

Universität des
Saarlandes
FR Informatik

Marek Kosta
April 23, 2012
Christoph Weidenbach

Tutorials for "Automated Reasoning"
Exercise sheet 2

Exercise 2.1: (3 P)
Let $\left(\mathbb{N}^{+}-\{1\},<_{d}\right)$ be the set of positive natural numbers without number one ordered by the relation of divisibility $<_{d}$ defined by $a<_{d} b$ if a divides b. Are there minimal elements? Is there a smallest element? How do they look like?

Exercise 2.2: (3P)
Let $(\mathbb{Q},<)$ be the set of rational numbers ordered with the usual ordering relation $<$. Construct subsets of \mathbb{Q} with following properties (for each item one subset):
(a) the set is well founded and has a minimal element
(b) the set is not well founded and has a minimal element
(c) the set is well founded and has a maximal element
(d) the set is well founded and does not have a maximal element

Exercise 2.3: (4P)
Let $\left(M_{1},>_{1}\right) ;\left(M_{2},>_{2}\right)$ and $\left(M_{3},>_{3}\right)$ be three strictly partially ordered sets. Let $\varphi: M_{1} \rightarrow M_{2}$ and $\psi: M_{2} \rightarrow M_{3}$ be two monotone mappings from M_{1} to M_{2} and from M_{2} to M_{3}, respectively. Prove or disprove: Composition of these two mappings is also a monotone mapping.
Bonus Problem (2 Bonus Points)
Give a counterexample to the reverse implication of Lemma 1.10.

Submit your solution in lecture hall 001 during the lecture on April 30. Please write your name and the date of your tutorial group on your solution.

Note: Joint solutions are not permitted (work in groups is encouraged).

