The Interpretation Method

Proving termination by interpretation:

Let \mathcal{A} be a Σ -algebra; let \succ be a well-founded strict partial ordering on its universe.

Define the ordering $\succ_{\mathcal{A}}$ over $T_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta : X \to U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

Lemma 4.31 $\succ_{\mathcal{A}}$ is stable under substitutions.

Proof. Let $s \succ_{\mathcal{A}} s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all assignments $\beta : X \to U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s\sigma) \succ \mathcal{A}(\gamma)(s'\sigma)$ for all assignments $\gamma : X \to U_{\mathcal{A}}$. Choose $\beta = \gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s\sigma) = \mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s') = \mathcal{A}(\gamma)(s'\sigma)$. Therefore $s\sigma \succ_{\mathcal{A}} s'\sigma$.

A function $f: U_{\mathcal{A}}^n \to U_{\mathcal{A}}$ is called *monotone* (with respect to \succ), if $a \succ a'$ implies $f(b_1, \ldots, a, \ldots, b_n) \succ f(b_1, \ldots, a', \ldots, b_n)$ for all $a, a', b_i \in U_{\mathcal{A}}$.

Lemma 4.32 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ , then $\succ_{\mathcal{A}}$ is compatible with Σ -operations.

Proof. Let $s \succ s'$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(s')$ for all $\beta : X \to U_{\mathcal{A}}$. Let $\beta : X \to U_{\mathcal{A}}$ be an arbitrary assignment. Then

$$\mathcal{A}(\beta)(f(t_1,\ldots,s,\ldots,t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(s),\ldots,\mathcal{A}(\beta)(t_n))$$

$$\succ f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(s'),\ldots,\mathcal{A}(\beta)(t_n))$$

$$= \mathcal{A}(\beta)(f(t_1,\ldots,s',\ldots,t_n))$$

Therefore $f(t_1, \ldots, s, \ldots, t_n) \succ_{\mathcal{A}} f(t_1, \ldots, s', \ldots, t_n)$.

Theorem 4.33 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w. r. t. \succ , then $\succ_{\mathcal{A}}$ is a reduction ordering.

Proof. By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_1 \succ_{\mathcal{A}} s_2 \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)(s_1) \succ \mathcal{A}(\beta)(s_2) \succ \ldots$ (with β chosen arbitrarily). Thus $\succ_{\mathcal{A}}$ is well-founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set $U_{\mathcal{A}}$ is some subset of the natural numbers.

To every function symbol f with arity n we associate a polynomial $P_f(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ with coefficients in \mathbb{N} and indeterminates X_1, \ldots, X_n . Then we define $f_{\mathcal{A}}(a_1, \ldots, a_n) = P_f(a_1, \ldots, a_n)$ for $a_i \in U_{\mathcal{A}}$.

Requirement 1:

If $a_1, \ldots, a_n \in U_A$, then $f_A(a_1, \ldots, a_n) \in U_A$. (Otherwise, \mathcal{A} would not be a Σ -algebra.)

Requirement 2:

 $f_{\mathcal{A}}$ must be monotone (w.r.t. \succ).

From now on:

 $U_{\mathcal{A}} = \{ n \in \mathbb{N} \mid n \ge 2 \}.$

If $\operatorname{arity}(f) = 0$, then P_f is a constant ≥ 2 .

If $\operatorname{arity}(f) = n \ge 1$, then P_f is a polynomial $P(X_1, \ldots, X_n)$, such that every X_i occurs in some monomial with exponent at least 1 and non-zero coefficient.

 \Rightarrow Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A term t containing the variables x_1, \ldots, x_n yields a polynomial P_t with indeterminates X_1, \ldots, X_n (where X_i corresponds to $\beta(x_i)$).

Example:

$$\begin{split} \Omega &= \{b, f, g\} \text{ with } \mathsf{arity}(b) = 0, \, \mathsf{arity}(f) = 1, \, \mathsf{arity}(g) = 3, \\ U_{\mathcal{A}} &= \{n \in \mathbb{N} \mid n \geq 2\}, \\ P_b &= 3, \quad P_f(X_1) = X_1^2, \quad P_g(X_1, X_2, X_3) = X_1 + X_2 X_3. \\ \text{Let } t &= g(f(b), f(x), y), \, \text{then } P_t(X, Y) = 9 + X^2 Y. \end{split}$$

If P, Q are polynomials in $\mathbb{N}[X_1, \ldots, X_n]$, we write P > Q if $P(a_1, \ldots, a_n) > Q(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Clearly, $l \succ_{\mathcal{A}} r$ iff $P_l > P_r$.

