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Tutorials for “Automated Reasoning”
Solution to the exercise sheet 1

Exercise 1.1: (3 P)
Determine which of the following formulas are valid/satisfiable/unsatisfiable (don’t use truth
tables):

(1) (P ∧Q)→ (P ∨Q).

Solution.
(P ∧Q)→ (P ∨Q) |=| ¬(P ∧Q) ∨ (P ∨Q)

|=| ¬P ∨ ¬Q ∨ P ∨Q
|=| (¬P ∨ P ) ∨ (¬Q ∨Q)
|=| > ∨ >
|=| >.

For any Π-valuation A, we have A((P ∧ Q) → (P ∨ Q)) = A(>) = 1, hence the given
formula is valid.

(2) (P ∨Q)→ (P ∧Q).

Solution.

(P ∨Q)→ (P ∧Q) |=| ¬(P ∨Q) ∨ (P ∧Q)
|=| (¬(P ∨Q) ∨ P ) ∧ (¬(P ∨Q) ∨Q)
|=| ((¬P ∧ ¬Q) ∨ P ) ∧ ((¬P ∧ ¬Q) ∨Q)
|=| ((¬P ∨ P ) ∧ (¬Q ∨ P )) ∧ ((¬P ∨Q) ∧ (¬Q ∨Q))
|=| (> ∧ (¬Q ∨ P )) ∧ ((¬P ∨Q) ∧ >)
|=| (¬Q ∨ P ) ∧ (¬P ∨Q)
|=| (Q→ P ) ∧ (P → Q)
|=| (Q↔ P ).

For any Π-valuation A, under which Q and P have the same value, the formula evaluates
to 1, and for other valuations the formula evaluates to 0, hence the given formula is
satisfiable, but not valid.



(3) (¬P → Q)→ ((¬P → ¬Q)→ P )

Solution.

(¬P → Q)→ ((¬P → ¬Q)→ P ) |=| ¬(¬¬P ∨Q) ∨ (¬(¬¬P ∨ ¬Q) ∨ P )
|=| (¬P ∧ ¬Q) ∨ ((¬P ∧Q) ∨ P )
|=| (¬P ∧ ¬Q) ∨ (¬P ∧Q) ∨ P
|=| (¬P ∧ ¬Q) ∨ P ∨ (¬P ∧Q) ∨ P
|=| ((¬P ∨ P ) ∧ (¬Q ∨ P )) ∨ ((¬P ∨ P ) ∧ (Q ∨ P ))
|=| (> ∧ (¬Q ∨ P )) ∨ (> ∧ (Q ∨ P ))
|=| ¬Q ∨ P ∨Q ∨ P
|=| ¬Q ∨Q ∨ P ∨ P
|=| > ∨ P
|=| >.

For any Π-valuation A, we have A((¬P → Q) → ((¬P → ¬Q) → P )) = A(>) = 1,
hence the given formula is valid.

(4) ¬(P → ¬P )

Solution.
¬(P → ¬P ) |=| ¬(¬P ∨ ¬P )

|=| ¬(¬P )
|=| P.

The obtained formula is the both CNF and DNF of the original formula. Since every
conjunct/disjunct of it does not contain complementary literals, the original formula is
neither valid nor unsatisfiable, therefore it is satisfiable.

(5) ¬(P ∨ ¬(P ∧Q))

Solution.
¬(P ∨ ¬(P ∧Q)) |=| ¬P ∧ ¬¬(P ∧Q)

|=| ¬P ∧ (P ∧Q)
|=| (¬P ∧ P ) ∧Q
|=| ⊥ ∧Q
|=| ⊥.

For any Π-valuation A, we have A(¬(P ∨ ¬(P ∧ Q))) = A(⊥) = 0, hence the given
formula is unsatisfiable.

(6) (P ∨ ¬Q) ∧ ¬(¬P → ¬Q)

Solution.

(P ∨ ¬Q) ∧ ¬(¬P → ¬Q) |=| (P ∨ ¬Q) ∧ ¬(¬¬P ∨ ¬Q)
|=| (P ∨ ¬Q) ∧ ¬(P ∨ ¬Q)
|= ((R) ∧ ¬(R)) ∧ (R↔ (P ∨ ¬Q)) (R is a new prop. var.)
|=| (R ∧ ¬R) ∧ (R↔ (P ∨ ¬Q))
|=| ⊥ ∧ (R↔ (P ∨ ¬Q))
|=| ⊥.

