

Universität des Saarlandes FR Informatik

Evgeny Kruglov Christoph Weidenbach April 27, 2010

Tutorials for "Automated Reasoning" Solution to the exercise sheet 1

Exercise 1.1: (3 P)

Determine which of the following formulas are valid/satisfiable/unsatisfiable (don't use truth tables):

(1) $(P \land Q) \rightarrow (P \lor Q).$

Solution.

$$\begin{array}{cccc} (P \land Q) \rightarrow (P \lor Q) & \models & \neg (P \land Q) \lor (P \lor Q) \\ & \models & \neg P \lor \neg Q \lor P \lor Q \\ & \models & (\neg P \lor P) \lor (\neg Q \lor Q) \\ & \models & \top \lor \top \\ & \models & \top. \end{array}$$

For any Π -valuation \mathcal{A} , we have $\mathcal{A}((P \land Q) \to (P \lor Q)) = \mathcal{A}(\top) = 1$, hence the given formula is valid.

(2) $(P \lor Q) \to (P \land Q).$

Solution.

For any Π -valuation \mathcal{A} , under which Q and P have the same value, the formula evaluates to 1, and for other valuations the formula evaluates to 0, hence the given formula is satisfiable, but not valid.

For any Π -valuation \mathcal{A} , we have $\mathcal{A}((\neg P \rightarrow Q) \rightarrow ((\neg P \rightarrow \neg Q) \rightarrow P)) = \mathcal{A}(\top) = 1$, hence the given formula is valid.

 $(4) \ \neg (P \to \neg P)$

Solution.

$$\neg (P \to \neg P) \quad \models \quad \neg (\neg P \lor \neg P) \\ \models \quad \neg (\neg P) \\ \models \quad P.$$

The obtained formula is the both CNF and DNF of the original formula. Since every conjunct/disjunct of it does not contain complementary literals, the original formula is neither valid nor unsatisfiable, therefore it is satisfiable.

(5) $\neg (P \lor \neg (P \land Q))$

Solution.

$$\begin{array}{c|c} \neg (P \lor \neg (P \land Q)) & \models & \neg P \land \neg \neg (P \land Q) \\ & \models & \neg P \land (P \land Q) \\ & \models & (\neg P \land P) \land Q \\ & \models & \bot \land Q \\ & \models & \bot. \end{array}$$

For any Π -valuation \mathcal{A} , we have $\mathcal{A}(\neg (P \lor \neg (P \land Q))) = \mathcal{A}(\bot) = 0$, hence the given formula is unsatisfiable.

(6) $(P \lor \neg Q) \land \neg (\neg P \to \neg Q)$

Solution.

For any II-valuation \mathcal{A} , we have $\mathcal{A}(((R) \land \neg(R)) \land (R \leftrightarrow (P \lor \neg Q))) = \mathcal{A}(\bot) = 0$. Since we have used only satisfiablity-preserving transformations, the original formula is unsatisfiable.

Exercise 1.2: (4 P)

Let F, G be propositional formulas and P be a propositional variable which does not occur in F nor in G. Prove or refute the following propositions:

1. If $F \wedge G$ is valid/satisfiable, then $P \wedge G \wedge (P \to F)$ is valid/satisfiable.

Solution.

Assume $F \wedge G$ is satisfiable, meaning that there exists a Π -valuation \mathcal{A} , s.t. $\mathcal{A} \models F \wedge G$. Note, that $\mathcal{A} \models F \wedge G \Leftrightarrow \mathcal{A} \models F$ and $\mathcal{A} \models G$.

Let \mathcal{A}' be a Π -valuation, s.t. $\mathcal{A}'(P) = 1$ and \mathcal{A}' agrees with \mathcal{A} on any other propositional variable, then, since P does not occur in F or G, we have that $\mathcal{A}' \models F$ and $\mathcal{A}' \models G$, therefore $\mathcal{A}'(P \land G \land (P \rightarrow F)) = \mathcal{A}'(P) \land \mathcal{A}'(G) \land \mathcal{A}'(P \rightarrow F) = 1 \land 1 \land (1 \rightarrow 1) = 1$. So, we've found a Π -valuation \mathcal{A}' that models the formula $P \land G \land (P \rightarrow F)$.

