Assignment 1 (DPLL)

(10 points)

Let N be the following set of propositional clauses:

P	\vee	Q	V	R	V	S			(1)
P					V	$\neg S$	\vee	T	(2)
		Q			\vee	S			(3)
		Q	\vee	$\neg R$			\vee	$\neg T$	(4)
						$\neg S$	V	T	(5)
$\neg P$			\vee	R	\vee	$\neg S$	\vee	$\neg T$	(6)
		$\neg Q$			\vee	S	V	T	(7)
		$\neg Q$					\vee	$\neg T$	(8)

Use the relation $\Rightarrow_{\text{DPLL}}$ to test whether N is satisfiable or not; if it is satisfiable, give a model of N. Start with the "Decide" rule for the literal P, then use the "Decide" rule for the literal Q. If you use the "Backjump" rule, use the *best possible* backjump clause and go to the *best possible* successor state.

Assignment 2 (Propositional Logic) (10 points)

Let Π and Π' be sets of propositional variables and let μ be an injective (oneto-one) mapping from Π to Π' . For every propositional formula F over Π , let $\mu(F)$ be the formula that one obtains from F by replacing every propositional variable P in F by the propositional variable $\mu(P)$. Prove: If $\mu(F)$ is valid, then F is valid. (Note: This proof needs an induction argument; write it down in detail.)

Assignment 3 (Propositional Logic)

(6 + 6 = 12 points)

Part (a)

Prove or refute: If F, G, and H are propositional formulas, $\neg F \lor G$ is valid, and $F \lor H$ is satisfiable, then $G \lor H$ is satisfiable.

Part (b)

Prove or refute: If F, G, and H are propositional formulas, and $(F \land H) \rightarrow (G \land H)$ is valid, then $F \rightarrow G$ is valid.

Assignment 4 (OBDDs)

Assignment 5 (Algebras)

Part (a)

Give a propositional formula F that is represented by the reduced OBDD on the right.

Part (b)

How many different reduced OBDDs over the propositional variables $\{P, Q, R\}$ have exactly one interior (non-leaf) node?

Part (c)

Find a propositional formula G over the propositional variables $\{P, Q, R\}$, such that

the reduced OBDD for G has three interior nodes and the reduced OBDD for $F \lor G$ has one interior node. Give the reduced OBDDs for G and $F \lor G$.

Let $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, f/1\}$ and $\Pi = \{p/1\}$.

Part (a)

How many different Herbrand interpretations over Σ do exist? Explain briefly.

Part (b)

How many different Herbrand models over Σ does the following formula F have?

$$p(b) \land \forall x \neg p(f(f(x)))$$

Part (c)

Give an example of a Σ -algebra with the universe $\{1, 2\}$ that is a model of F.

Assignment 6 (Termination)

Let \succ be a well-founded ordering on the set M. We define a binary relation \triangleright on finite subsets of M in the following way:

$$S \succ S \cup \{m_1, \dots, m_k\} \quad \text{if } k \ge 1, \ \{m_1, \dots, m_k\} \subseteq M,$$

and there exists an $m' \in S$
such that m' is minimal in S
and $m' \succ m_i$ for all $i \in \{1, \dots, k\}$

 $S \vartriangleright S \setminus \{m'\}$ if $m' \in S$ and m' is not minimal in S

Prove that the relation \triangleright is terminating.

(6 + 6 + 6 = 18 points)

(6 + 6 + 6 = 18 points)

(12 points)