q^{\prime} is a position of x in r_{1}.

Conversely, $t_{2} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where q is a position of x in l_{1} different from q_{1}, and by applying $l_{1} \rightarrow r_{1}$ at p_{1} with the substitution θ^{\prime}, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.
Case 2.2: $p_{2}=p_{1} p$, where p is a non-variable position of l_{1}.
Then $s / p_{2}=l_{2} \theta$ and $s / p_{2}=\left(s / p_{1}\right) / p=\left(l_{1} \theta\right) / p=\left(l_{1} / p\right) \theta$, so θ is a unifier of l_{2} and l_{1} / p.
Let σ be the mgu of l_{2} and l_{1} / p, then $\theta=\tau \circ \sigma$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.
By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \tau\right]_{p_{1}} \rightarrow{ }_{R}^{*} s[v \tau]_{p_{1}}$ and $t_{2}=s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}}=$ $s\left[\left(l_{1} \sigma \tau\right)\left[r_{2} \sigma \tau\right]_{p}\right]_{p_{1}}=s\left[\left(\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right) \tau\right]_{p_{1}} \rightarrow{ }_{R}^{*} s[v \tau]_{p_{1}}$.
This completes the proof of the Critical Pair Theorem.
Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i.e., $p=\varepsilon$).

Corollary 4.19 A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof. By Newman's Lemma and the Critical Pair Theorem.
Corollary 4.20 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\left\langle u_{1}, u_{2}\right\rangle$.

Reduce every u_{i} to some normal form u_{i}^{\prime}. If $u_{1}^{\prime}=u_{2}^{\prime}$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u_{1}^{\prime} \leftarrow_{R}^{*} u_{1} \leftarrow_{R} s \rightarrow_{R} u_{2} \rightarrow_{R}^{*} u_{2}^{\prime}$.

