Universal Algebra

 $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_{E} = T_{\Sigma}(X)/\leftrightarrow_{E}^{*}$ is called the free *E*-algebra with generating set $X/\approx_{E} = \{ [x] \mid x \in X \}$:

Every mapping $\varphi: X/\approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: T_{\Sigma}(X)/E \to \mathcal{B}$.

 $T_{\Sigma}(\emptyset)/E = T_{\Sigma}(\emptyset)/\approx_{E} = T_{\Sigma}(\emptyset)/\leftrightarrow_{E}^{*}$ is called the *initial E-algebra*.

 $\approx_E = \{ (s,t) \mid E \models s \approx t \}$ is called the equational theory of E.

 $\approx_E^I = \{ (s,t) \mid \mathcal{T}_{\Sigma}(\emptyset)/E \models s \approx t \}$ is called the *inductive theory* of *E*.

Example:

Let $E = \{ \forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y)) \}$. Then $x+y \approx_E^I y+x$, but $x+y \not\approx_E y+x$.

Rewrite Relations

Corollary 4.16 If *E* is convergent (i. e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 4.17 If E is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and terminating.

4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If $t_1 \leftarrow_E t_0 \rightarrow_E t_2$, does there exist a term s such that $t_1 \rightarrow_E^* s \leftarrow_E^* t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Question:

Are there rewrite rules $l_1 \to r_1$ and $l_2 \to r_2$ such that some subterm l_1/p and l_2 have a common instance $(l_1/p)\sigma_1 = l_2\sigma_2$?

Observation:

If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $(l_1/p)\sigma = l_2\sigma$.

Further observation:

The mgu of l_1/p and l_2 subsumes all unifiers σ of l_1/p and l_2 .

Let $l_i \to r_i$ (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed such that $\operatorname{var}(l_1) \cap \operatorname{var}(l_2) = \emptyset$. (Remember that $\operatorname{var}(l_i) \supseteq \operatorname{var}(r_i)$.)

Let $p \in \text{pos}(l_1)$ be a position such that l_1/p is not a variable and σ is an mgu of l_1/p and l_2 .

Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma) [r_2 \sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a *critical pair* of *R*.

The critical pair is joinable (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

Theorem 4.18 ("Critical Pair Theorem") A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof. "only if": obvious, since joinability of a critical pair is a special case of local confluence.

"if": Suppose s rewrites to t_1 and t_2 using rewrite rules $l_i \to r_i \in R$ at positions $p_i \in \text{pos}(s)$, where i = 1, 2. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s/p_i = l_i \theta$ and $t_i = s[r_i \theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$.

Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$.

Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \to_R t_0$ using $l_2 \to r_2$ and $t_2 \to_R t_0$ using $l_1 \to r_1$.

Case 2: $p_1 \leq p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where l_1/q_1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \to_R^* t_0$ by applying $l_2 \to r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \to_R^* t_0$ by applying $l_2 \to r_2$ at all positions p_1qq_2 , where q is a position of x in l_1 different from q_1 , and by applying $l_1 \to r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}]$.

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1 .

Then $s/p_2 = l_2\theta$ and $s/p_2 = (s/p_1)/p = (l_1\theta)/p = (l_1/p)\theta$, so θ is a unifier of l_2 and l_1/p .

Let σ be the mgu of l_2 and l_1/p , then $\theta = \tau \circ \sigma$ and $\langle r_1 \sigma, (l_1 \sigma) [r_2 \sigma]_p \rangle$ is a critical pair.

By assumption, it is joinable, so $r_1 \sigma \to_R^* v \leftarrow_R^* (l_1 \sigma) [r_2 \sigma]_p$.

Consequently, $t_1 = s[r_1\theta]_{p_1} = s[r_1\sigma\tau]_{p_1} \to_R^* s[v\tau]_{p_1}$ and $t_2 = s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} = s[(l_1\sigma\tau)[r_2\sigma\tau]_p]_{p_1} = s[((l_1\sigma\tau)[r_2\sigma]_p)\tau]_{p_1} \to_R^* s[v\tau]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i.e., $p = \varepsilon$).

Corollary 4.19 A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof. By Newman's Lemma and the Critical Pair Theorem.

Corollary 4.20 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\langle u_1, u_2 \rangle$.

Reduce every u_i to some normal form u'_i . If $u'_1 = u'_2$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u'_1 \leftarrow_R^* u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R^* u'_2$.