The Interpretation Method

Proving termination by interpretation:
Let \mathcal{A} be a Σ-algebra; let \succ be a well-founded strict partial ordering on its universe.
Define the ordering $\succ_{\mathcal{A}}$ over $\mathrm{T}_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

Lemma $4.31 \succ_{\mathcal{A}}$ is stable under substitutions.

Proof. Let $s \succ_{\mathcal{A}} s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s \sigma) \succ \mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$ for all assignments $\gamma: X \rightarrow U_{\mathcal{A}}$. Choose $\beta=\gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s \sigma)=\mathcal{A}(\beta)(s) \succ$ $\mathcal{A}(\beta)\left(s^{\prime}\right)=\mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$. Therefore $s \sigma \succ_{\mathcal{A}} s^{\prime} \sigma$.

A function $f: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}$ is called monotone (with respect to \succ), if $a \succ a^{\prime}$ implies $f\left(b_{1}, \ldots, a, \ldots, b_{n}\right) \succ f\left(b_{1}, \ldots, a^{\prime}, \ldots, b_{n}\right)$ for all $a, a^{\prime}, b_{i} \in U_{\mathcal{A}}$.

Lemma 4.32 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is compatible with Σ-operations.

Proof. Let $s \succ s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all $\beta: X \rightarrow U_{\mathcal{A}}$. Let $\beta: X \rightarrow U_{\mathcal{A}}$ be an arbitrary assignment. Then

$$
\begin{aligned}
\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s, \ldots, t_{n}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)(s), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& \succ f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)\left(s^{\prime}\right), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& =\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)\right)
\end{aligned}
$$

Therefore $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \succ_{\mathcal{A}} f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$.

Theorem 4.33 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is a reduction ordering.

Proof. By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_{1} \succ_{\mathcal{A}} s_{2} \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)\left(s_{1}\right) \succ$ $\mathcal{A}(\beta)\left(s_{2}\right) \succ \ldots$ (with β chosen arbitrarily). Thus $\succ_{\mathcal{A}}$ is well-founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set $U_{\mathcal{A}}$ is some subset of the natural numbers.
To every function symbol f with arity n we associate a polynomial $P_{f}\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ with coefficients in \mathbb{N} and indeterminates X_{1}, \ldots, X_{n}. Then we define $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=P_{f}\left(a_{1}, \ldots, a_{n}\right)$ for $a_{i} \in U_{\mathcal{A}}$.

Requirement 1:
If $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, then $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \in U_{\mathcal{A}}$. (Otherwise, \mathcal{A} would not be a Σ algebra.)

Requirement 2:
$f_{\mathcal{A}}$ must be monotone (w.r.t. \succ).
From now on:
$U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\}$.
If $\operatorname{arity}(f)=0$, then P_{f} is a constant ≥ 2.
If $\operatorname{arity}(f)=n \geq 1$, then P_{f} is a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$, such that every X_{i} occurs in some monomial with exponent at least 1 and non-zero coefficient.
\Rightarrow Requirements 1 and 2 are satisfied.
The mapping from function symbols to polynomials can be extended to terms: A term t containing the variables x_{1}, \ldots, x_{n} yields a polynomial P_{t} with indeterminates X_{1}, \ldots, X_{n} (where X_{i} corresponds to $\beta\left(x_{i}\right)$).

Example:
$\Omega=\{b, f, g\}$ with $\operatorname{arity}(b)=0, \operatorname{arity}(f)=1, \operatorname{arity}(g)=3$,
$U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 2\}$,
$P_{b}=3, \quad P_{f}\left(X_{1}\right)=X_{1}^{2}, \quad P_{g}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2} X_{3}$.
Let $t=g(f(b), f(x), y)$, then $P_{t}(X, Y)=9+X^{2} Y$.
If P, Q are polynomials in $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$, we write $P>Q$ if $P\left(a_{1}, \ldots, a_{n}\right)>Q\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Clearly, $l \succ_{\mathcal{A}} r$ iff $P_{l}>P_{r}$.
Question: Can we check $P_{l}>P_{r}$ automatically?

Given a polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with integer coefficients, is $P=0$ for some n-tuple of natural numbers?

Theorem 4.34 Hilbert's 10th Problem is undecidable.

Proposition 4.35 Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_{l}>P_{r}$.

Proof. By reduction of Hilbert's 10th Problem.

