
1.9 Splitting into Horn Clauses (Extra Topic)

• A Horn clause is a clause with at most one positive literal.

• They are typically denoted as implications: P1, . . . , Pn → Q.
(In general we can write P1, . . . , Pn → Q1, . . . , Qm for ¬P1 ∨ . . .∨¬Pn ∨Q1 ∨ . . .∨
Qm.)

• Compared to arbitrary clause sets, Horn clause sets enjoy further properties:

– Horn clause sets have unique minimal models.

– Checking satisfiability is often of lower complexity.

Propositional Horn Clause SAT is in P

boolean HornSAT(literal set M , Horn clause set N) {
if (all clauses in N are supported by M) return true;
elsif (a negative clause in N is not supported by M) return false;
elsif (N contains clause P1, . . . , Pn → Q where

{P1, . . . , Pn} ⊆ M and Q 6∈ M)
return HornSAT(M ∪ {Q}, N);

}

A clause P1, . . . , Pn → Q1, . . . , Qm is supported by M if {P1, . . . , Pn} 6⊆ M or some
Qi ∈ M . A negative clause consists of negative literals only.

Initially, HornSAT is called with an empty literal set M .

Lemma 1.18 Let N be a set of propositional Horn clauses.Then:

(1) HornSAT(∅, N)=true iff N is satisfiable

(2) HornSAT is in P

Proof. (1) (Idea) For example, by induction on the number of positive literals in N .

(2) (Scetch) For each recursive call M contains one more positive literal. Thus Horn-
SAT terminates after at most n recursive calls, where n is the number of propositional
variables in N . 2

24

SplitHornSAT

boolean SplitHornSAT(clause set N) {
if (N is Horn)

g return HornSAT(∅,N);
else {

select non Horn clause P1, . . . , Pn → Q1, . . . , Qm from N ;
N ′ = N \ {P1, . . . , Pn → Q1, . . . , Qm};
if (SplitHornSAT(N ′ ∪ {P1, . . . , Pn → Q1})) return true;
else return

SplitHornSAT(N ′ ∪ {→ Q2, . . . , Qm} ∪
⋃

i{→ Pi} ∪ {Q1 →});
}

}

Lemma 1.19 Let N be a set of propositional clauses. Then:

(1) SplitHornSAT(N)=true iff N is satisfiable

(2) SplitHornSAT(N) terminates

Proof. (1) (Idea) Show that N is satisfiable iff N ′ ∪ {P1, . . . , Pn → Q1} is satisfiable or
N ′ ∪ {→ Q2, . . . , Qm} ∪

⋃
i{→ Pi} ∪ {Q1 →} is satisfiable for some clause P1, . . . , Pn →

Q1, . . . , Qm from N .

(2) (Idea) Each recursive call reduces the number of positive literals in non Horn clauses.
2

1.10 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a fixed ordering on propo-
sitional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in Computer Science:
Modelling and Reasoning about Systems, Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

25

1.11 Example: SUDOKU

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 2
8 5 1
9 8 6

Idea: pd
i,j=true iff

the value of
square i, j is d

For example:
p8

3,5 = true

Coding SUDOKU by propositional clauses

• Concrete values result in units: pd
i,j

• For every value, column we generate: ¬pd
i,j ∨ ¬pd

i,j+k

Accordingly for all rows and 3 × 3 boxes

• For every square we generate: p1
i,j ∨ . . . ∨ p9

i,j

• For every two different values, square we generate: ¬pd
i,j ∨ ¬pd′

i,j

• For every value, column we generate: pd
i,0 ∨ . . . ∨ pd

i,9

Accordingly for all rows and 3 × 3 boxes

Constraint Propagation is Unit Propagation

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 7 2
8 5 1
9 8 6

From ¬p3
1,7 ∨ ¬p3

5,7 and p3
1,7 we obtain by unit propagating ¬p3

5,7 and further from p1
5,7 ∨

p2
5,7 ∨ p3

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7 we get p1
5,7 ∨ p2

5,7 ∨ p4
5,7 ∨ . . . ∨ p9

5,7.

26

2 Linear Arithmetic (LA)

We consider boolean combinations of linear arithmetic atoms such as 3.5x− 4y ≥ 7 and
search rational values for the variables x, y such that the disequation holds.

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific) (e.g. x, +, values from Q,≥)
⇒ terms, atomic formulas

• logical symbols (domain-independent) (e.g. ∧,→)
⇒ Boolean combinations (no quantification)

Signature

A signature

Σ = (Ω, Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols p with arity m ≥ 0, written arity(p) = m.

The linear arithmetic signature is
ΣLA = (Q ∪ {+,−, ∗}, {≥,≤, >, <})

Variables

Linear arithmetic admits the formulation of abstract, schematic assertions. (Object)
variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.

27

Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T)∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

Terms

Terms over ΣLA (resp., ΣLA-terms) are formed according to these syntactic rules:

s, t, u, v ::= x | q ∗ x | q , x ∈ X, q ∈ Q (variable, rational)
| s + t | s − t (sum, difference)

By TΣLA
(X) we denote the set of ΣLA-terms (over X). A term not containing any

variable is called a ground term. By TΣLA
we denote the set of ΣLA-ground terms.