Let \mathcal{A}'' be a Π -valuation, s.t. $\mathcal{A}'(P) = 0$, then $\mathcal{A}''(P \wedge G \wedge (P \to F)) = \mathcal{A}''(P) \wedge \mathcal{A}''(G \wedge (P \to F)) = 0$. So, we've found a Π -valuation \mathcal{A}'' that does not model the formula $P \wedge G \wedge (P \to F)$.

Having the Π -valuations \mathcal{A}' and \mathcal{A}'' , we can conclude that if $F \wedge G$ is valid or satisfiable, then $P \wedge G \wedge (P \to F)$ is not valid but satisfiable.

2. Let G be unsatisfiable and $F \models G$. Then $F \lor G$ satisfiable.

Solution.

 $F \models G$ iff $\mathcal{A} \models F \rightarrow G$, for an arbitrary Π -valuation \mathcal{A} . Also, G is unsat., iff $\mathcal{A} \models \neg G$, for an arbitrary Π -valuation \mathcal{A} . These two facts give us that for an arbitrary \mathcal{A} :

$$\mathcal{A} \models \neg G \text{ and } \mathcal{A} \models F \to G \iff \mathcal{A}(\neg G) = 1 \text{ and } \mathcal{A}(F \to G) = 1$$
$$\Leftrightarrow \quad \mathcal{A}(\neg G \land (F \to G)) = 1$$
$$\Leftrightarrow \quad \mathcal{A}(\neg G \land (\neg F \lor G)) = 1$$
$$\Leftrightarrow \quad \mathcal{A}(\neg F \land \neg G) = 1$$
$$\Leftrightarrow \quad \mathcal{A}(\neg (F \lor G)) = 1.$$

As the Π -valuation \mathcal{A} was taken arbitrary, we obtain that $\neg(F \lor G)$ is valid and, thus, $(F \lor G)$ is unsatisfiable, or, equivalently, $(F \lor G)$ is not satisfiable.

3. If $F \to G$ is valid, and $G \to H$ is satisfiable, then $F \to H$ is satisfiable.

Solution.

We prove the statement by contradiction.

Assume that $F \to G$ is valid, $G \to H$ is satisfiable, but $F \to H$ is not satisfiable.

Let \mathcal{A} be an arbitrary Π -valuation.

Since $F \to H$ is not satisfiable (or, equivalently, it is unsatisfiable), we have that $\mathcal{A}(\neg(F \to H)) = 1$, iff $\mathcal{A}(F \land \neg H) = 1$, iff $\mathcal{A} \models F$ and $\mathcal{A} \models \neg H$. As the \mathcal{A} is taken arbitrary, we conclude that the formulas F and $\neg H$ are valid: $\models F$ and $\models \neg H$. Since $F \to G$ is valid, $\mathcal{A}(F \to G) = 1$, iff $\mathcal{A}(\neg F \lor G) = 1$, iff $\mathcal{A}(\neg F) = 1$ or $\mathcal{A}(G) = 1$, iff $\mathcal{A} \models \neg F$ or $\mathcal{A} \models G$, but from what we have already shown, we know that $\mathcal{A} \models F$, hence $\mathcal{A} \models G$. As the \mathcal{A} is taken arbitrary, we conclude that the formula G is valid: $\models G$. Since $G \to H$ is satisfiable, there exists a Π -valuation \mathcal{A}' s.t. $\mathcal{A}'(G \to H) = 1$, iff $\mathcal{A}'(\neg G) = 1$ or $\mathcal{A}'(H) = 1$, iff $\mathcal{A}' \models \neg G$ or $\mathcal{A}' \models H$, but we have already shown that G is valid, hence $\mathcal{A}' \models H$, but this contradicts the fact that $\neg H$ is valid.

Thus our assumption was wrong and the statement of the exercise holds.

4. If F is satisfiable and G is satisfiable, then $F \wedge G$ is satisfiable.

Solution.

We refute the statement by contrexample.

Let F = Q and $G = \neg Q$, where Q is a propositional variable. F and G are clearly satisfiable, but $F \wedge G$ is not, because $F \wedge G = Q \wedge \neg Q \models \bot$.

Exercise 1.3: (2 P)

Transform the following formula to both CNF and DNF following the conversion steps from the lecture: $((P \to Q) \lor R) \land (\neg Q \to P)$.

Solution.

