A relation \rightarrow is called terminating, if there is no infinite descending chain $b_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \ldots$ normalizing, if every $b \in A$ has a normal form.

Lemma 1.10 If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Confluence

Let (A, \rightarrow) be a rewrite system.
b and $c \in A$ are joinable, if there is an a such that $b \rightarrow^{*} a{ }^{*} \leftarrow c$.
Notation: $b \downarrow c$.
The relation \rightarrow is called
Church-Rosser, if $b \leftrightarrow^{*} c$ implies $b \downarrow c$.
confluent, if $b^{*} \leftarrow a \rightarrow^{*} c$ implies $b \downarrow c$.
locally confluent, if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$.
convergent, if it is confluent and terminating.
For a rewrite system (M, \rightarrow) consider a sequence of elements a_{i} that are pairwise connected by the symmetric closure, i.e., $a_{1} \leftrightarrow a_{2} \leftrightarrow a_{3} \ldots \leftrightarrow a_{n}$. We say that a_{i} is a peak in such a sequence, if actually $a_{i-1} \leftarrow a_{i} \rightarrow a_{i+1}$.

Theorem 1.11 The following properties are equivalent:
(i) \rightarrow has the Church-Rosser property.
(ii) \rightarrow is confluent.

Proof. (i) \Rightarrow (ii): trivial.
$($ ii $) \Rightarrow$ (i): by induction on the number of peaks in
the derivation $b \leftrightarrow^{*} c$.

Lemma 1.12 If \rightarrow is confluent, then every element has at most one normal form.

Proof. Suppose that some element $a \in A$ has normal forms b and c, then $b^{*} \leftarrow a \rightarrow^{*} c$. If \rightarrow is confluent, then $b \rightarrow^{*} d^{*} \leftarrow c$ for some $d \in A$. Since b and c are normal forms, both derivations must be empty, hence $b \rightarrow^{0} d^{0} \leftarrow c$, so b, c, and d must be identical.

Corollary 1.13 If \rightarrow is normalizing and confluent, then every element b has a unique normal form.

Proposition 1.14 If \rightarrow is normalizing and confluent, then $b \leftrightarrow^{*} c$ if and only if $b \downarrow=c \downarrow$.

Proof. Either using Thm. 1.11 or directly by induction on the length of the derivation of $b \leftrightarrow^{*} c$.

Confluence and Local Confluence

Theorem 1.15 ("Newman's Lemma") If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof. Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^{+}is a wellfounded ordering. Define $Q(a) \Leftrightarrow\left(\forall b, c: b^{*} \leftarrow a \rightarrow^{*} c \Rightarrow b \downarrow c\right)$.

We prove $Q(a)$ for all $a \in A$ by well-founded induction over \rightarrow^{+}:
Case 1: $b^{0} \leftarrow a \rightarrow^{*} c$: trivial.
Case 2: $b^{*} \leftarrow a \rightarrow^{0} c$: trivial.
Case 3: $b^{*} \leftarrow b^{\prime} \leftarrow a \rightarrow c^{\prime} \rightarrow^{*} c$: use local confluence, then use the induction hypothesis.

2 Propositional Logic

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- industry standard for many analysis/verification tasks
- growing importance for discrete optimization problems (Automated Reasoning II)

2.1 Syntax

- propositional variables
- logical connectives
\Rightarrow Boolean connectives and constants

Propositional Variables

Let Σ be a set of propositional variables also called the signature of the (propositional) logic.

We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

$\operatorname{PROP}(\Sigma)$ is the set of propositional formulas over Σ inductively defined as follows:

```
\phi,\psi ::= 
    | P, P\in\Sigma (atomic formula)
    | \neg\phi (negation)
    | (\phi\wedge\psi) (conjunction)
    (\phi\vee\psi) (disjunction)
    (\phi->\psi) (implication)
    | (\phi\leftrightarrow\psi) (equivalence)
```


Notational Conventions

As a notational convention we assume that \neg binds strongest, so $\neg P \vee Q$ is actually a shorthand for $(\neg P) \vee Q$. For all other logical connectives we will explicitly put parenthesis when needed. From the semantics we will see that \wedge and \vee are associative and commutative. Therefore instead of $((P \wedge Q) \wedge R)$ we simply write $P \wedge Q \wedge R$.

Automated reasoning is very much formula manipulation. In order to precisely represent the manipulation of a formula, we introduce positions.

