
The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering≻A over TΣ(X) by s ≻A t iffA(β)(s) ≻ A(β)(t) for all assignments
β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.31 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. 2

A function f : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

f(b1, . . . , a, . . . , bn) ≻ f(b1, . . . , a
′, . . . , bn) for all a, a′, bi ∈ UA.

Lemma 4.32 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,

then ≻A is compatible with Σ-operations.

Proof. Let s ≻ s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA be
an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). 2

Theorem 4.33 If the interpretation fA of every function symbol f is monotone w. r. t.≻,

then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. 2

97



Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is some subset of the natural numbers.

To every function symbol f with arity n we associate a polynomial Pf(X1, . . . , Xn) ∈
N[X1, . . . , Xn] with coefficients in N and indeterminates X1, . . . , Xn. Then we define
fA(a1, . . . , an) = Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-
algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = {n ∈ N | n ≥ 2 }.

If arity(f) = 0, then Pf is a constant ≥ 2.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial with exponent at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A
term t containing the variables x1, . . . , xn yields a polynomial Pt with indeterminates
X1, . . . , Xn (where Xi corresponds to β(xi)).

Example:

Ω = {b, f, g} with arity(b) = 0, arity(f) = 1, arity(g) = 3,
UA = {n ∈ N | n ≥ 2 },
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 + X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y ) = 9 + X2Y .

If P, Q are polynomials in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, l ≻A r iff Pl > Pr.

Question: Can we check Pl > Pr automatically?

98



Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.34 Hilbert’s 10th Problem is undecidable.

Proposition 4.35 Given a polynomial interpretation and two terms l, r, it is undecid-

able whether Pl > Pr.

Proof. By reduction of Hilbert’s 10th Problem. 2

One possible solution:

Test whether Pl(a1, . . . , an) > Pr(a1, . . . , an) for all a1, . . . , an ∈ { x ∈ R | x ≥ 2 }.

This is decidable (but very slow). Since UA ⊆ { x ∈ R | x ≥ 2 }, it implies Pl > Pr.

Another solution (Ben Cherifa and Lescanne):

Consider the difference Pl(X1, . . . , Xn) − Pr(X1, . . . , Xn) as a polynomial with real
coefficients and apply the following inference system to it to show that it is positive
for all a1, . . . , an ∈ UA:

P ⇒BCL ⊤,

if P contains at least one monomial with a positive coefficient and no monomial with
a negative coefficient.

P + cXp1

1 · · ·X
pn

n − dXq1

1 · · ·X
qn

n ⇒BCL P + c′Xp1

1 . . .Xpn

n ,

if c, d > 0, pi ≥ qi for all i, and c′ = c− d · 2(q1−p1)+···+(qn−pn) ≥ 0.

P + cXp1

1 · · ·X
pn

n − dXq1

1 · · ·X
qn

n ⇒BCL P − d′Xq1

1 . . . Xqn

n ,

if c, d > 0, pi ≥ qi for all i, and d′ = d− c · 2(p1−q1)+···+(pn−qn) > 0.

Lemma 4.36 If P ⇒BCL P ′, then P (a1, . . . , an) ≥ P ′(a1, . . . , an) for all a1, . . . , an ∈
UA.

Proof. Follows from the fact that ai ∈ UA implies ai ≥ 2. 2

Proposition 4.37 If P ⇒+
BCL ⊤, then P (a1, . . . , an) > 0 for all a1, . . . , an ∈ UA.

99



4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E, R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

E ∪ {s
.

≈ t}, R

E, R ∪ {s → t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R

100



Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s←R u →R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s →R u.

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

E, R ∪ {s → t}

E, R ∪ {s → u}
if t →R u.

Simplification of the left-hand side may influence orientability and orientation. There-
fore, it yields an equation:

L-Simplify-Rule:

E, R ∪ {s → t}

E ∪ {u ≈ t}, R

if s →R u using a rule l → r ∈ R
such that s ⊐ l (see next slide).

For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment

quasi-ordering ⊐
∼ is defined by

s ⊐
∼ l if s/p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐

∼.

Lemma 4.38 ⊐ is a well-founded strict partial ordering.

Lemma 4.39 If E, R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.40 If E, R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

101


