1.4 Normal Forms

We define conjunctions of formulas as follows:

$$
\begin{aligned}
& \bigwedge_{i=1}^{0} F_{i}=\mathrm{\top} . \\
& \bigwedge_{i=1}^{1} F_{i}=F_{1} . \\
& \bigwedge_{i=1}^{n+1} F_{i}=\bigwedge_{i=1}^{n} F_{i} \wedge F_{n+1} .
\end{aligned}
$$

and analogously disjunctions:

$$
\begin{aligned}
& \bigvee_{i=1}^{0} F_{i}=\perp . \\
& \bigvee_{i=1}^{1} F_{i}=F_{1} . \\
& \bigvee_{i=1}^{n+1} F_{i}=\bigvee_{i=1}^{n} F_{i} \vee F_{n+1} .
\end{aligned}
$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.
A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:
are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?
Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:
A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 1.7 For every formula there is an equivalent formula in CNF (and also an equivalent formula in $D N F$).

Proof. We consider the case of CNF.
Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$
(F \leftrightarrow G) \Rightarrow_{K}(F \rightarrow G) \wedge(G \rightarrow F)
$$

Step 2: Eliminate implications:

$$
(F \rightarrow G) \Rightarrow_{K} \quad(\neg F \vee G)
$$

Step 3: Push negations downward:

$$
\begin{array}{ll}
\neg(F \vee G) \Rightarrow_{K} & (\neg F \wedge \neg G) \\
\neg(F \wedge G) \Rightarrow_{K} & (\neg F \vee \neg G)
\end{array}
$$

Step 4: Eliminate multiple negations:

$$
\neg \neg F \Rightarrow{ }_{K} F
$$

Step 5: Push disjunctions downward:

$$
(F \wedge G) \vee H \Rightarrow_{K}(F \vee H) \wedge(G \vee H)
$$

Step 6: Eliminate \top and \perp :

$$
\begin{aligned}
& (F \wedge T) \Rightarrow_{K} F \\
& (F \wedge \perp) \Rightarrow_{K} \perp \\
& (F \vee \top) \Rightarrow_{K} \top \\
& (F \vee \perp) \Rightarrow_{K} F \\
& \neg \perp \Rightarrow_{K} \top \\
& \neg \top \Rightarrow_{K} \perp
\end{aligned}
$$

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more complicated.

For step 3, we can prove termination in the following way: We define a function μ from formulas to positive integers such that $\mu(\perp)=\mu(T)=\mu(P)=1, \mu(\neg F)=2 \mu(F)$, $\mu(F \wedge G)=\mu(F \vee G)=\mu(F \rightarrow G)=\mu(F \leftrightarrow G)=\mu(F)+\mu(G)+1$. Whenever a formula H^{\prime} is the result of applying a rule of step 3 to a formula H, then $\mu(H)>$ $\mu\left(H^{\prime}\right)$. Since μ takes only integer values and $\mu(H) \geq 1$ for all formulas H, step 3 must terminate.

Termination of step 5 is proved similarly using a function ν from formulas to positive integers such that $\nu(\perp)=\nu(T)=\nu(P)=1, \nu(\neg F)=\nu(F)+1, \nu(F \wedge G)=\nu(F \rightarrow$ $G)=\nu(F \leftrightarrow G)=\nu(F)+\nu(G)+1$, and $\nu(F \vee G)=2 \nu(F) \nu(G)$. Again, if a formula H^{\prime} is the result of applying a rule of step 5 to a formula H, then $\nu(H)>\nu\left(H^{\prime}\right)$. Since ν takes only integer values and Since $\nu(H) \geq 1$ for all formulas H, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.
The conversion of a formula to DNF works in the same way, except that conjunctions have to be pushed downward in step 5 .

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
"find a formula G in CNF such that $F \models G$ "
is unpractical.
But if we relax the requirement to
"find a formula G in CNF such that $F \models \perp \Leftrightarrow G \models \perp$ "
we can get an efficient transformation.
Idea: A formula $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable (where P is a new propositional variable that works as an abbreviation for F^{\prime}).

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F^{\prime}$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow. A subformula F^{\prime} of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Proposition 1.8 Let $F\left[F^{\prime}\right]$ be a formula containing neither \rightarrow nor \leftrightarrow; let P be a propositional variable not occurring in $F\left[F^{\prime}\right]$.

If F^{\prime} has positive polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.

If F^{\prime} has negative polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Proof. Exercise.

1.5 The DPLL Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check whether it is satisfiable (and optionally: output one solution, if it is satisfiable).

Assumption:
Clauses contain neither duplicated literals nor complementary literals.
Notation:
\bar{L} is the complementary literal of L, i. e., $\bar{P}=\neg P$ and $\overline{\neg P}=P$.

Satisfiability of Clause Sets

$\mathcal{A} \models N$ if and only if $\mathcal{A} \models C$ for all clauses C in N.
$\mathcal{A} \models C$ if and only if $\mathcal{A} \models L$ for some literal $L \in C$.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A}: \Pi \rightarrow\{0,1\}$).

Every partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:
$\mathcal{A}(L)$ is true, if $L \in M$.
$\mathcal{A}(L)$ is false, if $\bar{L} \in M$.
$\mathcal{A}(L)$ is undefined, if neither $L \in M$ nor $\bar{L} \in M$.
We will use \mathcal{A} and M interchangeably.
A clause is true under a partial valuation \mathcal{A} (or under a set M of literals) if one of its literals is true; it is false (or "conflicting") if all its literals are false; otherwise it is undefined (or "unresolved").

Unit Clauses

Observation:
Let \mathcal{A} be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under \mathcal{A}, then the following properties are equivalent:

- there is a valuation that is a model of N and extends \mathcal{A}.
- there is a valuation that is a model of N and extends \mathcal{A} and makes the remaining literal L of C true.
C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:
Let \mathcal{A} be a partial valuation and P a variable that is undefined under \mathcal{A}. If P occurs only positively (or only negatively) in the unresolved clauses in N, then the following properties are equivalent:

- there is a valuation that is a model of N and extends \mathcal{A}.
- there is a valuation that is a model of N and extends \mathcal{A} and assigns true (false) to P.
P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

```
boolean DPLL(literal set M, clause set N) {
    if (all clauses in N}\mathrm{ are true under M) return true;
    elsif (some clause in N}\mathrm{ is false under M) return false;
    elsif ( N contains unit clause P) return DPLL( }M\cup{P},N)
    elsif ( }N\mathrm{ contains unit clause }\negP)\mathrm{ return DPLL(MU{}\negP},N)
    elsif ( }N\mathrm{ contains pure literal P) return DPLL( }M\cup{P},N)
    elsif ( }N\mathrm{ contains pure literal }\negP)\mathrm{ return DPLL( }M\cup{\negP},N)
    else {
            let P}\mathrm{ be some undefined variable in N;
            if (DPLL(M\cup{\negP},N)) return true;
            else return DPLL(M\cup{P},N);
    }
}
```

Initially, DPLL is called with an empty literal set and the clause set N.