One possible solution:
Test whether $P_{l}\left(a_{1}, \ldots, a_{n}\right)>P_{r}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in\{x \in \mathbb{R} \mid x \geq 2\}$.
This is decidable (but very slow). Since $U_{\mathcal{A}} \subseteq\{x \in \mathbb{R} \mid x \geq 2\}$, it implies $P_{l}>P_{r}$.
Another solution (Ben Cherifa and Lescanne):
Consider the difference $P_{l}\left(X_{1}, \ldots, X_{n}\right)-P_{r}\left(X_{1}, \ldots, X_{n}\right)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$:
$P \Rightarrow{ }_{B C L} \top$,
if P contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.
$P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow_{B C L} P+c^{\prime} X_{1}^{p_{1}} \ldots X_{n}^{p_{n}}$,
if $c, d>0, p_{i} \geq q_{i}$ for all i, and $c^{\prime}=c-d \cdot 2^{\left(q_{1}-p_{1}\right)+\cdots+\left(q_{n}-p_{n}\right)} \geq 0$.
$P+c X_{1}^{p_{1}} \cdots X_{n}^{p_{n}}-d X_{1}^{q_{1}} \cdots X_{n}^{q_{n}} \Rightarrow_{B C L} P-d^{\prime} X_{1}^{q_{1}} \ldots X_{n}^{q_{n}}$,
if $c, d>0, p_{i} \geq q_{i}$ for all i, and $d^{\prime}=d-c \cdot 2^{\left(p_{1}-q_{1}\right)+\cdots+\left(p_{n}-q_{n}\right)}>0$.

Lemma 4.36 If $P \Rightarrow_{B C L} P^{\prime}$, then $P\left(a_{1}, \ldots, a_{n}\right) \geq P^{\prime}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in$ $U_{\mathcal{A}}$.

Proof. Follows from the fact that $a_{i} \in U_{\mathcal{A}}$ implies $a_{i} \geq 2$.

Proposition 4.37 If $P \Rightarrow{ }_{B C L}^{+} \top$, then $P\left(a_{1}, \ldots, a_{n}\right)>0$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.
(If R is finite: decision procedure for E.)
How to ensure termination?
Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_{R} \subseteq \succ$ (i. e., $l \succ r$ for every $l \rightarrow r \in R$).

How to ensure confluence?
Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R : $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$

At the beginning, $E=E_{0}$ is the input set and $R=R_{0}$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E^{\prime}, R^{\prime}$, the equational theories of $E \cup R$ and $E^{\prime} \cup R^{\prime}$ agree: $\approx_{E \cup R}=$ $\approx_{E^{\prime} \cup R^{\prime}}$.

Notations:

The formula $s \dot{\approx} t$ denotes either $s \approx t$ or $t \approx s$.
$\mathrm{CP}(R)$ denotes the set of all critical pairs between rules in R.

Orient:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E, \quad R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

Note: There are equations $s \approx t$ that cannot be oriented, i. e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented - but we don't need them anyway:
Delete:

$$
\frac{E \cup\{s \approx s\}, \quad R}{E, R}
$$

Critical pairs between rules in R are turned into additional equations:
Deduce:

$$
\frac{E, R}{E \cup\{s \approx t\}, \quad R} \quad \text { if }\langle s, t\rangle \in \mathrm{CP}(R) \text {. }
$$

Note: If $\langle s, t\rangle \in \mathrm{CP}(R)$ then $s \leftarrow_{R} u \rightarrow_{R} t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E \cup\{u \approx t\}, \quad R} \quad \text { if } s \rightarrow_{R} u
$$

Simplification of the right-hand side of a rule is unproblematic.
R-Simplify-Rule:

$$
\begin{array}{ll}
\frac{E,}{E,} & R \cup\{s \rightarrow t\} \\
R \cup\{s \rightarrow u\}
\end{array} \quad \text { if } t \rightarrow_{R} u .
$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

$$
\begin{array}{ll}
\frac{E, R \cup\{s \rightarrow t\}}{E \cup\{u \approx t\}, R} & \begin{array}{l}
\text { if } s \rightarrow_{R} u \text { using a rule } l \rightarrow r \in R \\
\text { such that } s \sqsupset l \text { (see next slide). }
\end{array}
\end{array}
$$

For technical reasons, the lhs of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset l$, where the encompassment quasi-ordering \beth is defined by

$$
s \sqsupset l \text { if } s / p=l \sigma \text { for some } p \text { and } \sigma
$$

and $\sqsupset=\beth \backslash \underset{\sim}{\check{L}}$ is the strict part of $\underset{\sim}{~}$.

Lemma $4.38 \sqsupset$ is a well-founded strict partial ordering.

Lemma 4.39 If $E, R \vdash E^{\prime}, R^{\prime}$, then $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.

Lemma 4.40 If $E, R \vdash E^{\prime}, R^{\prime}$ and $\rightarrow_{R} \subseteq \succ$, then $\rightarrow_{R^{\prime}} \subseteq \succ$.

