
A relation → is called

terminating, if there is no infinite descending chain b0 → b1 → b2 →

normalizing, if every b ∈ A has a normal form.

Lemma 1.10 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Confluence

Let (A,→) be a rewrite system.

b and c ∈ A are joinable, if there is an a such that b→∗ a ∗← c.
Notation: b ↓ c.

The relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b ∗← a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

convergent, if it is confluent and terminating.

For a rewrite system (M,→) consider a sequence of elements ai that are pairwise con-
nected by the symmetric closure, i.e., a1 ↔ a2 ↔ a3 . . .↔ an. We say that ai is a peak
in such a sequence, if actually ai−1 ← ai → ai+1.

Theorem 1.11 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in
the derivation b↔∗ c. 2

Lemma 1.12 If → is confluent, then every element has at most one normal form.

15

Proof. Suppose that some element a ∈ A has normal forms b and c, then b ∗← a→∗ c.
If → is confluent, then b →∗ d ∗← c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d 0← c, so b, c, and d must be identical.

2

Corollary 1.13 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 1.14 If→ is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 1.11 or directly by induction on the length of the derivation
of b↔∗ c. 2

Confluence and Local Confluence

Theorem 1.15 (“Newman’s Lemma”) If a terminating relation→ is locally conflu-
ent, then it is confluent.

Proof. Let → be a terminating and locally confluent relation. Then →+ is a well-
founded ordering. Define Q(a) ⇔

(
∀b, c : b ∗← a→∗ c⇒ b ↓ c

)
.

We prove Q(a) for all a ∈ A by well-founded induction over →+:

Case 1: b 0← a→∗ c: trivial.

Case 2: b ∗← a→0 c: trivial.

Case 3: b ∗← b′ ← a→ c′ →∗ c: use local confluence, then use the induction hypothesis.
2

16

2 Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• industry standard for many analysis/verification tasks

• growing importance for discrete optimization problems (Automated Reasoning II)

2.1 Syntax

• propositional variables

• logical connectives
⇒ Boolean connectives and constants

Propositional Variables

Let Σ be a set of propositional variables also called the signature of the (propositional)
logic.

We use letters P , Q, R, S, to denote propositional variables.

Propositional Formulas

PROP(Σ) is the set of propositional formulas over Σ inductively defined as follows:

φ, ψ ::= ⊥ (falsum)
| ⊤ (verum)
| P , P ∈ Σ (atomic formula)
| ¬φ (negation)
| (φ ∧ ψ) (conjunction)
| (φ ∨ ψ) (disjunction)
| (φ→ ψ) (implication)
| (φ↔ ψ) (equivalence)

17

Notational Conventions

As a notational convention we assume that ¬ binds strongest, so ¬P ∨ Q is actually a
shorthand for (¬P) ∨ Q. For all other logical connectives we will explicitly put paren-
thesis when needed. From the semantics we will see that ∧ and ∨ are associative and
commutative. Therefore instead of ((P ∧Q) ∧ R) we simply write P ∧Q ∧R.

Automated reasoning is very much formula manipulation. In order to precisely represent
the manipulation of a formula, we introduce positions.

Formula Manipulation

A position is a word over N. The set of positions of a formula φ is inductively defined
by

pos(φ) := {ǫ} if φ ∈ {⊤,⊥} or φ ∈ Σ
pos(¬φ) := {ǫ} ∪ {1p | p ∈ pos(φ)}

pos(φ ◦ ψ) := {ǫ} ∪ {1p | p ∈ pos(φ)} ∪ {2p | p ∈ pos(ψ)}

where ◦ ∈ {∧,∨,→,↔}.

The prefix order ≤ on positions is defined by p ≤ q if there is some p′ such that pp′ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel”, see below.

By < we denote the strict part of ≤, i.e., p < q if p ≤ q but not q ≤ p. By ‖ we denote
incomparable positions, i.e., p ‖ q if neither p ≤ q, nor q ≤ p. Then we say that p is
above q if p ≤ q, p is strictly above q if p < q, and p and q are parallel if p ‖ q.

The size of a formula φ is given by the cardinality of pos(φ): |φ| := | pos(φ)|.

The subformula of φ at position p ∈ pos(φ) is recursively defined by φ|ǫ := φ and
(φ1 ◦ φ2)|ip := φi|p where i ∈ {1, 2}, ◦ ∈ {∧,∨,→,↔}.

Finally, the replacement of a subformula at position p ∈ pos(φ) by a formula ψ is
recursively defined by

φ[ψ]ǫ := ψ
(¬φ)[ψ]1p := ¬(φ[ψ]p)

(φ1 ◦ φ2)[ψ]1p := (φ1[ψ]p ◦ φ2)
(φ1 ◦ φ2)[ψ]2p := (φ1 ◦ φ2[ψ]p)

where ◦ ∈ {∧,∨,→,↔}.

18

Example 2.1 The set of positions for the formula φ = (A ∧B)→ (A ∨B) is pos(φ) =
{ǫ, 1, 11, 12, 2, 21, 22}. The subformula at position 22 is B, φ|22 = B and replacing this
formula by A↔ B results in φ[A↔ B]22 = (A ∧ B)→ (A ∨ (A↔ B)).

A further prerequisite for efficient formula manipulation is the polarity of a subformula
ψ of φ. The polarity determines the number of “negations” starting from φ down to ψ.
It is 1 for an even number along the path, −1 for an odd number and 0 if there is at
least one equivalence connective along the path.

The polarity of a subformula ψ of φ at position p, i ∈ {1, 2} is recursively defined by

pol(φ, ǫ) := 1
pol(¬φ, 1p) := − pol(φ, p)

pol(φ1 ◦ φ2, ip) := pol(φi, p) if ◦ ∈ {∧,∨}
pol(φ1 → φ2, 1p) := − pol(φ2, p)
pol(φ1 → φ2, 2p) := pol(φ2, p)
pol(φ1 ↔ φ2, ip) := 0

Example 2.2 We reuse the formula φ = (A ∧ B) → (A ∨ B) Then pol(φ, 1) =
pol(φ, 11) = −1 and pol(φ, 2) = pol(φ, 22) = 1. For the formula φ′ = (A∧B)↔ (A∨B)
we get pol(φ′, ǫ) = 1 and pol(φ′, p) = 0 for all other p ∈ pos(φ′), p 6= ǫ.

19

