Assignment 1 ($D P L L$)
Let N be the following set of propositional clauses:

P	\vee	Q	\vee	R	\vee	S	
P				\vee	$\neg S$	\vee	T
		Q			\vee	S	
		Q	\vee	$\neg R$			
					$\neg S$	\vee	
		\vee	R	\vee	$\neg S$	\vee	$\neg T$
$\neg P$		$\neg Q$			\vee	S	\vee
	$\neg Q$						
						$\neg T$	

Use the relation $\Rightarrow_{\text {DPLL }}$ to test whether N is satisfiable or not; if it is satisfiable, give a model of N. Start with the "Decide" rule for the literal P, then use the "Decide" rule for the literal Q. If you use the "Backjump" rule, use the best possible backjump clause and go to the best possible successor state.

Assignment 2 (Propositional Logic)
(10 points)
Let Π and Π^{\prime} be sets of propositional variables and let μ be an injective (one-to-one) mapping from Π to Π^{\prime}. For every propositional formula F over Π, let $\mu(F)$ be the formula that one obtains from F by replacing every propositional variable P in F by the propositional variable $\mu(P)$. Prove: If $\mu(F)$ is valid, then F is valid. (Note: This proof needs an induction argument; write it down in detail.)

Assignment 3 (Propositional Logic)

$$
(6+6=12 \text { points })
$$

Part (a)

Prove or refute: If F, G, and H are propositional formulas, $\neg F \vee G$ is valid, and $F \vee H$ is satisfiable, then $G \vee H$ is satisfiable.

Part (b)
Prove or refute: If F, G, and H are propositional formulas, and $(F \wedge H) \rightarrow$ $(G \wedge H)$ is valid, then $F \rightarrow G$ is valid.

Assignment 4 (OBDDs)

$$
(6+6+6=18 \text { points })
$$

Part (a)

Give a propositional formula F that is represented by the reduced OBDD on the right.

Part (b)

How many different reduced OBDDs over the propositional variables $\{P, Q, R\}$ have exactly one interior (non-leaf) node?

Part (c)

Find a propositional formula G over the
 propositional variables $\{P, Q, R\}$, such that the reduced OBDD for G has three interior nodes and the reduced OBDD for $F \vee G$ has one interior node. Give the reduced OBDDs for G and $F \vee G$.

Assignment 5 (Algebras)

$$
(6+6+6=18 \text { points })
$$

Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{p / 1\}$.
Part (a)
How many different Herbrand interpretations over Σ do exist? Explain briefly.
Part (b)
How many different Herbrand models over Σ does the following formula F have?

$$
p(b) \wedge \forall x \neg p(f(f(x)))
$$

Part (c)

Give an example of a Σ-algebra with the universe $\{1,2\}$ that is a model of F.

Assignment 6 (Termination)

Let \succ be a well-founded ordering on the set M. We define a binary relation \triangleright on finite subsets of M in the following way:

$$
\begin{array}{ll}
S \triangleright S \cup\left\{m_{1}, \ldots, m_{k}\right\} \quad \text { if } k \geq 1,\left\{m_{1}, \ldots, m_{k}\right\} \subseteq M, \\
& \text { and there exists an } m^{\prime} \in S \\
& \text { such that } m^{\prime} \text { is minimal in } S \\
& \text { and } m^{\prime} \succ m_{i} \text { for all } i \in\{1, \ldots, k\} \\
S \triangleright S \backslash\left\{m^{\prime}\right\} \quad & \text { if } m^{\prime} \in S \text { and } m^{\prime} \text { is not minimal in } S
\end{array}
$$

Prove that the relation \triangleright is terminating.

