Corollary 4.49 If \(D = D' \vee u \approx v \) is productive, then \(D' \) is false and \(D \) is true in \(R_\infty \) and \(R_C \) for all \(C \succ_C D \).

Proof. Obviously, \(D \) is true in \(R_\infty \) and \(R_C \) for all \(C \succ_C D \).

Since all negative literals of \(D' \) are false in \(R_D \), it is clear that they are false in \(R_\infty \) and \(R_C \). For the positive literals \(u' \approx v' \) of \(D' \), condition (e) ensures that they are false in \(R_D \cup \{ u \rightarrow v \} \). Since \(u' \preceq u \) and \(v' \preceq u \) and all rules in \(R_\infty \setminus R_D \) have left-hand sides that are larger than \(u \), these rules cannot be used in a rewrite proof of \(u' \downarrow v' \), hence \(u' \not\downarrow_{R_C} v' \) and \(u' \not\downarrow_{R_\infty} v' \). \(\square \)

Lemma 4.50 ("Lifting Lemma") Let \(C \) be a clause and let \(\theta \) be a substitution such that \(C\theta \) is ground. Then every equality resolution or equality factoring inference from \(C\theta \) is a ground instance of an inference from \(C \).

Proof. Exercise. \(\square \)

Lemma 4.51 ("Lifting Lemma") Let \(D = D' \vee u \approx v \) and \(C = C' \vee [\neg] s \approx t \) be two clauses (without common variables) and let \(\theta \) be a substitution such that \(D\theta \) and \(C\theta \) are ground.

If there is a superposition inference between \(D\theta \) and \(C\theta \) where \(u\theta \) and some subterm of \(s\theta \) are overlapped, and \(u\theta \) does not occur in \(s\theta \) at or below a variable position of \(s \), then the inference is a ground instance of a superposition inference from \(D \) and \(C \).

Proof. Exercise. \(\square \)

Theorem 4.52 ("Model Construction") Let \(N \) be a set of clauses that is saturated up to redundancy and does not contain the empty clause. Then we have for every ground clause \(C\theta \in G_\Sigma(N) \):

(i) \(E_{C\theta} = \emptyset \) if and only if \(C\theta \) is true in \(R_{C\theta} \).

(ii) If \(C\theta \) is redundant w. r. t. \(G_\Sigma(N) \), then it is true in \(R_{C\theta} \).

(iii) \(C\theta \) is true in \(R_\infty \) and in \(R_D \) for every \(D \in G_\Sigma(N) \) with \(D \succ_C C\theta \).

Proof. We use induction on the clause ordering \(\succ_C \) and assume that (i)–(iii) are already satisfied for all clauses in \(G_\Sigma(N) \) that are smaller than \(C\theta \). Note that the “if” part of (i) is obvious from the construction and that condition (iii) follows immediately from (i) and Corollaries 4.48 and 4.49. So it remains to show (ii) and the “only if” part of (i).
Case 1: $C\theta$ is redundant w. r. t. $G_\Sigma(N)$.

If $C\theta$ is redundant w. r. t. $G_\Sigma(N)$, then it follows from clauses in $G_\Sigma(N)$ that are smaller than $C\theta$. By part (iii) of the induction hypothesis, these clauses are true in $R_{C\theta}$. Hence $C\theta$ is true in $R_{C\theta}$.

Case 2: $x\theta$ is reducible by $R_{C\theta}$.

Suppose there is a variable x occurring in C such that $x\theta$ is reducible by $R_{C\theta}$, say $x\theta \rightarrow_{R_{C\theta}} w$. Let the substitution θ' be defined by $x\theta' = w$ and $y\theta' = y\theta$ for every variable $y \neq x$. The clause $C\theta'$ is smaller than $C\theta$. By part (iii) of the induction hypothesis, it is true in $R_{C\theta}$. By congruence, every literal of $C\theta$ is true in $R_{C\theta}$ if and only if the corresponding literal of $C\theta'$ is true in $R_{C\theta}$; hence $C\theta$ is true in $R_{C\theta}$.

Case 3: $C\theta$ contains a maximal negative literal.

Suppose that $C\theta$ does not fall into Case 1 or 2 and that $C\theta = C'\theta \lor s\theta \not\approx s'\theta$, where $s\theta \not\approx s'\theta$ is maximal in $C\theta$. If $s\theta \approx s'\theta$ is false in $R_{C\theta}$, then $C\theta$ is clearly true in $R_{C\theta}$ and we are done. So assume that $s\theta \approx s'\theta$ is true in $R_{C\theta}$, that is, $s\theta \downarrow_{R_{C\theta}} s'\theta$. Without loss of generality, $s\theta \succeq s'\theta$.

