1.6 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge Univ. Press, 1998, Chapter 2.

To show termination of the iterative DPLL calculus, we will make use of the concept of well-founded orderings.

Partial Orderings

A strict partial ordering \succ on a set M is a transitive and irreflexive binary relation on M.

An $a \in M$ is called *minimal*, if there is no b in M such that $a \succ b$.

An $a \in M$ is called *smallest*, if $b \succ a$ for all $b \in M$ different from a.

Notation:

 \prec for the inverse relation \succ^{-1}

 \succeq for the reflexive closure ($\succ \cup =$) of \succ

Well-Foundedness

A strict partial ordering \succ is called *well-founded* (Noetherian), if there is no infinite descending chain $a_0 \succ a_1 \succ a_2 \succ \ldots$ with $a_i \in M$.

Well-Founded Orderings: Examples

Natural numbers. $(\mathbb{N}, >)$

Lexicographic orderings. Let $(M_1, \succ_1), (M_2, \succ_2)$ be well-founded orderings. Then let their lexicographic combination

 $\succ = (\succ_1, \succ_2)_{lex}$

on $M_1 \times M_2$ be defined as

 $(a_1, a_2) \succ (b_1, b_2) \quad :\Leftrightarrow \quad a_1 \succ_1 b_1, \text{ or else } a_1 = b_1 \& a_2 \succ_2 b_2$

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets Σ with a well-founded ordering $>_{\Sigma}$, the

relation \succ , defined as $w \succ w' := \alpha$) |w| > |w'| or β) |w| = |w'| and $w >_{\Sigma,lex} w'$, is a well-founded ordering on Σ^* (proof below).

Counterexamples:

 $(\mathbb{Z}, >);$ $(\mathbb{N}, <);$ the lexicographic ordering on Σ^*

Basic Properties of Well-Founded Orderings

Lemma 1.9 (M, \succ) is well-founded if and only if every $\emptyset \subset M' \subseteq M$ has a minimal element.

Lemma 1.10 (M_i, \succ_i) is well-founded for i = 1, 2 if and only if $(M_1 \times M_2, \succ)$ with $\succ = (\succ_1, \succ_2)_{lex}$ is well-founded.

Proof. (i) " \Rightarrow ": Suppose $(M_1 \times M_2, \succ)$ is not well-founded. Then there is an infinite sequence $(a_0, b_0) \succ (a_1, b_1) \succ (a_2, b_2) \succ \ldots$

Let $A = \{a_i \mid i \geq 0\} \subseteq M_1$. Since (M_1, \succ_1) is well-founded, A has a minimal element a_n . But then $B = \{b_i \mid i \geq n\} \subseteq M_2$ can not have a minimal element, contradicting the well-foundedness of (M_2, \succ_2) .

(ii) " \Leftarrow ": obvious.

Noetherian Induction

Theorem 1.11 (Noetherian Induction) Let (M, \succ) be a well-founded ordering, let Q be a property of elements of M.

If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ such that $m \succ m'$,¹ then Q(m).²

is satisfied, then the property Q(m) holds for all $m \in M$.

 $^{^{1}}$ induction hypothesis

²induction step

Proof. Let $X = \{m \in M \mid Q(m) \text{ false}\}$. Suppose, $X \neq \emptyset$. Since (M, \succ) is well-founded, X has a minimal element m_1 . Hence for all $m' \in M$ with $m' \prec m_1$ the property Q(m') holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_1 , hence $Q(m_1)$ must be true so that m_1 can not be in X. Contradiction.

Multi-Sets

Let M be a set. A multi-set S over M is a mapping $S: M \to \mathbb{N}$. Hereby S(m) specifies the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.

We use set notation $(\in, \subset, \subseteq, \cup, \cap, \text{ etc.})$ with analogous meaning also for multi-sets, e.g.,

$$(S_1 \cup S_2)(m) = S_1(m) + S_2(m) (S_1 \cap S_2)(m) = \min\{S_1(m), S_2(m)\}\$$

A multi-set is called *finite*, if

$$|\{m \in M | s(m) > 0\}| < \infty,$$

for each m in M.

From now on we only consider finite multi-sets.

Example. $S = \{a, a, a, b, b\}$ is a multi-set over $\{a, b, c\}$, where S(a) = 3, S(b) = 2, S(c) = 0.

Multi-Set Orderings

Lemma 1.12 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$S_1 \succ_{\text{mul}} S_2 :\Leftrightarrow S_1 \neq S_2$$

and $\forall m \in M : [S_2(m) > S_1(m)$
 $\Rightarrow \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))]$

Theorem 1.13

(a) \succ_{mul} is a strict partial ordering. (b) \succ well-founded $\Rightarrow \succ_{mul}$ well-founded. (c) \succ total $\Rightarrow \succ_{mul}$ total.

Proof. see Baader and Nipkow, page 22–24.

1.7 The Propositional Resolution Calculus

Resolution is the following calculus operating on a set N of propositional clauses.

Resolution

$$N \cup \{C \lor L\} \cup \{D \lor \overline{L}\} \Rightarrow_{\text{Res}} N \cup \{C \lor L\} \cup \{D \lor \overline{L}\} \cup \{C \lor D\}$$

Factoring

$$N \cup \{C \lor L \lor L\} \Rightarrow_{\text{Res}} N \cup \{C \lor L \lor L\} \cup \{C \lor L\}$$

Subsumption

 $N \cup \{C\} \cup \{D\} \Rightarrow_{\text{Res}} N \cup \{C\}$

if $C \subseteq D$ considering C, D as multi-sets of literals

Merging Replacement Resolution

 $N \cup \{C \lor L\} \cup \{D \lor \overline{L}\} \Rightarrow_{\text{Res}} N \cup \{C \lor L\} \cup \{D\}$

if $C \subseteq D$ considering C, D as multi-sets of literals

Propositional resolution is sound and complete: N is an unsatisfiable set of propositional clauses if and only if the empty clause can be derived by resolution from N.