Universität des
Saarlandes
FR Informatik

Marek Kosta
April 30, 2012
Christoph Weidenbach

Tutorials for "Automated Reasoning"
 Exercise sheet 3

Exercise 3.1: (4P)
Determine which of the following formulas are valid/satisfiable/unsatisfiable:

1. $(P \wedge Q) \rightarrow(P \vee Q)$
2. $(P \vee Q) \rightarrow(P \wedge Q)$
3. $\neg(P \wedge \neg \neg P)$
4. $\neg(\neg P \vee \neg \neg P)$
5. $((P \rightarrow Q) \wedge(\neg P \rightarrow R)) \rightarrow(Q \vee R)$
6. $P \rightarrow(Q \rightarrow P)$
7. $(\neg Q \rightarrow \neg P) \rightarrow(P \rightarrow Q)$
8. $(P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R))$

Exercise 3.2: (3 P)
Logical connective NAND (notation: \uparrow) is defined as:

$$
\phi \uparrow \psi \leftrightarrow \neg(\phi \wedge \psi)
$$

Show how connectives \neg, \wedge and \vee can be equivalently rewritten using only connective \uparrow.

Exercise 3.3: (2 P)
Let N be a set of propositional formulas and ϕ be one propositional formula. Prove that $N \models \phi$ if and only if $N \cup\{\neg \phi\}$ is not satisfiable (i.e. $N \cup\{\neg \phi\}$ has no model, notation: $N \cup\{\neg \phi\} \models \perp)$.

Exercise 3.4: (2 P)
Let ϕ and ψ be two propositional formulas. Prove or disprove:

1. If ϕ is satisfiable or ψ is satisfiable then $\phi \vee \psi$ is satisfiable.
2. If ϕ is satisfiable and ψ is satisfiable then $\phi \wedge \psi$ is satisfiable.

Disprove means: provide a counter example and show that it is really a counter example.

Exercise 3.5: (4 Bonus Points)

Let Σ be a non-empty finite signature (set of propositional variables). As we already know we can percieve propositional formulas over Σ as functions from $\{0,1\}^{|\Sigma|}$ to $\{0,1\}$. Compare following sets of functions:

1. all functions from $\{0,1\}^{|\Sigma|}$ to $\{0,1\}$
2. functions representable by a propositional formula with connectives \wedge, \vee
3. functions representable by a propositional formula with connectives $\wedge, \vee, \rightarrow$
4. functions representable by a propositional formula with connectives \wedge, \neg

Compare means: for every pair of the above mentioned sets decide and prove which relation \subseteq, \supseteq (or incomparable) holds.

Submit your solution in lecture hall 001 during the lecture on May 7. Please write your name and the date of your tutorial group on your solution.

Note: Joint solutions are not permitted (work in groups is encouraged).