Case 3.1: $s\theta = s'\theta$.

If $s\theta = s'\theta$, then there is an equality resolution inference

$$
\frac{C'\theta \lor s\theta \not\approx s'\theta}{C'\theta}.
$$

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

$$
\frac{C' \lor s \not\approx s'}{C'\sigma}.
$$

where $C = C' \lor s \not\approx s'$ is contained in N and $\theta = \rho \circ \sigma$. (Without loss of generality, σ is idempotent, therefore $C'\theta = C'\sigma\rho = C'\sigma\sigma\rho = C'\sigma\theta$, so $C'\theta$ is a ground instance of $C'\sigma$.). Since $C\theta$ is not redundant w. r. t. $G_\Sigma(N)$, C is not redundant w. r. t. N. As N is saturated up to redundancy, the conclusion $C'\sigma$ of the inference from C is contained in $N \cup \text{Red}(N)$. Therefore, $C'\theta$ is either contained in $G_\Sigma(N)$ and smaller than $C\theta$, or it follows from clauses in $G_\Sigma(N)$ that are smaller than itself (and therefore smaller than $C\theta$). By the induction hypothesis, clauses in $G_\Sigma(N)$ that are smaller than $C\theta$ are true in $R_{C\theta}$, thus $C'\theta$ and $C\theta$ are true in $R_{C\theta}$.

116
Case 3.2: $s\theta \succ s'\theta$.

If $s\theta \upharpoonright_{RC^0} s'\theta$ and $s\theta \succ s'\theta$, then $s\theta$ must be reducible by some rule in some $E_{D\theta} \subseteq RC^0$. (Without loss of generality we assume that C and D are variable disjoint; so we can use the same substitution θ.) Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ with $E_{D\theta} = \{ t\theta \rightarrow t'\theta \}$. Since $D\theta$ is productive, $D'\theta$ is false in RC^0. Besides, by part (ii) of the induction hypothesis, $D\theta$ is not redundant w.r.t. $G_{\Sigma}(N)$, so D is not redundant w.r.t. N. Note that $t\theta$ cannot occur in $s\theta$ at or below a variable position of s, say $x\theta = w[t\theta]$, since otherwise $C\theta$ would be subject to Case 2 above. Consequently, the left superposition inference

$$
\begin{array}{c}
D'\theta \lor t\theta \approx t'\theta \\
C'\theta \lor s\theta[t\theta] \not\approx s'\theta
\end{array}
\equiv
\begin{array}{c}
D'\theta \lor C'\theta \lor s\theta[t\theta] \not\approx s'\theta
\end{array}
$$

is a ground instance of a left superposition inference from D and C. By saturation up to redundancy, its conclusion is either contained in $G_{\Sigma}(N)$ and smaller than $C\theta$, or it follows from clauses in $G_{\Sigma}(N)$ that are smaller than itself (and therefore smaller than $C\theta$). By the induction hypothesis, these clauses are true in RC^0, thus $D'\theta \lor C'\theta \lor s\theta[t\theta] \not\approx s'\theta$ is true in RC^0. Since $D'\theta$ and $s\theta[t\theta] \not\approx s'\theta$ are false in RC^0, both $C'\theta$ and $C\theta$ must be true.

Case 4: $C\theta$ does not contain a maximal negative literal.

Suppose that $C\theta$ does not fall into Cases 1 to 3. Then $C\theta$ can be written as $C'\theta \lor s\theta \approx s'\theta$, where $s\theta \approx s'\theta$ is a maximal literal of $C\theta$. If $E_{C^0} = \{ s\theta \rightarrow s'\theta \}$ or $C'\theta$ is true in RC^0 or $s\theta = s'\theta$, then there is nothing to show, so assume that $E_{C^0} = \emptyset$ and that $C'\theta$ is false in RC^0. Without loss of generality, $s\theta \succ s'\theta$.

Case 4.1: $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal.

If $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal, then $C\theta$ can be written as $C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta$, where $t\theta = s\theta$ and $t'\theta = s'\theta$. In this case, there is a equality factoring inference

$$
\begin{array}{c}
C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta
\end{array}
\equiv
\begin{array}{c}
C''\theta \lor t'\theta \not\approx s'\theta \lor t\theta \approx t'\theta
\end{array}
$$

This inference is a ground instance of an inference from C. By induction hypothesis, its conclusion is true in RC^0. Trivially, $t'\theta = s'\theta$ implies $t'\theta \upharpoonright_{RC^0} s'\theta$, so $t'\theta \not\approx s'\theta$ must be false and $C\theta$ must be true in RC^0.