For any Π-valuation A, we have A
(
((R) ∧ ¬(R)) ∧ (R ↔ (P ∨ ¬Q))

)
= A(⊥) = 0.

Since we have used only satisfiablity-preserving transformations, the original formula is
unsatisfiable.



Exercise 1.2: (4 P)
Let F,G be propositional formulas and P be a propositional variable which does not occur
in F nor in G. Prove or refute the following propositions:

1. If F ∧G is valid/satisfiable, then P ∧G ∧ (P → F ) is valid/satisfiable.

Solution.

Assume F ∧G is satisfiable, meaning that there exists a Π-valuation A, s.t. A |= F ∧G.
Note, that A |= F ∧G ⇔ A |= F and A |= G.

Let A′ be a Π-valuation, s.t. A′(P ) = 1 and A′ agrees with A on any other propositional
variable, then, since P does not occur in F or G, we have that A′ |= F and A′ |= G,
therefore A′(P ∧G ∧ (P → F )) = A′(P ) ∧ A′(G) ∧ A′(P → F ) = 1 ∧ 1 ∧ (1 → 1) = 1.
So, we’ve found a Π-valuation A′ that models the formula P ∧G ∧ (P → F ).

Let A′′ be a Π-valuation, s.t. A′(P ) = 0, then A′′(P ∧G∧ (P → F )) = A′′(P )∧A′′(G∧
(P → F )) = 0∧A′′(G∧ (P → F )) = 0. So, we’ve found a Π-valuation A′′ that does not
model the formula P ∧G ∧ (P → F ).

Having the Π-valuations A′ and A′′, we can conclude that if F ∧G is valid or satisfiable,
then P ∧G ∧ (P → F ) is not valid but satisfiable.

2. Let G be unsatisfiable and F |= G. Then F ∨G satisfiable.

Solution.

F |= G iff A |= F → G, for an arbitrary Π-valuation A. Also, G is unsat., iff A |= ¬G,
for an arbitrary Π-valuation A. These two facts give us that for an arbitrary A:

A |= ¬G and A |= F → G ⇔ A(¬G) = 1 and A(F → G) = 1
⇔ A(¬G ∧ (F → G)) = 1
⇔ A(¬G ∧ (¬F ∨G)) = 1
⇔ A(¬F ∧ ¬G) = 1
⇔ A(¬(F ∨G)) = 1.

As the Π-valuation A was taken arbitrary, we obtain that ¬(F ∨G) is valid and, thus,
(F ∨G) is unsatisfiable, or, equivalently, (F ∨G) is not satisfiable.

3. If F → G is valid, and G→ H is satisfiable, then F → H is satisfiable.

Solution.

We prove the statement by contradiction.

Assume that F → G is valid, G→ H is satisfiable, but F → H is not satisfiable.

Let A be an arbitrary Π-valuation.

Since F → H is not satisfiable (or, equivalently, it is unsatisfiable), we have that
A(¬(F → H)) = 1, iff A(F ∧ ¬H)) = 1, iff A |= F and A |= ¬H. As the A is
taken arbitrary, we conclude that the formulas F and ¬H are valid: |= F and |= ¬H.

Since F → G is valid, A(F → G) = 1, iff A(¬F ∨G) = 1, iff A(¬F ) = 1 or A(G) = 1,
iff A |= ¬F or A |= G, but from what we have already shown, we know that A |= F ,
hence A |= G. As the A is taken arbitrary, we conclude that the formula G is valid:
|= G.



Since G → H is satisfiable, there exists a Π-valuation A′ s.t. A′(G → H) = 1, iff
A′(¬G) = 1 or A′(H) = 1, iff A′ |= ¬G or A′ |= H, but we have already shown that G
is valid, hence A′ |= H, but this contradicts the fact that ¬H is valid.

Thus our assumption was wrong and the statement of the exercise holds.

4. If F is satisfiable and G is satisfiable, then F ∧G is satisfiable.

Solution.

We refute the statement by contrexample.

Let F = Q and G = ¬Q, where Q is a propositional variable. F and G are clearly
satisfiable, but F ∧G is not, because F ∧G = Q ∧ ¬Q |=| ⊥.

