1.4 Normal Forms

We define *conjunctions* of formulas as follows:

$$\bigwedge_{i=1}^{0} F_i = \top.$$
$$\bigwedge_{i=1}^{1} F_i = F_1.$$
$$\bigwedge_{i=1}^{n+1} F_i = \bigwedge_{i=1}^{n} F_i \wedge F_{n+1}.$$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} F_{i} = \bot.$$

$$\bigvee_{i=1}^{1} F_{i} = F_{1}.$$

$$\bigvee_{i=1}^{n+1} F_{i} = \bigvee_{i=1}^{n} F_{i} \lor F_{n+1}.$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in *conjunctive normal form (CNF, clause normal form)*, if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in *disjunctive normal form* (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted? are duplicated literals permitted? are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 1.7 For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof. We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \Rightarrow_K (F \to G) \land (G \to F)$$

Step 2: Eliminate implications:

$$(F \to G) \Rightarrow_K (\neg F \lor G)$$

Step 3: Push negations downward:

$$\neg (F \lor G) \Rightarrow_K (\neg F \land \neg G) \neg (F \land G) \Rightarrow_K (\neg F \lor \neg G)$$

Step 4: Eliminate multiple negations:

$$\neg \neg F \Rightarrow_K F$$

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_K (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \perp :

$$\begin{array}{ccc} (F \wedge \top) \implies_{K} & F \\ (F \wedge \bot) \implies_{K} & \bot \\ (F \vee \top) \implies_{K} & \top \\ (F \vee \bot) \implies_{K} & F \\ \neg \bot \implies_{K} & \top \\ \neg \top \implies_{K} & \bot \end{array}$$

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more complicated.

For step 3, we can prove termination in the following way: We define a function μ from formulas to positive integers such that $\mu(\perp) = \mu(\top) = \mu(P) = 1$, $\mu(\neg F) = 2\mu(F)$, $\mu(F \land G) = \mu(F \lor G) = \mu(F \to G) = \mu(F \leftrightarrow G) = \mu(F) + \mu(G) + 1$. Whenever a formula H' is the result of applying a rule of step 3 to a formula H, then $\mu(H) > \mu(H')$. Since μ takes only integer values and $\mu(H) \ge 1$ for all formulas H, step 3 must terminate.

Termination of step 5 is proved similarly using a function ν from formulas to positive integers such that $\nu(\perp) = \nu(\top) = \nu(P) = 1$, $\nu(\neg F) = \nu(F) + 1$, $\nu(F \land G) = \nu(F \rightarrow G) = \nu(F \leftrightarrow G) = \nu(F) + \nu(G) + 1$, and $\nu(F \lor G) = 2\nu(F)\nu(G)$. Again, if a formula H' is the result of applying a rule of step 5 to a formula H, then $\nu(H) > \nu(H')$. Since ν takes only integer values and Since $\nu(H) \ge 1$ for all formulas H, step 5 terminates, too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions have to be pushed downward in step 5. $\hfill \Box$

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is *exponential* in the size of the original one.

Satisfiability-preserving Transformations

The goal

"find a formula G in CNF such that $F \models G$ "

is unpractical.

But if we relax the requirement to

"find a formula G in CNF such that $F \models \bot \Leftrightarrow G \models \bot$ "

we can get an efficient transformation.

Idea: A formula F[F'] is satisfiable if and only if $F[P] \land (P \leftrightarrow F')$ is satisfiable (where P is a new propositional variable that works as an abbreviation for F').

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables). Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F'$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the *polarity* of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow . A subformula F' of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Proposition 1.8 Let F[F'] be a formula containing neither \rightarrow nor \leftrightarrow ; let P be a propositional variable not occurring in F[F'].

If F' has positive polarity in F, then F[F'] is satisfiable if and only if $F[P] \land (P \to F')$ is satisfiable.

If F' has negative polarity in F, then F[F'] is satisfiable if and only if $F[P] \land (F' \to P)$ is satisfiable.

Proof. Exercise.

1.5 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check whether it is satisfiable (and optionally: output *one* solution, if it is satisfiable).

Assumption:

Clauses contain neither duplicated literals nor complementary literals.

Notation:

 \overline{L} is the complementary literal of L, i.e., $\overline{P} = \neg P$ and $\overline{\neg P} = P$.

Satisfiability of Clause Sets

 $\mathcal{A} \models N$ if and only if $\mathcal{A} \models C$ for all clauses C in N.

 $\mathcal{A} \models C$ if and only if $\mathcal{A} \models L$ for some literal $L \in C$.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A} : \Pi \to \{0, 1\}$).

Every partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:

- $\mathcal{A}(L)$ is true, if $L \in M$.
- $\mathcal{A}(L)$ is false, if $\overline{L} \in M$.
- $\mathcal{A}(L)$ is undefined, if neither $L \in M$ nor $\overline{L} \in M$.

We will use \mathcal{A} and M interchangeably.

A clause is true under a partial valuation \mathcal{A} (or under a set M of literals) if one of its literals is true; it is false (or "conflicting") if all its literals are false; otherwise it is undefined (or "unresolved").

Unit Clauses

Observation:

Let \mathcal{A} be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under \mathcal{A} , then the following properties are equivalent:

- there is a valuation that is a model of N and extends \mathcal{A} .
- there is a valuation that is a model of N and extends \mathcal{A} and makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:

Let \mathcal{A} be a partial valuation and P a variable that is undefined under \mathcal{A} . If P occurs only positively (or only negatively) in the unresolved clauses in N, then the following properties are equivalent:

- there is a valuation that is a model of N and extends \mathcal{A} .
- there is a valuation that is a model of N and extends \mathcal{A} and assigns true (false) to P.

P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

```
boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit clause P) return DPLL(M \cup \{P\}, N);

elsif (N contains pure literal P) return DPLL(M \cup \{P\}, N);

elsif (N contains pure literal P) return DPLL(M \cup \{P\}, N);

elsif (N contains pure literal \neg P) return DPLL(M \cup \{P\}, N);

else {

let P be some undefined variable in N;

if (DPLL(M \cup \{\neg P\}, N)) return true;

else return DPLL(M \cup \{P\}, N);

}
```

Initially, DPLL is called with an empty literal set and the clause set N.