Atoms

Atoms (also called atomic formulas) over ΣLA are formed according to this syntax:

A, B ::= s ≥ t | s ≤ t , s, t ∈ TΣLA
(X) (non-strict)

| s > t | s < t , s, t ∈ TΣLA
(X) (strict)

Quantifier Free Formulas

QFΣLA
(X) is the set of positive boolean formulas over ΣLA defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

28

Linear Arithmetic Semantics

The ΣLA-algebra (also called ΣLA-interpretation or ΣLA-structure) is the triple

ALA = (Q, (+ALA
,−ALA

, ∗ALA
), (≤ALA

,≥ALA
, <ALA

, >ALA
))

where +ALA
,−ALA

, ∗ALA
,≤ALA

,≥ALA
, <ALA

, >ALA
are the “standard” intepretations of

+,−, ∗,≤,≥, <, >, respectively.

Linear Arithmetic Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation for linear arithmetic is a map β : X →
Q.

Truth Value of a Formula with Respect to β

ALA(β) : QFΣLA
(X) → {0, 1} is defined inductively as follows:

ALA(β)(⊥) = 0

ALA(β)(⊤) = 1

ALA(β)(s ♯ t) = 1 ⇔ (ALA(β)(s) ♯ALA
ALA(β)(t))

♯ ∈ {≤,≥, <, >}

ALA(β)(¬F) = 1 ⇔ ALA(β)(F) = 0

ALA(β)(FρG) = Bρ(ALA(β)(F),ALA(β)(G))

with Bρ the Boolean function associated with ρ

ALA(β)(x) = β(x), ALA(β)(s ◦ t) = ALA(β)(s) ◦ALA
ALA(β)(t), ◦ ∈ {+,−, ∗}, ALA(β)(q) =

q for all q ∈ Q.

2.2 Models, Validity, and Satisfiability

F is valid in ALA under assignment β:

ALA, β |= F :⇔ ALA(β)(F) = 1

F is valid in ALA (ALA is a model of F):

ALA |= F :⇔ ALA, β |= F, for all β ∈ X → Q

F is called satisfiable iff there exist a β such that ALA, β |= F . Otherwise F is called
unsatisfiable.

29

On Quantification

Linear arithmetic can also be considered with respect to quantification. The quantifiers
are ∃ meaning “there exists” and ∀ meaning “for all”. For example, ∃x (x ≥ 0) is valid
(or true) in ALA, ∀x (x ≥ 0) is unsatisfiable (or false) and ∀x (x ≥ 0 ∨ x < 0) is again
valid.

Note that a quantifier free formula is satisfiable iff the existential closure of the formula
is valid. If we introduce new free constants ci for the variables xi of a quantifier free
formula, where ALA(ci) = qi for some qi ∈ Q, then a quantifier free formula is satisfiable
iff the same formula where variables are replaced by new free constants is satisfiable.

Some Important LA Equivalences

Proposition 2.1 The following equivalences are valid for all LA terms s, t:

¬s ≥ t ↔ s < t

¬s ≤ t ↔ s > t (Negation)

(s = t) ↔ (s ≤ t ∧ s ≥ t) (Equality)

s ≥ t ↔ t ≤ s

s > t ↔ t < s (Swap)

With . we abbreviate < or ≤.

The Fourier-Motzkin Procedure

boolean FM(Set N of LA atoms) {
if (N = ∅) return true;
elsif (N is ground) return ALA(N);
else {

select a variable x from N ;
transform all atoms in N containing x into si . x, x . tj
and the subset N ′ of atoms not containing x;
compute N∗ := {si .i, j tj | si .i x ∈ N , x .j tj ∈ N for all i, j}
where .i, j is strict iff at least one of .i, .j is strict
return FM(N ′ ∪ N∗);

}

}

30

Properties of the Fourier-Motzkin Procedure

• Any ground set N of linear arithmetic atoms can be easily decided.

• FM(N) terminates on any N as in recursive calls N has strictly less variables.

• The set N ′ ∪ N∗ is worst case of size O(|N |2).

• FM(N)=true iff N is satisfiable in ALA.

• The procedure was invented by Fourier (1826), forgotten, and then rediscovered
by Dines (1919) and Motzkin (1936).

• There are more efficient methods known, e.g., the simplex algorithm.

2.3 The DPLL(T) Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), where
the atoms represent ground formulas over some theory T , check whether it is satisfiable
in T . (and optionally: output one solution, if it is satisfiable).

Assumption:
Again, clauses contain neither duplicated literals nor complementary literals.

Remark:
We will use LA as an ongoing example for T and consider DPLL(LA).

On LA as a Theory

We consider a specific formula language together with a satisfiability check for conjunc-
tions of atoms (literals) as a theory T . Note that a valuation M is interpreted as the
conjunction of its literals.

Later on we will introduce theory notions based on sets of formulas or models.

For LA we consider the language defined before and Fourier-Motzkin as the satisfiabil-
ity check for conjunctions of atoms. Variables in formulas without quantification can
actually be considered as constants.

Notions with Respect to the Theory T

If a partial valuation M is T -consistent (satisfiable) and F a formula such that
M |= F , then we say that M is a T -model of F .

If F and G are formulas then F entails G in T , written F |=T G if F ∧ ¬G is
T -inconsistent.

Example: x > 1 6|= x > 0 but x > 1 |=LA x > 0

31

