1.6 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge Univ. Press, 1998, Chapter 2.

To show termination of the iterative DPLL calculus, we will make use of the concept of well-founded orderings.

Partial Orderings

A strict partial ordering \succ on a set M is a transitive and irreflexive binary relation on M.

An $a \in M$ is called minimal, if there is no b in M such that $a \succ b$.
An $a \in M$ is called smallest, if $b \succ a$ for all $b \in M$ different from a.
Notation:
\prec for the inverse relation \succ^{-1}
\succeq for the reflexive closure ($\succ \cup=$) of \succ

Well-Foundedness

A strict partial ordering \succ is called well-founded (Noetherian), if there is no infinite descending chain $a_{0} \succ a_{1} \succ a_{2} \succ \ldots$ with $a_{i} \in M$.

Well-Founded Orderings: Examples

Natural numbers. ($\mathbb{N},>$)
Lexicographic orderings. Let $\left(M_{1}, \succ_{1}\right),\left(M_{2}, \succ_{2}\right)$ be well-founded orderings. Then let their lexicographic combination

$$
\succ=\left(\succ_{1}, \succ_{2}\right)_{l e x}
$$

on $M_{1} \times M_{2}$ be defined as

$$
\left(a_{1}, a_{2}\right) \succ\left(b_{1}, b_{2}\right): \Leftrightarrow a_{1} \succ_{1} b_{1}, \text { or else } a_{1}=b_{1} \& a_{2} \succ_{2} b_{2}
$$

(analogously for more than two orderings)
This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets Σ with a well-founded ordering $>_{\Sigma}$, the relation \succ, defined as $\left.w \succ w^{\prime}:=\alpha\right)|w|>\left|w^{\prime}\right|$ or
$\beta)|w|=\left|w^{\prime}\right|$ and $w>_{\Sigma, l e x} w^{\prime}$,
is a well-founded ordering on Σ^{*} (proof below).
Counterexamples:
($\mathbb{Z},>)$;
($\mathbb{N},<$);
the lexicographic ordering on Σ^{*}

Basic Properties of Well-Founded Orderings

Lemma $1.9(M, \succ)$ is well-founded if and only if every $\emptyset \subset M^{\prime} \subseteq M$ has a minimal element.

Lemma $1.10\left(M_{i}, \succ_{i}\right)$ is well-founded for $i=1,2$ if and only if $\left(M_{1} \times M_{2}, \succ\right)$ with $\succ=\left(\succ_{1}, \succ_{2}\right)_{\text {lex }}$ is well-founded.

Proof. (i) " \Rightarrow ": Suppose $\left(M_{1} \times M_{2}, \succ\right)$ is not well-founded. Then there is an infinite sequence $\left(a_{0}, b_{0}\right) \succ\left(a_{1}, b_{1}\right) \succ\left(a_{2}, b_{2}\right) \succ \ldots$.
Let $A=\left\{a_{i} \mid i \geq 0\right\} \subseteq M_{1}$. Since $\left(M_{1}, \succ_{1}\right)$ is well-founded, A has a minimal element a_{n}. But then $B=\left\{b_{i} \mid i \geq n\right\} \subseteq M_{2}$ can not have a minimal element, contradicting the well-foundedness of $\left(M_{2}, \succ_{2}\right)$.
(ii) " \Leftarrow ": obvious.

Noetherian Induction

Theorem 1.11 (Noetherian Induction) Let (M, \succ) be a well-founded ordering, let Q be a property of elements of M.

If for all $m \in M$ the implication
if $Q\left(m^{\prime}\right)$, for all $m^{\prime} \in M$ such that $m \succ m^{\prime},{ }^{1}$
then $Q(m){ }^{2}$
is satisfied, then the property $Q(m)$ holds for all $m \in M$.

[^0]Proof. Let $X=\{m \in M \mid Q(m)$ false $\}$. Suppose, $X \neq \emptyset$. Since (M, \succ) is well-founded, X has a minimal element m_{1}. Hence for all $m^{\prime} \in M$ with $m^{\prime} \prec m_{1}$ the property $Q\left(m^{\prime}\right)$ holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_{1}, hence $Q\left(m_{1}\right)$ must be true so that m_{1} can not be in X. Contradiction.

Multi-Sets

Let M be a set. A multi-set S over M is a mapping $S: M \rightarrow \mathbb{N}$. Hereby $S(m)$ specifies the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if $S(m)>0$.
We use set notation $(\epsilon, \subset, \subseteq, \cup, \cap$, etc.) with analogous meaning also for multi-sets, e. g.,

$$
\begin{aligned}
\left(S_{1} \cup S_{2}\right)(m) & =S_{1}(m)+S_{2}(m) \\
\left(S_{1} \cap S_{2}\right)(m) & =\min \left\{S_{1}(m), S_{2}(m)\right\}
\end{aligned}
$$

A multi-set is called finite, if

$$
|\{m \in M \mid s(m)>0\}|<\infty,
$$

for each m in M.
From now on we only consider finite multi-sets.
Example. $S=\{a, a, a, b, b\}$ is a multi-set over $\{a, b, c\}$, where $S(a)=3, S(b)=2$, $S(c)=0$.

Multi-Set Orderings

Lemma 1.12 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$
\begin{aligned}
S_{1} \succ_{\text {mul }} S_{2}: & \Leftrightarrow S_{1} \neq S_{2} \\
& \text { and } \forall m \in M:\left[S_{2}(m)>S_{1}(m)\right. \\
& \left.\Rightarrow \exists m^{\prime} \in M:\left(m^{\prime} \succ m \text { and } S_{1}\left(m^{\prime}\right)>S_{2}\left(m^{\prime}\right)\right)\right]
\end{aligned}
$$

Theorem 1.13

(a) $\succ_{\text {mul }}$ is a strict partial ordering.
(b) \succ well-founded $\Rightarrow \succ_{\text {mul }}$ well-founded.
(c) \succ total $\Rightarrow \succ_{\text {mul }}$ total.

Proof. see Baader and Nipkow, page 22-24.

1.7 The Propositional Resolution Calculus

Resolution is the following calculus operating on a set N of propositional clauses.
Resolution
$N \cup\{C \vee L\} \cup\{D \vee \bar{L}\} \Rightarrow_{\text {Res }}$
$N \cup\{C \vee L\} \cup\{D \vee \bar{L}\} \cup\{C \vee D\}$
Factoring
$N \cup\{C \vee L \vee L\} \Rightarrow_{\text {Res }} N \cup\{C \vee L \vee L\} \cup\{C \vee L\}$
Subsumption
$N \cup\{C\} \cup\{D\} \Rightarrow_{\text {Res }} N \cup\{C\}$
if $C \subseteq D$ considering C, D as multi-sets of literals
Merging Replacement Resolution
$N \cup\{C \vee L\} \cup\{D \vee \bar{L}\} \Rightarrow_{\text {Res }} N \cup\{C \vee L\} \cup\{D\}$
if $C \subseteq D$ considering C, D as multi-sets of literals
Propositional resolution is sound and complete: N is an unsatisfiable set of propositional clauses if and only if the empty clause can be derived by resolution from N.

[^0]: ${ }^{1}$ induction hypothesis
 ${ }^{2}$ induction step

