A relation — is called
terminating, if there is no infinite descending chain by — by — by —

normalizing, if every b € A has a normal form.
Lemma 1.10 If — is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Confluence

Let (A, —) be a rewrite system.

b and ¢ € A are joinable, if there is an a such that b —* a "+ c.
Notation: b | c.

The relation — is called
Church-Rosser, if b <+* ¢ implies b | c.
confluent, if b *<— a —* ¢ implies b | c.
locally confluent, if b < a — ¢ implies b | c.
convergent, if it is confluent and terminating.

For a rewrite system (M, —) consider a sequence of elements a; that are pairwise con-
nected by the symmetric closure, i.e., a; <+ ag <+ as... <> a,. We say that a; is a peak
in such a sequence, if actually a;_1 < a; — a;41.

Theorem 1.11 The following properties are equivalent:
(i) — has the Church-Rosser property.
(ii) — is confluent.

Proof. (i)=-(ii): trivial.

(ii)=-(i): by induction on the number of peaks in

the derivation b <* c. O

Lemma 1.12 If — is confluent, then every element has at most one normal form.

15

Proof. Suppose that some element a € A has normal forms b and ¢, then b < a —* c.
If — is confluent, then b —* d *<— ¢ for some d € A. Since b and ¢ are normal forms,
both derivations must be empty, hence b —° d %« ¢, so b, ¢, and d must be identical.

O

Corollary 1.13 If — is normalizing and confluent, then every element b has a unique
normal form.

Proposition 1.14 If — is normalizing and confluent, then b <+* c if and only if b} = c|.

Proof. Either using Thm. 1.11 or directly by induction on the length of the derivation
of b +* c. O

Confluence and Local Confluence

Theorem 1.15 (“Newman’s Lemma”) If a terminating relation — is locally conflu-
ent, then it is confluent.

Proof. Let — be a terminating and locally confluent relation. Then —* is a well-
founded ordering. Define Q(a) < (Vb, c:b*~a—*c=0bl c).

We prove Q(a) for all a € A by well-founded induction over —:
Case 1: b % a —* ¢: trivial.
Case 2: b % a —° ¢: trivial.

Case 3: b * b + a — ¢ —* ¢: use local confluence, then use the induction hypothesis.
O

16

2 Propositional Logic

Propositional logic
e logic of truth values
e decidable (but NP-complete)
e can be used to describe functions over a finite domain
e industry standard for many analysis/verification tasks

e growing importance for discrete optimization problems (Automated Reasoning IT)

2.1 Syntax

e propositional variables

e logical connectives
= Boolean connectives and constants

Propositional Variables

Let ¥ be a set of propositional variables also called the signature of the (propositional)
logic.

We use letters P, @, R, S, to denote propositional variables.

Propositional Formulas

PROP(X) is the set of propositional formulas over ¥ inductively defined as follows:

o, = L (falsum)
| T (verum)
| P, PeX (atomic formula)
| -0 (negation)
| (pAY) (conjunction)
| (pV) (disjunction)
| (¢ —) (implication)
| (¢) (equivalence)

17

Notational Conventions

As a notational convention we assume that — binds strongest, so =P V @ is actually a
shorthand for (—=P) V Q. For all other logical connectives we will explicitly put paren-
thesis when needed. From the semantics we will see that A and V are associative and
commutative. Therefore instead of ((P A Q) A R) we simply write P A Q A R.

Automated reasoning is very much formula manipulation. In order to precisely represent
the manipulation of a formula, we introduce positions.

Formula Manipulation

A position is a word over N. The set of positions of a formula ¢ is inductively defined
by

pos(p) = {e}ifpe{T,L}orpeXx
pos(—¢) = {e}U{lp|p € pos(¢)}
pos(¢ovp) = {efU{lp|pepos(¢)}U{2p|p e pos(v)}

where o € {A,V, —, <}
The prefix order < on positions is defined by p < ¢ if there is some p’ such that pp’ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel”, see below.

By < we denote the strict part of <, i.e., p < ¢ if p < ¢ but not ¢ < p. By || we denote
incomparable positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. Then we say that p is
above q if p < q, p is strictly above q if p < ¢, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(¢): |¢| := | pos(¢)|.

The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢ and
(10 P2)|ip := bil, where i € {1,2}, 0 € {A,V,—, <}

Finally, the replacement of a subformula at position p € pos(¢) by a formula ¢ is
recursively defined by

ole = ¥
<_‘¢) [1/1] p = _‘<¢[7/}]p)
(p10d2)[W], = (d1[¢], 0 ¢2)
(P10 ¢2)[Y]p = (¢10a[d],)

where o € {A,V, —, <}

18

Example 2.1 The set of positions for the formula ¢ = (AN B) — (AV B) is pos(¢) =
{€,1,11,12,2,21,22}. The subformula at position 22 is B, ¢|ss = B and replacing this
formula by A <+ B results in ¢[A <> Blas = (AN B) — (AV (A < B)).

A further prerequisite for efficient formula manipulation is the polarity of a subformula
1 of ¢. The polarity determines the number of “negations” starting from ¢ down to .
It is 1 for an even number along the path, —1 for an odd number and 0 if there is at
least one equivalence connective along the path.

The polarity of a subformula v of ¢ at position p, i € {1,2} is recursively defined by

pol(¢,e) = 1
pol(=¢,1p) = —pol(¢,p)
pol(¢1 o ¢p,ip) = pol(¢;,p) if o € {A,V}
pol(¢1 — ¢o,1p) = —pol(¢a, p)
pol(¢1 — ¢2,2p) = pol(¢a,p)
pol(¢y <+ ¢g,ip) = 0

Example 2.2 We reuse the formula ¢ = (AN B) — (AV B) Then pol(¢,1) =
pol(¢,11) = —1 and pol(¢,2) = pol(¢, 22) = 1. For the formula ¢’ = (AN B) <+ (AV B)
we get pol(¢/,€) =1 and pol(¢’,p) = 0 for all other p € pos(¢'), p # €.

19