Case 4.2: $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible.

Suppose that $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible by some rule in $E_{D\theta} \subseteq RC^0$. Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ and $E_{D\theta} = \{ t\theta \rightarrow t'\theta \}$. Since $D\theta$ is productive, $D\theta$ is not redundant and $D'\theta$ is false in RC^0. We can now proceed in essentially the
same way as in Case 3.2: If $t\theta$ occurred in $s\theta$ at or below a variable position of s, say $x\theta = w[t\theta]$, then $C\theta$ would be subject to Case 2 above. Otherwise, the right superposition inference

\[
\frac{D'\theta \lor t\theta \approx t'\theta \quad C'\theta \lor s\theta[t\theta] \approx s'\theta}{D'\theta \lor C'\theta \lor s\theta[t'\theta] \approx s'\theta}
\]

is a ground instance of a right superposition inference from D and C. By saturation up to redundancy, its conclusion is true in $R_{C\theta}$. Since $D'\theta$ and $C'\theta$ are false in $R_{C\theta}$, $s\theta[t'\theta] \approx s'\theta$ must be true in $R_{C\theta}$. On the other hand, $t\theta \approx t'\theta$ is true in $R_{C\theta}$, so by congruence, $s\theta[t\theta] \approx s'\theta$ and $C\theta$ are true in $R_{C\theta}$.

Case 4.3: $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is irreducible.

Suppose that $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is irreducible by $R_{C\theta}$. Then there are three possibilities: $C\theta$ can be true in $R_{C\theta}$, or $C'\theta$ can be true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$, or $E_{C\theta} = \{s\theta \rightarrow s'\theta\}$. In the first and the third case, there is nothing to show. Let us therefore assume that $C\theta$ is false in $R_{C\theta}$ and $C'\theta$ is true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$. Then $C'\theta = C''\theta \lor t\theta \approx t'\theta$, where the literal $t\theta \approx t'\theta$ is true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$ and false in $R_{C\theta}$. In other words, $t\theta \rightarrow_{R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}} t'\theta$, but not $t\theta \rightarrow_{R_{C\theta}} t'\theta$. Consequently, there is a rewrite proof of $t\theta \rightarrow^* u \leftarrow^* t'\theta$ by $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$ in which the rule $s\theta \rightarrow s'\theta$ is used at least once. Without loss of generality we assume that $t\theta \geq t'\theta$. Since $s\theta \approx s'\theta \geq_L t\theta \approx t'\theta$ and $s\theta \geq s'\theta$ we can conclude that $s\theta \geq t\theta > t'\theta$. But then there is only one possibility how the rule $s\theta \rightarrow s'\theta$ can be used in the rewrite proof: We must have $s\theta = t\theta$ and the rewrite proof must have the form $t\theta \rightarrow s'\theta \rightarrow^* u \leftarrow^* t'\theta$, where the first step uses $s\theta \rightarrow s'\theta$ and all other steps use rules from $R_{C\theta}$. Consequently, $s'\theta \approx t'\theta$ is true in $R_{C\theta}$. Now observe that there is an equality factoring inference

\[
\frac{C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta}{C''\theta \lor t'\theta \not\approx s'\theta \lor t\theta \approx t'\theta}
\]

whose conclusion is true in $R_{C\theta}$ by saturation. Since the literal $t'\theta \not\approx s'\theta$ must be false in $R_{C\theta}$, the rest of the clause must be true in $R_{C\theta}$, and therefore $C\theta$ must be true in $R_{C\theta}$, contradicting our assumption. This concludes the proof of the theorem. \square

A Σ-interpretation A is called term-generated, if for every $b \in U_A$ there is a ground term $t \in T_\Sigma(\emptyset)$ such that $b = A(\beta)(t)$.

Lemma 4.53 Let N be a set of (universally quantified) Σ-clauses and let A be a term-generated Σ-interpretation. Then A is a model of $G_\Sigma(N)$ if and only if it is a model of N.