1. CNF.

$$((P \to Q) \lor R) \land (\neg Q \to P) \quad \Rightarrow_K^* \quad (\neg P \lor Q \lor R) \land (\neg \neg Q \lor P)$$

$$\Rightarrow_K \quad (\neg P \lor Q \lor R) \land (Q \lor P).$$

2. DNF.

$$\begin{array}{lll} ((P \to Q) \lor R) & \wedge & (\neg Q \to P) \\ & \Rightarrow_{K}^{*} & (\neg P \lor Q \lor R) \land (\neg \neg Q \lor P) \\ & \Rightarrow_{K} & (\neg P \lor Q \lor R) \land (Q \lor P) \\ & \Rightarrow_{K} & ((\neg P \lor Q) \land (Q \lor P)) \lor (R \land (Q \lor P)) \\ & \Rightarrow_{K}^{*} & ((\neg P \land Q) \land (Q \lor P)) \lor (Q \land (Q \lor P))) \lor ((R \land Q) \lor (R \land P)) \\ & \Rightarrow_{K}^{*} & ((\neg P \land Q) \lor (\neg P \land P) \lor (Q \land Q) \lor (Q \land P) \lor (R \land Q) \lor (R \land P). \end{array}$$

(We use the notation \Rightarrow_K^* to denote a multiple application of \Rightarrow_K .)

Exercise 1.4: (1 P)

Let F be a propositional formula. Show how to check its validity using an implementation of the DPLL procedure.

Solution.

A propositional formula F is valid, iff $\neg F$ is unsatisfiable. The DPLL procedure is aimed to check whether a given clause set is satisfiable or not, or, equivalently, the DPLL procedure can be used as an unsatisfiablity checker. Based on these observations, one can check validity of a given formula F in the following way:

- 1. Compute $F' = \neg F$.
- 2. Compute F'' = CNF(F'), i.e. compute the CNF of F'.
- 3. If $\text{DPLL}(\emptyset, F'')$ is false, the formula F is valid, otherwise F not valid.

Challenge Problem: (2 Bonus Points)

Let F be a propositional formula which contains no occurrence of \rightarrow or \leftrightarrow , then F° is the propositional formula obtained by replacing all occurrences of propositional variables by their negations.

The dual of F, which we denote here by F^* , is the propositional formula obtained by replacing every occurrence of \top by \bot , every occurrence of \bot by \top , every occurrence of \lor by \land and every occurrence of \land by \lor .

Prove or refute that $F^* \models \neg F^\circ$.

Solution.

We claim that $F^* \models \neg F^\circ$ holds.

Proof. We prove the statement by the Principle of Structural Induction.

Basic Step. Suppose F is atomic. Consider possible cases:

• F = P, where P is a propositional variable. Then

$$F^* = P^*$$

= P (def. of *)
$$\models \neg \neg P$$

= $\neg (P^\circ)$ (def. of °)
= $\neg F^\circ$.

• $F = \top$. Then

$$F^* = \top^*$$

= \bot (def. of *)
 \models $\neg \top$
= $\neg (\top^\circ)$ (def. of °)
= $\neg F^\circ$.

• $F = \bot$. This case is similar to the previous one.

Thus, for every atomic formula F, we have that $F^* \models \neg F^\circ$.

Induction Step. Let H and G be arbitrary propositional formulas. Suppose that $H^* \models \neg H^\circ$ and $G^* \models \neg G^\circ$ (**induction hypothesis**), and $F = H \circ G$, where $\circ \in \{\lor, \land\}$. Consider the following cases:

• $F = H \lor G$. Then

$$F^* = (H \lor G)^*$$

= $H^* \land G^*$ (def. of *)
 $\models \neg H^\circ \land \neg G^\circ$ (ind.hypothesis)
 $\models \neg (H^\circ \lor G^\circ)$
= $\neg (H \lor G)^\circ$ (def. of °)
= $\neg F^\circ$.

• $F = H \wedge G$. This case is similar to the previous one.

•
$$F = \neg H$$
. Then

$$\begin{array}{rcl} F^* &=& (\neg H)^* \\ &=& \neg (H^*) & (\text{def. of }^*) \\ &\rightleftharpoons & \neg (\neg H^\circ) & (\text{ind.hypothesis}) \\ &=& \neg (\neg H)^\circ & (\text{def. of }^\circ) \\ &=& \neg F^\circ. \end{array}$$

Now it follows by the Principle of Structural Induction that, for every propositinal formula F, the property $F^* \models \neg F^\circ$ holds.