
Here L(G, Xi) ⊆ T ∗ denotes the language generated by the grammar G from the non-
terminal Xi.

Structural Recursion

Proposition 3.2 Let G = (N, T, P, S) be a unambiguous (why?) context-free gram-
mar. A function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w′ ∈ T ∗ for each rule X ::= w′ in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then f(w0w

′
0w1 . . . wnw′

nwn+1) is
well-defined, assuming that each of the f(w′

i) is well-defined.

Substitution Revisited

Q: Does Proposition 3.2 justify that our homomorphic extension

apply : FΣ(X) × (X → TΣ(X)) → FΣ(X),

with apply(F, σ) denoted by Fσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is (deliberately) left unspecified.
That can be easily fixed by adding an extra variable counter argument to the apply
function.

The second problem is that Proposition 3.2 applies to unary functions only. The standard
solution to this problem is to curryfy, that is, to consider the binary function as a unary
function producing a unary (residual) function as a result:

apply : FΣ(X) → ((X → TΣ(X)) → FΣ(X))

where we have denoted (apply(F))(σ) as Fσ.

E: Convince yourself that this does the trick.

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

41

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un → U)f∈Ω, (PA ⊆ Um
A)p∈Π)

where arity(f) = n, arity(P) = m, UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a map
β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)),

f ∈ Ω, arity(f) = n

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ A, denote the
assignment

β[x 7→ a](y) :=

{

a if x = y

β(y) otherwise

42

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ PA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗ m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x + y ≈ s(y)) = 1
N(β)(∀x, y(x + y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

43

3.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F, for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 3.3 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.4 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

Corollary 3.5 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

44

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all A ∈ Σ-Alg

and β ∈ X → UA, whenever A, β |= F , then A, β |= G.

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg und β ∈ X → UA

we have A, β |= F ⇔ A, β |= G.

Proposition 3.6 F entails G iff (F → G) is valid

Proposition 3.7 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= G, for all G ∈ N , then A, β |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.8 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

45

Two Interesting Theories

Let ΣPres = ({0/0, s/1, +/2}, ∅) and Z+ = (Z, 0, s, +) its standard interpretation on the
integers. Th(Z+) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn

)).

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of ΣPA = ({0/0, s/1, +/2, ∗/2}, ∅),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.

3.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F ?

Solve(A,F): find an assignment β such that A, β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (One can easily
encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

46

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in time polynomial in the size of the structure
and the formula.

47

3.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . . Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . . Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)
¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}
(QxF → G) ⇒P Qy(F [y/x] → G), y fresh
(F ρ QxG) ⇒P Qy(F ρ G[y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.

Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f(x1, . . . , xn)/y]

where f , where arity(f) = n, is a new function symbol (Skolem function).

Together: F
∗

⇒P G
︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 3.9 Let F , G, and H as defined above and closed. Then

48