Exercise 1.3: (2 P)
Transform the following formula to both CNF and DNF following the conversion steps from
the lecture: ((P → Q) ∨R) ∧ (¬Q→ P ).

Solution.

1. CNF.
((P → Q) ∨R) ∧ (¬Q→ P ) ⇒∗K (¬P ∨Q ∨R) ∧ (¬¬Q ∨ P )

⇒K (¬P ∨Q ∨R) ∧ (Q ∨ P ).

2. DNF.

((P → Q) ∨R) ∧ (¬Q→ P )
⇒∗K (¬P ∨Q ∨R) ∧ (¬¬Q ∨ P )
⇒K (¬P ∨Q ∨R) ∧ (Q ∨ P )
⇒K ((¬P ∨Q) ∧ (Q ∨ P )) ∨ (R ∧ (Q ∨ P ))
⇒∗K ((¬P ∧ (Q ∨ P )) ∨ (Q ∧ (Q ∨ P ))) ∨ ((R ∧Q) ∨ (R ∧ P ))
⇒∗K (¬P ∧Q) ∨ (¬P ∧ P ) ∨ (Q ∧Q) ∨ (Q ∧ P ) ∨ (R ∧Q) ∨ (R ∧ P ).

(We use the notation ⇒∗K to denote a multiple application of ⇒K .)

Exercise 1.4: (1 P)
Let F be a propositional formula. Show how to check its validity using an implementation of
the DPLL procedure.

Solution.

A propositional formula F is valid, iff ¬F is unsatisfiable. The DPLL procedure is aimed to
check whether a given clause set is satisfiable or not, or, equivalently, the DPLL procedure
can be used as an unsatisfiablity checker. Based on these observations, one can check validity
of a given formula F in the following way:



1. Compute F ′ = ¬F .

2. Compute F ′′ = CNF (F ′), i.e. compute the CNF of F ′.

3. If DPLL(∅, F ′′) is false, the formula F is valid, otherwise F – not valid.

Challenge Problem: (2 Bonus Points)
Let F be a propositional formula which contains no occurrence of → or ↔, then F ◦ is the
propositional formula obtained by replacing all occurrences of propositional variables by their
negations.

The dual of F , which we denote here by F ∗, is the propositional formula obtained by replacing
every occurrence of > by ⊥, every occurrence of ⊥ by >, every occurrence of ∨ by ∧ and
every occurrence of ∧ by ∨.

Prove or refute that F ∗ |=| ¬F ◦.

Solution.

We claim that F ∗ |=| ¬F ◦ holds.

Proof. We prove the statement by the Principle of Structural Induction.

Basic Step. Suppose F is atomic. Consider possible cases:

• F = P , where P is a propositional variable. Then

F ∗ = P ∗

= P (def. of ∗)
|=| ¬¬P
= ¬(P ◦) (def. of ◦)
= ¬F ◦.

• F = >. Then
F ∗ = >∗

= ⊥ (def. of ∗)
|=| ¬>
= ¬(>◦) (def. of ◦)
= ¬F ◦.

• F = ⊥. This case is similar to the previous one.

Thus, for every atomic formula F , we have that F ∗ |=| ¬F ◦.

Induction Step. Let H and G be arbitrary propositional formulas. Suppose that H∗ |=| ¬H◦

and G∗ |=| ¬G◦ (induction hypothesis), and F = H ◦G, where ◦ ∈ {∨, ∧}. Consider
the following cases:



• F = H ∨G. Then

F ∗ = (H ∨G)∗

= H∗ ∧G∗ (def. of ∗)
|=| ¬H◦ ∧ ¬G◦ (ind.hypothesis)
|=| ¬(H◦ ∨G◦)
= ¬(H ∨G)◦ (def. of ◦)
= ¬F ◦.

• F = H ∧G. This case is similar to the previous one.

• F = ¬H. Then
F ∗ = (¬H)∗

= ¬(H∗) (def. of ∗)
|=| ¬(¬H◦) (ind.hypothesis)
= ¬(¬H)◦ (def. of ◦)
= ¬F ◦.

Now it follows by the Principle of Structural Induction that, for every propositinal
formula F , the property F ∗ |=| ¬F ◦ holds.