Question: Can we check $P_l > P_r$ automatically?

Hilbert's 10th Problem:

Given a polynomial $P \in \mathbb{Z}[X_1, \ldots, X_n]$ with integer coefficients, is P = 0 for some *n*-tuple of natural numbers?

Theorem 4.34 Hilbert's 10th Problem is undecidable.

Proposition 4.35 Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_l > P_r$.

Proof. By reduction of Hilbert's 10th Problem.

One possible solution:

Test whether $P_l(a_1, \ldots, a_n) > P_r(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in \{x \in \mathbb{R} \mid x \ge 2\}$.

This is decidable (but very slow). Since $U_{\mathcal{A}} \subseteq \{x \in \mathbb{R} \mid x \geq 2\}$, it implies $P_l > P_r$.

Another solution (Ben Cherifa and Lescanne):

Consider the difference $P_l(X_1, \ldots, X_n) - P_r(X_1, \ldots, X_n)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_1, \ldots, a_n \in U_A$:

 $P \Rightarrow_{BCL} \top$,

if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.

$$\begin{aligned} P + cX_1^{p_1} \cdots X_n^{p_n} - dX_1^{q_1} \cdots X_n^{q_n} &\Rightarrow_{BCL} P + c'X_1^{p_1} \cdots X_n^{p_n}, \\ \text{if } c, d > 0, \ p_i \ge q_i \text{ for all } i, \text{ and } c' = c - d \cdot 2^{(q_1 - p_1) + \dots + (q_n - p_n)} \ge 0. \\ P + cX_1^{p_1} \cdots X_n^{p_n} - dX_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P - d'X_1^{q_1} \cdots X_n^{q_n}, \\ \text{if } c, d > 0, \ p_i \ge q_i \text{ for all } i, \text{ and } d' = d - c \cdot 2^{(p_1 - q_1) + \dots + (p_n - q_n)} > 0. \end{aligned}$$

Lemma 4.36 If $P \Rightarrow_{BCL} P'$, then $P(a_1, \ldots, a_n) \ge P'(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Proof. Follows from the fact that $a_i \in U_A$ implies $a_i \geq 2$.

Proposition 4.37 If $P \Rightarrow_{BCL}^+ \top$, then $P(a_1, \ldots, a_n) > 0$ for all $a_1, \ldots, a_n \in U_A$.

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_R \subseteq \succ$ (i.e., $l \succ r$ for every $l \rightarrow r \in R$).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Notations:

The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

$$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}} \quad \text{if } s \succ t$$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented – but we don't need them anyway:

Delete:

$$\frac{E \cup \{s \approx s\}, \quad R}{E, \quad R}$$

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$\begin{array}{ll} \displaystyle \frac{E, \ R}{E \cup \{s \approx t\}, \ R} & \text{if } \langle s, t \rangle \in \operatorname{CP}(R). \end{array}$$

Note: If $\langle s, t \rangle \in \operatorname{CP}(R)$ then $s \leftarrow_R u \to_R t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$\frac{E \cup \{s \approx t\}, \quad R}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u.$$

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E, \quad R \cup \{s \to u\}} \qquad \text{if } t \to_R u.$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u \text{ using a rule } l \to r \in R \\ \text{such that } s \sqsupset l \text{ (see next slide).}$$

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $l \to r$, if $l \to r$ cannot be simplified using $s \to t$, that is, if $s \square l$, where the encompassment quasi-ordering \square is defined by

 $s \supseteq l$ if $s/p = l\sigma$ for some p and σ

and $\Box = \Box \setminus \Box$ is the strict part of \Box .

Lemma 4.38 \square is a well-founded strict partial ordering.

Lemma 4.39 If $E, R \vdash E', R'$, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma 4.40 If $E, R \vdash E', R'$ and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.