Formula Manipulation

A position is a word over \mathbb{N}. The set of positions of a formula ϕ is inductively defined by

$$
\begin{aligned}
\operatorname{pos}(\phi) & :=\{\epsilon\} \text { if } \phi \in\{\top, \perp\} \text { or } \phi \in \Sigma \\
\operatorname{pos}(\neg \phi) & :=\{\epsilon\} \cup\{1 p \mid p \in \operatorname{pos}(\phi)\} \\
\operatorname{pos}(\phi \circ \psi) & :=\{\epsilon\} \cup\{1 p \mid p \in \operatorname{pos}(\phi)\} \cup\{2 p \mid p \in \operatorname{pos}(\psi)\}
\end{aligned}
$$

where $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.
The prefix order \leq on positions is defined by $p \leq q$ if there is some p^{\prime} such that $p p^{\prime}=q$.
Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

By $<$ we denote the strict part of \leq, i.e., $p<q$ if $p \leq q$ but not $q \leq p$. By $\|$ we denote incomparable positions, i.e., $p \| q$ if neither $p \leq q$, nor $q \leq p$. Then we say that p is above q if $p \leq q, p$ is strictly above q if $p<q$, and p and q are parallel if $p \| q$.
The size of a formula ϕ is given by the cardinality of $\operatorname{pos}(\phi):|\phi|:=|\operatorname{pos}(\phi)|$.
The subformula of ϕ at position $p \in \operatorname{pos}(\phi)$ is recursively defined by $\left.\phi\right|_{\epsilon}:=\phi$ and $\left.\left(\phi_{1} \circ \phi_{2}\right)\right|_{i p}:=\left.\phi_{i}\right|_{p}$ where $i \in\{1,2\}, \circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.

Finally, the replacement of a subformula at position $p \in \operatorname{pos}(\phi)$ by a formula ψ is recursively defined by

$$
\begin{aligned}
\phi[\psi]_{\epsilon} & :=\psi \\
(\neg \phi)[\psi]_{1 p} & :=\neg\left(\phi[\psi]_{p}\right) \\
\left(\phi_{1} \circ \phi_{2}\right)[\psi]_{1 p} & :=\left(\phi_{1}[\psi]_{p} \circ \phi_{2}\right) \\
\left(\phi_{1} \circ \phi_{2}\right)[\psi]_{2 p} & :=\left(\phi_{1} \circ \phi_{2}[\psi]_{p}\right)
\end{aligned}
$$

where $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.

Example 2.1 The set of positions for the formula $\phi=(A \wedge B) \rightarrow(A \vee B)$ is $\operatorname{pos}(\phi)=$ $\{\epsilon, 1,11,12,2,21,22\}$. The subformula at position 22 is $B,\left.\phi\right|_{22}=B$ and replacing this formula by $A \leftrightarrow B$ results in $\phi[A \leftrightarrow B]_{22}=(A \wedge B) \rightarrow(A \vee(A \leftrightarrow B))$.

A further prerequisite for efficient formula manipulation is the polarity of a subformula ψ of ϕ. The polarity determines the number of "negations" starting from ϕ down to ψ. It is 1 for an even number along the path, -1 for an odd number and 0 if there is at least one equivalence connective along the path.
The polarity of a subformula ψ of ϕ at position $p, i \in\{1,2\}$ is recursively defined by

$$
\begin{aligned}
\operatorname{pol}(\phi, \epsilon) & :=1 \\
\operatorname{pol}(\neg \phi, 1 p) & :=-\operatorname{pol}(\phi, p) \\
\operatorname{pol}\left(\phi_{1} \circ \phi_{2}, i p\right) & :=\operatorname{pol}\left(\phi_{i}, p\right) \text { if } \circ \in\{\wedge, \vee\} \\
\operatorname{pol}\left(\phi_{1} \rightarrow \phi_{2}, 1 p\right) & :=-\operatorname{pol}\left(\phi_{2}, p\right) \\
\operatorname{pol}\left(\phi_{1} \rightarrow \phi_{2}, 2 p\right) & :=\operatorname{pol}\left(\phi_{2}, p\right) \\
\operatorname{pol}\left(\phi_{1} \leftrightarrow \phi_{2}, i p\right) & :=0
\end{aligned}
$$

Example 2.2 We reuse the formula $\phi=(A \wedge B) \rightarrow(A \vee B)$ Then $\operatorname{pol}(\phi, 1)=$ $\operatorname{pol}(\phi, 11)=-1$ and $\operatorname{pol}(\phi, 2)=\operatorname{pol}(\phi, 22)=1$. For the formula $\phi^{\prime}=(A \wedge B) \leftrightarrow(A \vee B)$ we get $\operatorname{pol}\left(\phi^{\prime}, \epsilon\right)=1$ and $\operatorname{pol}\left(\phi^{\prime}, p\right)=0$ for all other $p \in \operatorname{pos}\left(\phi^{\prime}\right), p \neq \epsilon$.

