
{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

Backtracking required for retrieval.

Literature

Literature:

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

6 Many-Sorted First-Order Logic

→Many-Sorted First-order logic

• generalization of first-order logic

• idea is to prohibit ill-defined statements, e.g., cons(3, nil) + 2

• identical proof theory

• sorts denote subsets of the domain

129

• variables come with a sort

• functions are declared over the sorts

Many-Sorted Signature

A signature

ΣΥ = (Ω, Π, Υ, υ)

fixes an alphabet of non-logical symbols, where

• Ω, Π are the sets of function, predicate symbols

• Υ is a set of sort symbols

• υ is a function assigning sorts to function, predicate and variable symbols

Terms, Atoms,Formulae

Well-sorted Terms of sort S ∈ Υ over ΣΥ (resp., TS
ΣΥ

(X)-terms) are formed according
to these syntactic rules:

s, t, u, v ::= x , x ∈ X, υ(x) = S (variable)
| f(t1, ..., tn) , f ∈ Ω, arity(f) = n, υ(f) = T1 . . . TnS,

ti ∈ TTi

ΣΥ
(X) (functional term)

By TS
ΣΥ

we denote the set of ΣΥ-ground terms of sort S, TΣΥ
(X) =

⋃
S∈Υ TS

ΣΥ
(X).

If P ∈ Π, ti ∈ TTi

ΣΥ
(X), υ(P) = T1 . . . Tn then P (t1, ..., tn) is an atom. For any t, s ∈

TS
ΣΥ

(X), s ≈ t is an atom.

Formulae are build as for standard (unsorted) first-order logic.

For substitions we additionally require that if xσ = t then t ∈ T
υ(x)
ΣΥ

(X) and call it well-

sorted. Note that application of the standard unification algorithms to any two terms
of the same sort yields a well-sorted unifier (if there exists a unifier at all).

Many-Sorted Structures

A ΣΥ-algebra is a quadruple

A = (UA, (fA : (T1)A × . . .× (Tn)A → SA)f∈Ω,

(pA ⊆ (S1)A × . . .× (Sm)A)p∈Π,

(TA ⊆ UA)T∈Υ)

where arity(f) = n, arity(p) = m, υ(f) = T1 . . . TnS, υ(p) = S1 . . . Sm, TA 6= ∅, UA 6= ∅ is
a set, called the universe of A.

130

The rest of the semantics is identical to the unsorted case, except that valuations respect
the sort information.

7 SUP(LA)

→Superposition Modulo Linear Arithmetic

• Consider the base specification SP = (ΣLA,ALA), where ΣLA = (Q ∪ {+,−, ∗}, {≥
,≤, >, <}) see Section 2.

• The hierarchic extension of SP is SP′ = (Σ′, N ′), where ΣLA ⊆ Σ′ and N ′ is a set
of Σ′ clauses.

• We consider a many-sorted setting, consisting of a base sort, containing all terms of
ΣLA plus potentially extension terms from Σ′ \ ΣLA, and a general sort containing
all other terms.

• A term (a clause) consisting only of ΣLA symbols and base sort variables, is called
a base term (base clause).

• For the following results, we need that ALA is term-generated, i.e., for any a ∈ ULA

(= Q) there is a ground term t ∈ TΣLA
with ALA(t) = a. This is obvious, because

Q ⊆ ΣLA.

• Furthermore, we need that SP = (ΣLA,ALA) is compact.

• A model of A′ of SP′, i.e., A′ |= N ′, is called hierarchic if A′ |ΣLA
= ALA.

• A substitution is called simple if it maps variables of the base sort to base terms.

Hierarchic Clauses

A clause C = Λ ‖ C ′ is called hierarchic if Λ only contains base terms and base literals
(ΣLA) and all base terms in C ′ are variables. The semantics of C is

∧
Λ→ C ′.

Any clause can be equivalently transformed into a hierarchic clause: whenever a sub-
term t whose top symbol is a base theory symbol occurs immediately below a non-base
operator symbol, it is replaced by a new base sort variable x (“abstracted out”) and the
equation x ≈ t is added to Λ. Analogously, if a subterm t whose top symbol is not a
base theory symbol occurs immediately below a base operator symbol, it is replaced by
a general variable y and the disequation y 6≈ t is added to C ′. This transformation is
repeated until the clause is hierarchic.

131

Superposition Modulo LA

Pos. Superposition:
Λ1 ‖ D′ ∨ t ≈ t′ Λ2 ‖ C ′ ∨ s[u] ≈ s′

(Λ1, Λ2 ‖ D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and simple and
u is not a variable.

Neg. Superposition:
Λ1 ‖ D′ ∨ t ≈ t′ Λ2 ‖ C ′ ∨ s[u] 6≈ s′

(Λ1, Λ2 ‖ D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and simple and
u is not a variable.

Equality Resolution:
Λ ‖ C ′ ∨ s 6≈ s′

(Λ ‖ C ′)σ

where σ = mgu(s, s′) and simple.

Equality Factoring:
Λ ‖ C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(Λ ‖ C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′) and simple.

Constraint Refutation:
Λ ‖ 2

2

where ¬(
∧

Λ)
is inconsistent in ALA.

Redundancy

A clause C ∈ N is called redundant if for all simple ground instances C ′ of C there are
simple ground instances C ′

1, . . . , C
′
n from N such that C ′

1, . . . , C
′
n |= C ′ and C ′

i ≺ C ′ for
all i.

A hierarchic clause Λ ‖ C is called a tautology if C is a tautology or the existential
closure of

∧
Λ is unsatisfiable in ALA.

A hierarchic clause Λ1 ‖ C1 subsumes a hierarchic clause Λ2 ‖ C2, if there is a simple
matcher σ such that C1σ ⊂ C2 and the universal closure of

∧
Λ2 →

∧
Λ1σ holds in

ALA.

Purely base sort variable equations generated during reasoning are moved from the FOL
to the LA part.

132

Sufficient Completeness

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances from N and every ground non-base
term t of the base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Completeness of SUP(LA)

The hierarchic superposition calculus modulo LA is refutationally complete for all sets
of clauses that are sufficiently complete with respect to simple instances.

Current Hot Research Topics & Applications

• decidability of SUP(LA) ⇒ automata theory, software analysis

• better/different calculi for SAT ⇒ configuration management

• parallel calculi for SAT/FOF ⇒ graphics hardware

• scalable calculi for Finite Domain FOF ⇒ knowledge management

• understanding the combination of FOF with theories ⇒ insight

The End

133