118
Proof. (\Rightarrow): Let $\mathcal{A} \models G_\Sigma(N)$; let $(\forall \vec{x} C) \in N$. Then $\mathcal{A} \models \forall \vec{x} C$ iff $\mathcal{A}(\gamma[x_i \mapsto a_i])(C) = 1$ for all γ and a_i. Choose ground terms t_i such that $\mathcal{A}(\gamma(t_i)) = a_i$; define θ such that $x_i \theta = t_i$, then $\mathcal{A}(\gamma[x_i \mapsto a_i])(C) = 1$ since $C \theta \in G_\Sigma(N)$.

(\Leftarrow): Let \mathcal{A} be a model of N; let $C \in N$ and $C \theta \in G_\Sigma(N)$. Then $\mathcal{A}(\gamma(C \theta)) = 1$ since $\mathcal{A} \models N$.

Theorem 4.54 (Refutational Completeness: Static View) Let N be a set of clauses that is saturated up to redundancy. Then N has a model if and only if N does not contain the empty clause.

Proof. If $\bot \in N$, then obviously N does not have a model. If $\bot \not\in N$, then the interpretation R_∞ (that is, $T_\Sigma(\emptyset)/R_\infty$) is a model of all ground instances in $G_\Sigma(N)$ according to part (iii) of the model construction theorem. As $T_\Sigma(\emptyset)/R_\infty$ is term generated, it is a model of N.

So far, we have considered only inference rules that add new clauses to the current set of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form $N_0 \vdash N_1 \vdash N_2 \vdots$, where each N_{i+1} is obtained from N_i by adding the consequence of some inference from clauses in N_i.

Under which circumstances are we allowed to delete (or simplify) a clause during the derivation?

A run of the superposition calculus is a sequence $N_0 \vdash N_1 \vdash N_2 \vdots$, such that
(i) $N_i \models N_{i+1}$, and
(ii) all clauses in $N_i \setminus N_{i+1}$ are redundant w.r.t. N_{i+1}.

In other words, during a run we may add a new clause if it follows from the old ones, and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, $N_\infty = \bigcup_{i \geq 0} N_i$ and $N_* = \bigcup_{i \geq 0} \bigcap_{j \geq i} N_j$. The set N_* of all persistent clauses is called the limit of the run.

Lemma 4.55 If $N \subseteq N'$, then $\text{Red}(N) \subseteq \text{Red}(N')$.

Proof. Obvious.

Lemma 4.56 If $N' \subseteq \text{Red}(N)$, then $\text{Red}(N) \subseteq \text{Red}(N \setminus N')$.

Proof. Follows from the compactness of first-order logic and the well-foundedness of the multiset extension of the clause ordering.
Lemma 4.57 Let $N_0 \vdash N_1 \vdash N_2 \vdash \ldots$ be a run. Then $\text{Red}(N_i) \subseteq \text{Red}(N_\infty)$ and $\text{Red}(N_i) \subseteq \text{Red}(N_\ast)$ for every i.

Proof. Exercise. \hfill \Box

Corollary 4.58 $N_i \subseteq N_\ast \cup \text{Red}(N_\ast)$ for every i.

Proof. If $C \in N_i \setminus N_\ast$, then there is a $k \geq i$ such that $C \in N_k \setminus N_{k+1}$, so C must be redundant w.r.t. N_{k+1}. Consequently, C is redundant w.r.t. N_\ast. \hfill \Box

A run is called fair, if the conclusion of every inference from clauses in $N_\ast \setminus \text{Red}(N_\ast)$ is contained in some $N_i \cup \text{Red}(N_i)$.

Lemma 4.59 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant clauses in N_\ast is contained in some $N_i \cup \text{Red}(N_i)$, and therefore contained in $N_\ast \cup \text{Red}(N_\ast)$. Hence N_\ast is saturated up to redundancy. \hfill \Box

Theorem 4.60 (Refutational Completeness: Dynamic View) Let $N_0 \vdash N_1 \vdash N_2 \vdash \ldots$ be a fair run, let N_\ast be its limit. Then N_0 has a model if and only if $\bot \not\in N_\ast$.

Proof. (\Leftarrow): By fairness, N_\ast is saturated up to redundancy. If $\bot \not\in N_\ast$, then it has a term-generated model. Since every clause in N_0 is contained in N_\ast or redundant w.r.t. N_\ast, this model is also a model of $G_\Sigma(N_0)$ and therefore a model of N_0.

(\Rightarrow): Obvious, since $N_0 \models N_\ast$. \hfill \Box

Superposition: Extensions

Extensions and improvements:

- simplification techniques,
- selection functions (as for ordered resolution),
- redundancy for inferences,
- basic strategies,
- constraint reasoning.

120